Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 250
1.
EXCLI J ; 23: 523-533, 2024.
Article En | MEDLINE | ID: mdl-38741727

Peripheral artery disease (PAD) is an atherosclerotic disease impacting over 200 million individuals and the prevalence increases with age. PAD occurs when plaque builds up within the peripheral arteries, leading to reduced blood flow and oxygen supply to the outer extremities. Individuals who experience PAD suffer from ischemia, which is typically accompanied by significant damage to skeletal muscles. Additionally, this tissue damage affects mitochondria, causing them to become dysregulated and dysfunctional, resulting in decreased metabolic rates. As there is no known cure for PAD, researchers are exploring potential therapeutic targets by examining coexisting cardiovascular conditions and metabolic risk factors, such as the aging process. Among these comorbidities, type-two diabetes mellitus and obesity are particularly common in PAD cases. These conditions, along with aging itself, are associated with an elevated accumulation of ectopic lipids within skeletal muscles, similar to what is observed in PAD. Researchers have attempted to reduce excess lipid accumulation by increasing the rate of fatty acid beta oxidation. Manipulating acetyl coenzyme A carboxylase 2, a key regulatory protein of fatty acid beta oxidation, has been the primary focus of such research. When acetyl coenzyme A carboxylase 2 is inhibited, it interrupts the conversion of acetyl-CoA into malonyl-CoA, resulting in an increase in the rate of fatty acid beta oxidation. By utilizing samples from PAD patients and applying the pharmacological strategies developed for acetyl coenzyme A carboxylase 2 in diabetes and obesity to PAD, a potential new therapeutic avenue may emerge, offering hope for improved quality of life for individuals suffering from PAD.

2.
Cell Metab ; 36(2): 422-437.e8, 2024 02 06.
Article En | MEDLINE | ID: mdl-38325337

Time-restricted feeding (TRF) has gained attention as a dietary regimen that promotes metabolic health. This study questioned if the health benefits of an intermittent TRF (iTRF) schedule require ketone flux specifically in skeletal and cardiac muscles. Notably, we found that the ketolytic enzyme beta-hydroxybutyrate dehydrogenase 1 (BDH1) is uniquely enriched in isolated mitochondria derived from heart and red/oxidative skeletal muscles, which also have high capacity for fatty acid oxidation (FAO). Using mice with BDH1 deficiency in striated muscles, we discover that this enzyme optimizes FAO efficiency and exercise tolerance during acute fasting. Additionally, iTRF leads to robust molecular remodeling of muscle tissues, and muscle BDH1 flux does indeed play an essential role in conferring the full adaptive benefits of this regimen, including increased lean mass, mitochondrial hormesis, and metabolic rerouting of pyruvate. In sum, ketone flux enhances mitochondrial bioenergetics and supports iTRF-induced remodeling of skeletal muscle and heart.


Ketones , Myocardium , Mice , Animals , Ketones/metabolism , Myocardium/metabolism , Mitochondria/metabolism , Oxidation-Reduction , Heart , Muscle, Skeletal/metabolism
3.
Aging (Albany NY) ; 16(7): 5856-5865, 2024 02 22.
Article En | MEDLINE | ID: mdl-38393683

Breast cancer (BC) is among the top three most prevalent cancers across the world, especially in women, and its pathogenesis is still unknown. Fatty acid ß-oxidation is highly associated with breast cancer. Serpin family E member 1 (SERPINE1)-induced down-regulation of fatty acid ß-oxidation can facilitate BC cell proliferation, invasion, and metastasis. In this paper, the difference of miR-30d-5p expressions in both cancerous tissues and para-carcinoma tissues was first detected. Next, the expressions of SERPINE1, long-chain acyl-CoA dehydrogenase (LCAD) and medium-chain acyl-CoA dehydrogenase (MCAD) in the aforementioned tissues were analyzed. Finally, miR-30d-5p mimics were supplemented to breast cancer cells to observe the miR-30d-5p effect upon breast cancer cells. Via immunofluorescence assay and Western blotting, it was found that cancerous tissues had lower expressions of miR-30d-5p, MCAD and LCAD and a higher expression of SERPINE1 than para-carcinoma tissues. The miR-30d-5p mimic group had a decreased SERPINE1 expression and increased MCAD and LCAD expressions compared with the NC group, thus inhibiting BC cell proliferation, invasion, and metastasis. To sum up, miR-30d-5p blocks the cell proliferation, invasion and metastasis by targeting SERPINE1 and promoting fatty acid ß-oxidation. Preclinical studies are further required to establish a fatty acid ß-oxidation-targeting therapy for breast cancer.


