Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065177

RESUMEN

Pulsed laser deposition (PLD) is one of the most flexible physical growth techniques for thin films of functional materials at the research and demonstrator level. We describe here a relatively simple and reliable concept of the PLD hardware that allows both deposition on large areas up to 4 in. diameter and deposition of tailored lateral and vertical composition spreads without time-consuming hardware changes. Different PLD approaches have been implemented in various chambers via specific and correlated computer-controlled movements of the target, substrate, and masks in conjunction with an appropriate target phase composition. The design of the chambers benefits from our long-term experience to find the most reliable solutions for the critical mechanical and high-temperature parts.

2.
ACS Appl Mater Interfaces ; 15(24): 29535-29541, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37278556

RESUMEN

The wide band gap semiconductor κ-Ga2O3 and its aluminum and indium alloys have been proposed as promising materials for many applications. One of them is the use of inter-sub-band transitions in quantum-well (QW) systems for infrared detectors. Our simulations show that the detection wavelength range of nowadays state of the art GaAs/AlxGa1-xAs quantum-well infrared photodetectors (QWIPs) could be substantially excelled with about 1-100 µm using κ-([Al,In]xGa1-x)2O3, while at the same time being transparent to visible light and therefore insensitive to photon noise due to its wide band gap, demonstrating the application potential of this material system. Our simulations further show that the QWIPs efficiency critically depends on the QW thickness, making a precise control over the thickness during growth and a reliable thickness determination essential. We demonstrate that pulsed laser deposition yields the needed accuracy, by analyzing a series of (InxGa1-x)2O3 QWs with (AlyGa1-y)2O3 barriers with high-resolution X-ray diffraction, X-ray photoelectron spectroscopy (XPS) depth profiling, and transmission electron microscopy (TEM). While the superlattice fringes of high-resolution X-ray diffraction only yield an average combined thickness of the QWs and the barrier and X-ray spectroscopy depth profiling requires elaborated modeling of the XPS signal to accurately determine the thickness of such QWs, TEM is the method of choice when it comes to the determination of QW thicknesses.

3.
ACS Appl Mater Interfaces ; 14(10): 12350-12358, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35253419

RESUMEN

The occurrence of rotational domains is a well-known issue for copper iodide (CuI) that naturally occurs for growth on popular substrates like sapphire. However, this has detrimental effects on the thin film quality like increasing surface roughness or deteriorated transport characteristics due to grain boundary scattering. Utilizing pulsed laser deposition and the in situ growth of sodium chloride (NaCl) and sodium bromide (NaBr) template layers, studies were performed on their potential on suppressing the formation of rotational domains of CuI on c-plane sapphire and SrF2(111) substrates. Corresponding samples were investigated concerning their epitaxial properties and further characterized regarding (volume) crystalline, morphological, and electrical properties. Particularly for NaBr template layers, fully single-crystalline growth of CuI thin films was obtained and resulted in significantly reduced surface roughness of the CuI layer.

4.
ACS Appl Mater Interfaces ; 13(2): 2807-2819, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33426870

RESUMEN

The electronic and optical properties of (InxGa1-x)2O3 alloys are highly tunable, giving rise to a myriad of applications including transparent conductors, transparent electronics, and solar-blind ultraviolet photodetectors. Here, we investigate these properties for a high quality pulsed laser deposited film which possesses a lateral cation composition gradient (0.01 ≤ x ≤ 0.82) and three crystallographic phases (monoclinic, hexagonal, and bixbyite). The optical gaps over this composition range are determined, and only a weak optical gap bowing is found (b = 0.36 eV). The valence band edge evolution along with the change in the fundamental band gap over the composition gradient enables the surface space-charge properties to be probed. This is an important property when considering metal contact formation and heterojunctions for devices. A transition from surface electron accumulation to depletion occurs at x ∼ 0.35 as the film goes from the bixbyite In2O3 phase to the monoclinic ß-Ga2O3 phase. The electronic structure of the different phases is investigated by using density functional theory calculations and compared to the valence band X-ray photoemission spectra. Finally, the properties of these alloys, such as the n-type dopability of In2O3 and use of Ga2O3 as a solar-blind UV detector, are understood with respect to other common-cation compound semiconductors in terms of simple chemical trends of the band edge positions and the hydrostatic volume deformation potential.

