Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Physiol Rep ; 11(2): e15579, 2023 01.
Article En | MEDLINE | ID: mdl-36695822

Podocytes are terminally differentiated epithelial cells in glomeruli. Podocyte injury and loss are features of many diseases leading to chronic kidney disease (CKD). The developmental origins of health and disease hypothesis propose an adverse intrauterine environment can lead to CKD later in life, especially when a second postnatal challenge is experienced. The aim of this study was to examine whether a suboptimal maternal environment would result in reduced podocyte endowment, increasing susceptibility to diabetes-induced renal injury. Female C57BL/6 mice were fed a low protein diet (LPD) to induce growth restriction or a normal protein diet (NPD) from 3 weeks before mating until weaning (postnatal Day 21, P21) when nephron and podocyte endowment were assessed in one male and one female offspring per litter. Littermates were administered streptozotocin or vehicle at 6 weeks of age. Urinary albumin excretion, glomerular size, and podometrics were assessed following 18 weeks of hyperglycemia. LPD offspring were growth restricted and had lower nephron and podocyte number at P21. However, by 24 weeks the podocyte deficit was no longer evident and despite low nephron endowment neither albuminuria nor glomerulosclerosis were observed. Podocyte number was unaffected by 18 weeks of hyperglycemia in NPD and LPD offspring. Diabetes increased glomerular volume reducing podocyte density, with more pronounced effects in LPD offspring. LPD and NPD diabetic offspring developed mild albuminuria with LPD demonstrating an earlier onset. LPD offspring also developed glomerular pathology. These findings indicate that growth-restricted LPD offspring with low nephron number and normalized podocyte endowment were more susceptible to alterations in glomerular volume and podocyte density leading to more rapid onset of albuminuria and renal injury than NPD offspring.


Diabetes Mellitus , Hyperglycemia , Podocytes , Renal Insufficiency, Chronic , Mice , Animals , Male , Female , Albuminuria , Mice, Inbred C57BL
2.
Cell Tissue Res ; 388(2): 439-451, 2022 May.
Article En | MEDLINE | ID: mdl-35290515

Progressive podocyte loss is a feature of healthy ageing. While previous studies have reported age-related changes in podocyte number, density and size and associations with proteinuria and glomerulosclerosis, few studies have examined how the response of remaining podocytes to podocyte depletion changes with age. Mild podocyte depletion was induced in PodCreiDTR mice aged 1, 6, 12 and 18 months via intraperitoneal administration of diphtheria toxin. Control mice received intraperitoneal vehicle. Podometrics, proteinuria and glomerular pathology were assessed, together with podocyte expression of p-rp-S6, a phosphorylation target that represents activity of the mammalian target of rapamycin (mTOR). Podocyte number per glomerulus did not change in control mice in the 18-month time period examined. However, control mice at 18 months had the largest podocytes and the lowest podocyte density. Podocyte depletion at 1, 6 and 12 months resulted in mild albuminuria but no glomerulosclerosis, whereas similar levels of podocyte depletion at 18 months resulted in both albuminuria and glomerulosclerosis. Following podocyte depletion at 6 and 12 months, the number of p-rp-S6 positive podocytes increased significantly, and this was associated with an adaptive increase in podocyte volume. However, at 18 months of age, remaining podocytes were unable to further elevate mTOR expression or undergo hypertrophic adaptation in response to mild podocyte depletion, resulting in marked glomerular pathology. These findings demonstrate the importance of mTORC1-mediated podocyte hypertrophy in both physiological (ageing) and adaptive settings, highlighting a functional limit to podocyte hypertrophy reached under physiological conditions.


Aging , Podocytes , Albuminuria/metabolism , Albuminuria/pathology , Animals , Female , Hypertrophy/metabolism , Hypertrophy/pathology , Male , Mice , Podocytes/cytology , Proteinuria , TOR Serine-Threonine Kinases/metabolism
3.
Am J Physiol Renal Physiol ; 321(3): F322-F334, 2021 09 01.
Article En | MEDLINE | ID: mdl-34308670