Breast Neoplasms , Cell Movement , Cell Proliferation , Fatty Acids , Gene Expression Regulation, Neoplastic , MicroRNAs , Neoplasm Invasiveness , Oxidation-Reduction , Plasminogen Activator Inhibitor 1 , Humans , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Cell Proliferation/genetics , Cell Movement/genetics , Fatty Acids/metabolism , Cell Line, Tumor , Middle Aged
4.
Cell Chem Biol ; 31(5): 1011-1022.e6, 2024 May 16.
Article En | MEDLINE | ID: mdl-38183989

Methyl ketone (MK)-ascarosides represent essential components of several pheromones in Caenorhabditis elegans, including the dauer pheromone, which triggers the stress-resistant dauer larval stage, and the male-attracting sex pheromone. Here, we identify an acyl-CoA thioesterase, ACOT-15, that is required for the biosynthesis of MK-ascarosides. We propose a model in which ACOT-15 hydrolyzes the ß-keto acyl-CoA side chain of an ascaroside intermediate during ß-oxidation, leading to decarboxylation and formation of the MK. Using comparative metabolomics, we identify additional ACOT-15-dependent metabolites, including an unusual piperidyl-modified ascaroside, reminiscent of the alkaloid pelletierine. The ß-keto acid generated by ACOT-15 likely couples to 1-piperideine to produce the piperidyl ascaroside, which is much less dauer-inducing than the dauer pheromone, asc-C6-MK (ascr#2, 1). The bacterial food provided influences production of the piperidyl ascaroside by the worm. Our work shows how the biosynthesis of MK- and piperidyl ascarosides intersect and how bacterial food may impact chemical signaling in the worm.


Caenorhabditis elegans , Pheromones , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/enzymology , Pheromones/metabolism , Pheromones/biosynthesis , Pheromones/chemistry , Caenorhabditis elegans Proteins/metabolism , Thiolester Hydrolases/metabolism
5.
Eur J Neurol ; 31(2): e16138, 2024 Feb.
Article En | MEDLINE | ID: mdl-38015438

INTRODUCTION: Fatty-acid oxidation disorders (FAODs) are recessive genetic diseases. MATERIALS AND METHODS: We report here clinical and paraclinical data from a retrospective study of 44 adults with muscular FAODs from six French reference centers for neuromuscular or metabolic diseases. RESULTS: The study cohort consisted of 44 adult patients: 14 with carnitine palmitoyl transferase 2 deficiency (32%), nine with multiple acyl-CoA deficiency (20%), 13 with very long-chain acyl-CoA dehydrogenase deficiency (30%), three with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (7%), and five with short-chain acyl-CoA dehydrogenase deficiency (11%). Disease onset occurred during childhood in the majority of patients (59%), with a mean age at onset of 15 years (range = 0.5-35) and a mean of 12.6 years (range = 0-58) from disease onset to diagnosis. The principal symptoms were acute muscle manifestations (rhabdomyolysis, exercise intolerance, myalgia), sometimes associated with permanent muscle weakness. Episodes of rhabdomyolysis were frequent (84%), with a mean creatinine kinase level of 68,958 U/L (range = 660-300,000). General metabolic complications were observed in 58% of patients, respiratory manifestations in 18% of cases, and cardiological manifestations in 9% of cases. Fasting acylcarnitine profile was used to orient genetic explorations in 65% of cases. After a mean follow-up of 10 years, 33% of patients were asymptomatic and 56% continued to display symptoms after exercise. The frequency of rhabdomyolysis decreased after diagnosis in 64% of cases. CONCLUSION: A standardized register would complete this cohort description of muscular forms of FAODs with exhaustive data, making it possible to assess the efficacy of therapeutic protocols in real-life conditions and during the long-term follow-up of patients.