5.
Nat Commun ; 11(1): 5092, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037193

RESUMEN

The combination of inorganic semiconductors with organic thin films promises new strategies for the realization of complex hybrid optoelectronic devices. Oxidative chemical vapor deposition (oCVD) of conductive polymers offers a flexible and scalable path towards high-quality three-dimensional inorganic/organic optoelectronic structures. Here, hole-conductive poly(3,4-ethylenedioxythiophene) (PEDOT) grown by oxidative chemical vapor deposition is used to fabricate transparent and conformal wrap-around p-type contacts on three-dimensional microLEDs with large aspect ratios, a yet unsolved challenge in three-dimensional gallium nitride technology. The electrical characteristics of two-dimensional reference structures confirm the quasi-metallic state of the polymer, show high rectification ratios, and exhibit excellent thermal and temporal stability. We analyze the electroluminescence from a three-dimensional hybrid microrod/polymer LED array and demonstrate its improved optical properties compared with a purely inorganic microrod LED. The findings highlight a way towards the fabrication of hybrid three-dimensional optoelectronics on the sub-micron scale.

6.
ACS Appl Mater Interfaces ; 12(7): 8879-8885, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31977187

RESUMEN

Conduction and valence band offsets are among the most crucial material parameters for semiconductor heterostructure device design, such as for high-electron mobility transistors or quantum well infrared photodetectors (QWIP). Because of its expected high spontaneous electrical polarization and the possibility of polarization doping at heterointerfaces similar to the AlGaN/InGaN/GaN system, the metastable orthorhombic κ-phase of Ga2O3 and its indium and aluminum alloy systems are a promising alternative for such device applications. However, respective band offsets to any dielectric are unknown, as well as the evolution of the bands within the alloy systems. We report on the valence and conduction band offsets of orthorhombic κ-(AlxGa1-x)2O3 and κ-(InxGa1-x)2O3 thin films to MgO as reference dielectric by X-ray photoelectron spectroscopy. The thin films with compositions xIn ≤ 0.27 and xAl ≤ 0.55 were grown by pulsed laser deposition utilizing tin-doped and radially segmented targets. The determined band alignments reveal the formation of a type I heterojunction to MgO for all compositions with conduction band offsets of at least 1.4 eV, providing excellent electron confinement. Only low valence band offsets with a maximum of ∼300 meV were observed. Nevertheless, this renders MgO as a promising gate dielectric for metal-oxide-semiconductor transistors in the orthorhombic modification. We further found that the conduction band offsets in the alloy systems are mainly determined by the evolution of the band gaps, which can be tuned by the composition in a wide range between 4.1 and 6.2 eV, because the energy position of the valence band maximum remains almost constant over the complete composition range investigated. Therefore, tunable conduction band offsets of up to 1.1 eV within the alloy systems allow for subniveau transition energies in (AlxGa1-x)2O3/(InxGa1-x)2O3/(AlxGa1-x)2O3 quantum wells from the infrared to the visible regime, which are promising for application in QWIPs.

7.
Materials (Basel) ; 12(14)2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31336831

RESUMEN

This review presents recent research advances in measuring native point defects in ZnO nanostructures, establishing how these defects affect nanoscale electronic properties, and developing new techniques to manipulate these defects to control nano- and micro- wire electronic properties. From spatially-resolved cathodoluminescence spectroscopy, we now know that electrically-active native point defects are present inside, as well as at the surfaces of, ZnO and other semiconductor nanostructures. These defects within nanowires and at their metal interfaces can dominate electrical contact properties, yet they are sensitive to manipulation by chemical interactions, energy beams, as well as applied electrical fields. Non-uniform defect distributions are common among semiconductors, and their effects are magnified in semiconductor nanostructures so that their electronic effects are significant. The ability to measure native point defects directly on a nanoscale and manipulate their spatial distributions by multiple techniques presents exciting possibilities for future ZnO nanoscale electronics.