Low birth weight is a risk factor for chronic kidney disease, whereas adult podocyte depletion is a key event in the pathogenesis of glomerulosclerosis. However, whether low birth weight due to poor maternal nutrition is associated with low podocyte endowment and glomerulosclerosis in later life is not known. Female Sprague-Dawley rats were fed a normal-protein diet (NPD; 20%) or low-protein diet (LPD; 8%), to induce low birth weight, from 3 wk before mating until postnatal day 21 (PN21), when kidneys from some male offspring were taken for quantitation of podocyte number and density in whole glomeruli using immunolabeling, tissue clearing, and confocal microscopy. The remaining offspring were fed a normal- or high-fat diet until 6 mo to induce catch-up growth and excessive weight gain, respectively. At PN21, podocyte number per glomerulus was 15% lower in low birth weight (LPD) than normal birth weight (NPD) offspring, with this deficit greater in outer glomeruli. Surprisingly, podocyte number in LPD offspring increased in outer glomeruli between PN21 and 6 mo, although an overall 9% podocyte deficit persisted. Postnatal fat feeding to LPD offspring did not alter podometric indexes or result in glomerular pathology at 6 mo, whereas fat feeding in NPD offspring was associated with far greater body and fat mass as well as podocyte loss, reduced podocyte density, albuminuria, and glomerulosclerosis. This is the first report that maternal diet can influence podocyte endowment. Our findings provide new insights into the impact of low birth weight, podocyte endowment, and postnatal weight on podometrics and kidney health in adulthood.NEW & NOTEWORTHY The present study shows, for the first time, that low birth weight as a result of maternal nutrition is associated with low podocyte endowment. However, a mild podocyte deficit at birth did not result in glomerular pathology in adulthood. In contrast, postnatal podocyte loss in combination with excessive body weight led to albuminuria and glomerulosclerosis. Taken together, these findings provide new insights into the associations between birth weight, podocyte indexes, postnatal weight, and glomerular pathology.


Body Size/physiology , Kidney Diseases/pathology , Podocytes/pathology , Prenatal Exposure Delayed Effects/pathology , Animals , Birth Weight/physiology , Female , Kidney/pathology , Kidney Glomerulus/pathology , Pregnancy , Rats, Sprague-Dawley
4.
Anat Rec (Hoboken) ; 303(10): 2668-2678, 2020 10.
Article En | MEDLINE | ID: mdl-31984678

Fetal hypoxia is a common complication of pregnancy. We have previously reported that maternal hypoxia in late gestation in mice gives rise to male offspring with reduced nephron number, while females have normal nephron number. Male offspring later develop proteinuria and renal pathology, including glomerular pathology, whereas female offspring are unaffected. Given the central role of podocyte depletion in glomerular and renal pathology, we examined whether maternal hypoxia resulted in low podocyte endowment in offspring. Pregnant CD1 mice were allocated at embryonic day 14.5 to normoxic (21% oxygen) or hypoxic (12% oxygen) conditions. At postnatal day 21, kidneys from mice were immersion fixed, and one mid-hilar slice per kidney was immunostained with antibodies directed against p57 and synaptopodin for podocyte identification. Slices were cleared and imaged with a multiphoton microscope for podometric analysis. Male hypoxic offspring had significantly lower birth weight, nephron number, and podocyte endowment than normoxic male offspring (podocyte number; normoxic 62.86 ± 2.26 podocytes per glomerulus, hypoxic 53.38 ± 2.25; p < .01, mean ± SEM). In contrast, hypoxic female offspring had low birth weight but their nephron and podocyte endowment was the same as normoxic female offspring (podocyte number; normoxic 62.38 ± 1.86 podocytes per glomerulus, hypoxic 61.81 ± 1.80; p = .88). To the best of our knowledge, this is the first report of developmentally programmed low podocyte endowment. Given the well-known association between podocyte depletion in adulthood and glomerular pathology, we postulate that podocyte endowment may place offspring at risk of renal disease in adulthood, and explain the greater vulnerability of male offspring.


Hypoxia/pathology , Kidney/pathology , Podocytes/pathology , Prenatal Exposure Delayed Effects/pathology , Animals , Female , Kidney Glomerulus/pathology , Male , Mice , Pregnancy , Sex Factors
5.
JCI Insight ; 4(18)2019 09 19.
Article En | MEDLINE | ID: mdl-31534053