Mitochondrial Diseases , Muscular Diseases , Rhabdomyolysis , Adult , Humans , Infant , Child, Preschool , Child , Adolescent , Young Adult , Retrospective Studies , Muscular Diseases/complications , Mitochondrial Diseases/complications , Prognosis
6.
Gerontology ; 70(2): 134-142, 2024.
Article En | MEDLINE | ID: mdl-37967546

INTRODUCTION: Theoretically, some metabolic traits may predispose older individuals to weight loss during aging, leading to increased all-cause mortality and many serious health issues. Biomarkers to robustly predict progressive weight loss during aging are, however, lacking. We prospectively assessed if urinary levels of F2-isoprostanes and their peroxisomal ß-oxidation metabolite, 2,3-dinor-5,6-dihydro-15-F2t-isoprostane (F2-IsoP-M), were associated with subsequent weight loss in middle-aged and older women. METHODS: Included in the analysis were 2,066 women aged 40-70 years, a subset of a prospective cohort study. F2-isoprostanes (F2-IsoPs) and its ß-oxidation metabolite, F2-IsoP-M, were measured in urine using gas chromatography-mass spectrometry. Measurements of anthropometry and exposures to major determinants of body weight were performed at baseline and repeated thrice over 15-year follow-up. The longitudinal associations of F2-IsoP-M and the F2-IsoP-M to its parent compound, F2-IsoP, ratio (MPR) with repeatedly measured weight changes were examined using linear mixed-effect models. RESULTS: After adjusting for time-varying covariates: energy intake, physical activity, and comorbidity index, among others, levels of F2-IsoP-M and the MPR were both inversely associated with percentage of weight change. Weight in the highest quartile of these two biomarkers was 1.33% (95% CI = -2.41, -0.24) and 1.09% (95% CI = -2.16, -0.02) lower than those in the lowest quartile group, with p for trend of 0.01 and 0.03, respectively. The inverse association was consistently seen across follow-up periods, although appearing stronger with prolonged follow-up. There was no association between the parent compound, F2-IsoPs, and weight change. CONCLUSION: This study demonstrates the first piece of evidence to associate F2-IsoP metabolism, peroxisomal ß-oxidation, with weight loss in older women. Further investigations into the role of lipid peroxidation and peroxisomal ß-oxidation in weight change among older individuals are warranted.


F2-Isoprostanes , Oxidative Stress , Female , Humans , Middle Aged , Aged , F2-Isoprostanes/metabolism , Prospective Studies , Biomarkers/metabolism , Weight Loss
8.
J Biol Phys ; 50(1): 89-118, 2024 Mar.
Article En | MEDLINE | ID: mdl-38103157

Acyl-CoA dehydrogenase deficiency (ACAD) is an inherited and potentially fatal disorder with variable clinical symptoms. The relationship between pathogenicity and deleterious point mutations is investigated here in ACAD structures of short (SCAD) and medium-chain (MCAD) types. Structures and dynamic features of native and mutant forms of enzymes models were compared. A total of 2.88 µs molecular dynamics simulations were performed at four different temperatures. Total energy, RMSD, protein ligand interactions and affinity, RMSF measures, secondary structure changes, and important interactions were studied. Mutations in the three main domains of ACADs are pathogenic, while those located at linker turns are not. Mutations affect mostly tetramer formations, secondary structures, and many contacts and interactions. In R206H (MCAD mutant) which is experimentally known to cause a huge turnover decrease, the lack of a single H-bond between substrate and FAD was observed. Secondary structures showed temperature-dependent changes, and SCAD activity was found to be highly correlated to the enzyme helix 3-10 content. Finally, RMSF patterns pointed to one important loop that maintains the substrate close to the active site and is a cause of substrate wobbling upon mutation. Despite similar structure, function, and cellular location, SCAD and MCAD may have different optimum temperatures that are related to the structure taken at that specific temperature. In conclusion, new insight has been provided on the effect of various SCAD and MCAD pathogenic mutations on the structure and dynamical features of the enzymes.