8.
ACS Appl Mater Interfaces ; 11(30): 27073-27087, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31269791

RESUMEN

Preparation of rectifying Schottky contacts on n-type oxide semiconductors, such as indium oxide (In2O3), is often challenged by the presence of a distinct surface electron accumulation layer. We investigated the material properties and electrical transport characteristics of platinum contact/indium oxide heterojunctions to define routines for the preparation of high-performance Schottky diodes on n-type oxide semiconductors. Combining the evaluation of different Pt deposition methods, such as electron-beam evaporation and (reactive) sputtering in an (O and) Ar atmosphere, with oxygen plasma interface treatments, we identify key parameters to obtain Schottky-type contacts with high electronic barrier height and high rectification ratio. Different photoelectron spectroscopy approaches are compared to characterize the chemical properties of the contact layers and the interface region toward In2O3, to analyze charge transfer and plasma oxidation processes as well as to evaluate the precision and limits of different methodologies to determine heterointerface energy barriers. An oxygen-plasma-induced passivation of the semiconductor surface, which induces electron depletion and generates an intrinsic interface energy barrier, is found to be not sufficient to generate rectifying platinum contacts. The dissolution of the functional interface oxide layer within the Pt film results in an energy barrier of ∼0.5 eV, which is too low for an In2O3 electron concentration of ∼1018 cm-3. A reactive sputter process in an Ar and O atmosphere is required to fabricate rectifying contacts that are composed of platinum oxide (PtOx). Combining oxygen plasma interface oxidation of the semiconductor surface with reactive sputtering of PtOx layers results in the generation of a high Schottky barrier of ∼0.9 eV and a rectification ratio of up to 106. An additional oxygen plasma treatment after contact deposition further reduced the reverse leakage current, likely by eliminating a surface conduction path between the coplanar Ohmic and Schottky contacts. We conclude that processes that allow us to increase the oxygen content in the interface and contact region are essential for fabrication of device-quality-rectifying contacts on various oxide semiconductors.

9.
Nano Lett ; 18(11): 6974-6980, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30384614

RESUMEN

Surface states that induce depletion regions are commonly believed to control the transport of charged carriers through semiconductor nanowires. However, direct, localized optical, and electrical measurements of ZnO nanowires show that native point defects inside the nanowire bulk and created at metal-semiconductor interfaces are electrically active and play a dominant role electronically, altering the semiconductor doping, the carrier density along the wire length, and the injection of charge into the wire. We used depth-resolved cathodoluminescence spectroscopy to measure the densities of multiple point defects inside ZnO nanowires, substitutional Cu on Zn sites, zinc vacancy, and oxygen vacancy defects, showing that their densities varied strongly both radially and lengthwise for tapered wires. These defect profiles and their variation with wire diameter produce trap-assisted tunneling and acceptor trapping of free carriers, the balance of which determines the low contact resistivity (2.6 × 10-3 Ω·cm-2) ohmic, Schottky (Φ ≥ 0.35 eV) or blocking nature of Pt contacts to a single nano/microwire. We show how these defects can now be manipulated by ion beam methods and nanowire design, opening new avenues to control nanowire charge injection and transport.

10.
ACS Comb Sci ; 20(11): 643-652, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30350566

RESUMEN

Vertical composition gradients of ternary alloy thin films find applications in numerous device structures. Up to now such gradients along the growth direction have not been realized by standard pulsed laser deposition (PLD) systems. In this study, we propose an approach based on a single elliptically segmented PLD target suited for the epitaxial growth of vertically graded layers. The composition of the thin films can be varied by a simple adjustment of the position of the PLD laser spot on the target surface. We demonstrate this principle for the Mg xZn1- xO alloy system. Such vertically composition-graded Mg xZn1- xO thin films exhibit high optical quality and a well-defined Mg-content for each layer. No signs of interdiffusion of Mg-atoms between the layers have been found. Further, this method is capable to deposit homogeneous thin films with any desired, well-defined cation composition having the same high optical and structural quality as films grown by conventional PLD.