The cellular origins of glomerulosclerosis involve activation of parietal epithelial cells (PECs) and progressive podocyte depletion. While mammalian target of rapamycin-mediated (mTOR-mediated) podocyte hypertrophy is recognized as an important signaling pathway in the context of glomerular disease, the role of podocyte hypertrophy as a compensatory mechanism preventing PEC activation and glomerulosclerosis remains poorly understood. In this study, we show that glomerular mTOR and PEC activation-related genes were both upregulated and intercorrelated in biopsies from patients with focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, suggesting both compensatory and pathological roles. Advanced morphometric analyses in murine and human tissues identified podocyte hypertrophy as a compensatory mechanism aiming to regulate glomerular functional integrity in response to somatic growth, podocyte depletion, and even glomerulosclerosis - all of this in the absence of detectable podocyte regeneration. In mice, pharmacological inhibition of mTOR signaling during acute podocyte loss impaired hypertrophy of remaining podocytes, resulting in unexpected albuminuria, PEC activation, and glomerulosclerosis. Exacerbated and persistent podocyte hypertrophy enabled a vicious cycle of podocyte loss and PEC activation, suggesting a limit to its beneficial effects. In summary, our data highlight a critical protective role of mTOR-mediated podocyte hypertrophy following podocyte loss in order to preserve glomerular integrity, preventing PEC activation and glomerulosclerosis.


Albuminuria/chemically induced , Diabetic Nephropathies/pathology , Everolimus/adverse effects , Glomerulosclerosis, Focal Segmental/pathology , TOR Serine-Threonine Kinases/metabolism , Aged , Aged, 80 and over , Animals , Biopsy , Cells, Cultured , Child, Preschool , Datasets as Topic , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/drug therapy , Epithelial Cells/pathology , Everolimus/administration & dosage , Female , Gene Expression Profiling , Humans , Hypertrophy/drug therapy , Hypertrophy/pathology , Infant , Male , Mice , Mice, Knockout , Middle Aged , Podocytes , Primary Cell Culture , Regeneration , Signal Transduction/drug effects , Signal Transduction/genetics , Streptozocin/toxicity , TOR Serine-Threonine Kinases/analysis , TOR Serine-Threonine Kinases/antagonists & inhibitors , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/metabolism , Up-Regulation , Young Adult
6.
Kidney Int ; 96(2): 505-516, 2019 08.
Article En | MEDLINE | ID: mdl-31155155

Recent developments in optical tissue clearing have been difficult to apply for the morphometric analysis of organs with high cellular content and small functional structures, such as the kidney. Here, we establish combinations of genetic and immuno-labelling for single cell identification, tissue clearing and subsequent de-clarification for histoimmunopathology and transmission electron microscopy. Using advanced light microscopy and computational analyses, we investigated a murine model of crescentic nephritis, an inflammatory kidney disease typified by immune-mediated damage to glomeruli leading to the formation of hypercellular lesions and the rapid loss of kidney function induced by nephrotoxic serum. Results show a graded susceptibility of the glomeruli, significant podocyte loss and capillary injury. These effects are associated with activation of parietal epithelial cells and formation of glomerular lesions that may evolve and obstruct the kidney tubule, thereby explaining the loss of kidney function. Thus, our work provides new high-throughput endpoints for the analysis of complex tissues with single-cell resolution.


Glomerulonephritis/pathology , Histocytological Preparation Techniques/methods , Imaging, Three-Dimensional , Podocytes/physiology , Single-Cell Analysis/methods , Animals , Capillaries , Disease Models, Animal , Disease Progression , Fluorescence , Fluorescent Dyes/chemistry , Genes, Reporter/genetics , Glomerulonephritis/immunology , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Humans , Male , Mice , Mice, Transgenic , Microscopy, Electron, Transmission , Podocytes/ultrastructure
7.
J Am Soc Nephrol ; 27(10): 3093-3104, 2016 Oct.
Article En | MEDLINE | ID: mdl-26975438

Podocyte depletion is sufficient for the development of numerous glomerular diseases and can be absolute (loss of podocytes) or relative (reduced number of podocytes per volume of glomerulus). Commonly used methods to quantify podocyte depletion introduce bias, whereas gold standard stereologic methodologies are time consuming and impractical. We developed a novel approach for assessing podocyte depletion in whole glomeruli that combines immunofluorescence, optical clearing, confocal microscopy, and three-dimensional analysis. We validated this method in a transgenic mouse model of selective podocyte depletion, in which we determined dose-dependent alterations in several quantitative indices of podocyte depletion. This new approach provides a quantitative tool for the comprehensive and time-efficient analysis of podocyte depletion in whole glomeruli.


Cell Count/methods , Cell Size , Kidney Glomerulus/cytology , Podocytes/cytology , Animals , Imaging, Three-Dimensional , Mice
...