Lipid Metabolism, Inborn Errors , Point Mutation , Humans , Virulence , Acyl-CoA Dehydrogenase/chemistry , Acyl-CoA Dehydrogenase/genetics , Lipid Metabolism, Inborn Errors/genetics , Protein Structure, Secondary
9.
Front Immunol ; 14: 1296355, 2023.
Article En | MEDLINE | ID: mdl-38094304

Natural killer (NK) cells are cytotoxic innate immune cells, able to recognize and eliminate virus-infected as well as cancer cells. Metabolic reprogramming is crucial for their activity as they have enhanced energy and nutritional demands for their functions during an infection. Fatty acids (FAs) represent an important source of cellular energy and are essential for proliferation of immune cells. However, the precise role of FAs for NK cells activity in retrovirus infection was unknown. Here we show that activated NK cells increase the expression of the FA uptake receptor CD36 and subsequently the uptake of FAs upon acute virus infection. We found an enhanced flexibility of NK cells to utilize FAs as source of energy compare to naïve NK cells. NK cells that were able to generate energy from FAs showed an augmented target cell killing and increased expression of cytotoxic parameters. However, NK cells that were unable to generate energy from FAs exhibited a severely decreased migratory capacity. Our results demonstrate that NK cells require FAs in order to fight acute virus infection. Susceptibility to severe virus infections as it is shown for people with malnutrition may be augmented by defects in the FA processing machinery, which might be a target to therapeutically boost NK cell functions in the future.


Retroviridae Infections , Retroviridae , Humans , Fatty Acids , Killer Cells, Natural
10.
bioRxiv ; 2023 Oct 25.
Article En | MEDLINE | ID: mdl-37961352

Macrophages are critical to maintaining and restoring tissue homeostasis during inflammation. The lipid metabolic state of macrophages influences their function, but a deeper understanding of how lipid metabolism is regulated in pro-resolving macrophage responses is needed. Lipin-1 is a phosphatidic acid phosphatase with a transcriptional coregulatory activity (TC) that regulates lipid metabolism. We previously demonstrated that lipin-1 supports pro-resolving macrophage responses, and here, myeloid-associated lipin-1 is required for inflammation resolution, yet how lipin-1-regulated cellular mechanisms promote macrophage pro-resolution responses is unknown. We demonstrated that the loss of lipin-1 in macrophages led to increased free fatty acid, neutral lipid, and ceramide content and increased phosphorylation of acetyl-CoA carboxylase. The inhibition of the first step of lipid synthesis and transport of citrate from the mitochondria in macrophages reduced lipid content and restored efferocytosis and inflammation resolution in lipin-1mKO macrophages and mice. Our findings suggest macrophage-associated lipin-1 restrains lipid synthesis, promoting pro-resolving macrophage function in response to pro-resolving stimuli.

11.
Int J Mol Sci ; 24(19)2023 Oct 03.
Article En | MEDLINE | ID: mdl-37834305

Fatty acid metabolism, including ß-oxidation (ßOX), plays an important role in human physiology and pathology. ßOX is an essential process in the energy metabolism of most human cells. Moreover, ßOX is also the source of acetyl-CoA, the substrate for (a) ketone bodies synthesis, (b) cholesterol synthesis, (c) phase II detoxication, (d) protein acetylation, and (d) the synthesis of many other compounds, including N-acetylglutamate-an important regulator of urea synthesis. This review describes the current knowledge on the importance of the mitochondrial and peroxisomal ßOX in various organs, including the liver, heart, kidney, lung, gastrointestinal tract, peripheral white blood cells, and other cells. In addition, the diseases associated with a disturbance of fatty acid oxidation (FAO) in the liver, heart, kidney, lung, alimentary tract, and other organs or cells are presented. Special attention was paid to abnormalities of FAO in cancer cells and the diseases caused by mutations in gene-encoding enzymes involved in FAO. Finally, issues related to α- and ω- fatty acid oxidation are discussed.