Asunto(s)
Aleaciones/química , Técnicas Químicas Combinatorias , Magnesio/química , Óxidos/química , Bibliotecas de Moléculas Pequeñas/química , Zinc/química , Rayos Láser , Ensayo de Materiales , Óptica y Fotónica
11.
ACS Appl Mater Interfaces ; 9(31): 26574-26581, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28685578

RESUMEN

We present electrical properties of Schottky barrier diodes on room-temperature deposited amorphous zinc-tin-oxide (ZTO) with Zn/(Zn + Sn) contents between 0.12 and 0.72. A combinatorial approach with continuous composition spread pulsed laser deposition is used to achieve the wide range of compositions with four samples each on 50 × 50 mm2 glass substrates. The Schottky barrier contacts were fabricated by the reactive direct-current sputtering of platinum. Best diode properties (rectification ratio SV = 2.7 × 107, ideality factor η = 1.05, and effective barrier height ϕB,eff = 1.25 eV) are obtained for a composition of 0.63 Zn/(Zn + Sn). Aging on the timescale of days and months is observed that leads to improved device properties (higher rectifications and lower ideality factors). In particular, the diodes with the lowest performance in the as-prepared state show the biggest improvements. The best diode properties after the aging process (SV = 3.9 × 107, η = 1.12, and ϕB,eff = 1.31 eV) were also observed for 0.63 Zn/(Zn + Sn).

12.
ACS Comb Sci ; 18(4): 188-94, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-27004935

RESUMEN

Continuous composition spread (CCS) methods allow fast and economic exploration of composition dependent properties of multielement compounds. Here, a CCS method was applied for room temperature pulsed laser deposition (PLD) of amorphous zinc-tin-oxide to gain detailed insight into the influence of the zinc-to-tin cation ratio on optical and electrical properties of this ternary compound. Our CCS approach for a large-area offset PLD process utilizes a segmented target and thus makes target exchange or movable masks in the PLD chamber obsolete. Cation concentrations of 0.08-0.82 Zn/(Zn + Sn) were achieved across single 50 × 50 mm(2) glass substrates. The electrical conductivity increases for increasing tin content, and the absorption edge shifts to lower energies. The free carrier concentration can be tuned from 10(20) to 10(16) cm(-3) by variation of the cation ratio from 0.1 to 0.5 Zn/(Zn + Sn).


Asunto(s)
Conductividad Eléctrica , Rayos Láser , Fenómenos Ópticos , Óxidos/química , Estaño/química , Zinc/química , Cationes/química , Técnicas Químicas Combinatorias , Temperatura
13.
ACS Appl Mater Interfaces ; 6(17): 14785-9, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25136986

RESUMEN

Wide-gap semiconductors are often unipolar and can form type II bipolar heterostructures with large band discontinuities. We present such diodes with very high rectification larger than 1 × 10(10). The current is assumed to be entirely due to interface recombination. We derive the ideality factor for both symmetric and asymmetric diodes and find it close to 2 in agreement with experimental data from NiO/ZnO and CuI/ZnO type II diodes. The comparison with experimental results shows that the actual interface recombination rate is orders of magnitude smaller than its possible maximum value.

14.
Adv Mater ; 23(45): 5383-6, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21997566

RESUMEN

Tungsten oxide is currently used as gate insulator in pH-sensing ion-sensitive field-effect transistors (ISFETs) and in electrochromic devices. Its great potential as a high-κ dielectric with high transparency and temperature stability is reported. Owing to the low gate voltage sweep necessary to turn the transistor on and off, a possible application could be as a low-voltage pixel driver in active-matrix displays in harsh environments.


Asunto(s)
Óxidos/química , Temperatura , Transistores Electrónicos , Tungsteno/química , Óxido de Zinc/química , Impedancia Eléctrica
15.
Adv Mater ; 22(47): 5332-49, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-20878625

RESUMEN

Metal-semiconductor field-effect transistors (MESFETs) are widely known from opaque high-speed GaAs or high-power SiC and GaN technology. For the emerging field of transparent electronics, only metal-insulator-semiconductor field-effect transistors (MISFETs) were considered so far. This article reviews the progress of high-performance MESFETs in oxide electronics and reflects the recent advances of this technique towards transparent MESFET circuitry. We discuss design prospects as well as limitations regarding device performance, reliability and stability. The presented ZnO-based MESFETs and inverters have superior properties compared to MISFETs, i.e., high channel mobilities and on/off-ratios, high gain, and low uncertainty level at comparatively low operating voltages. This makes them a promising approach for future low-cost transparent electronics.


Asunto(s)
Transistores Electrónicos , Óxido de Zinc/química , Óxido de Aluminio/química , Arsenicales/química , Compuestos Inorgánicos de Carbono/química , Galio/química , Vidrio/química , Compuestos de Silicona/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...