Acyl Coenzyme A , Fatty Acids , Humans , Acyl Coenzyme A/metabolism , Fatty Acids/metabolism , Oxidation-Reduction , Liver/metabolism , Acetyl Coenzyme A/metabolism
12.
Front Neurol ; 14: 1270793, 2023.
Article En | MEDLINE | ID: mdl-37905191

SCPx deficiency is a rare disorder of peroxisomal beta-oxidation dysfunction, and it has only been documented in two patients thus far. In the previously reported patients, both patients were primarily presented with slowly progressive dystonia or ataxia, and they both displayed symmetrical lesions in the thalamus and brainstem on magnetic resonance imaging. This study presents the third patient exhibiting a similar neuroimaging abnormality but a notably different clinical phenotype characterized by episodic psychosis. Through whole-exome sequencing, we identified a homozygous splicing mutation in SCP2 (c.674 + 1G > C), and further RNA sequencing revealed exon 8 skipping in the mature transcripts of SCP2. This study significantly expands our understanding of the genotypic and phenotypic spectrum associated with SCP2-related metabolic encephalopathy.

13.
Int J Mol Sci ; 24(18)2023 Sep 12.
Article En | MEDLINE | ID: mdl-37762279

This review highlights the complex role of fatty acid ß-oxidation in brain metabolism. It demonstrates the fundamental importance of fatty acid degradation as a fuel in energy balance and as an essential component in lipid homeostasis, brain aging, and neurodegenerative disorders.


Acyl Coenzyme A , Neurodegenerative Diseases , Humans , Acyl Coenzyme A/metabolism , Fatty Acids/metabolism , Oxidation-Reduction , Brain/metabolism
14.
Biomedicines ; 11(9)2023 Sep 06.
Article En | MEDLINE | ID: mdl-37760915

Carnitines play a key physiological role in oocyte metabolism and redox homeostasis. In clinical and animal studies, carnitine administration alleviated metabolic and reproductive dysfunction associated with polycystic ovarian syndrome (PCOS). Oxidative stress (OS) at systemic, intraovarian, and intrafollicular levels is one of the main factors involved in the pathogenesis of PCOS. We investigated the ability of different acyl-carnitines to act at the oocyte level by counteracting the effects of OS on carnitine shuttle system and mitochondrial activity in mouse oocytes. Germinal vesicle (GV) oocytes were exposed to hydrogen peroxide and propionyl-l-carnitine (PLC) alone or in association with l-carnitine (LC) and acetyl-l-carnitine (ALC) under different conditions. Expression of carnitine palmitoyltransferase-1 (Cpt1) was monitored by RT-PCR. In in vitro matured oocytes, metaphase II (MII) apparatus was assessed by immunofluorescence. Oocyte mitochondrial respiration was evaluated by Seahorse Cell Mito Stress Test. We found that Cpt1a and Cpt1c isoforms increased under prooxidant conditions. PLC alone significantly improved meiosis completion and oocyte quality with a synergistic effect when combined with LC + ALC. Acyl-carnitines prevented Cpt1c increased expression, modifications of oocyte respiration, and ATP production observed upon OS. Specific effects of PLC on spare respiratory capacity were observed. Therefore, carnitine supplementation modulated the intramitochondrial transfer of fatty acids with positive effects on mitochondrial activity under OS. This knowledge contributes to defining molecular mechanism underlying carnitine efficacy on PCOS.

15.
J Biol Chem ; 299(10): 105210, 2023 Oct.
Article En | MEDLINE | ID: mdl-37660922

Mitochondrial fatty acid oxidation (ß-oxidation) is an essential metabolic process for energy production in eukaryotic cells, but the regulatory mechanisms of this pathway are largely unknown. In the present study, we found that several enzymes involved in ß-oxidation are associated with CLPX, the AAA+ unfoldase that is a component of the mitochondrial matrix protease ClpXP. The suppression of CLPX expression increased ß-oxidation activity in the HepG2 cell line and in primary human hepatocytes without glucagon treatment. However, the protein levels of enzymes involved in ß-oxidation did not significantly increase in CLPX-deleted HepG2 cells (CLPX-KO cells). Coimmunoprecipitation experiments revealed that the protein level in the immunoprecipitates of each antibody changed after the treatment of WT cells with glucagon, and a part of these changes was also observed in the comparison of WT and CLPX-KO cells without glucagon treatment. Although the exogenous expression of WT or ATP-hydrolysis mutant CLPX suppressed ß-oxidation activity in CLPX-KO cells, glucagon treatment induced ß-oxidation activity only in CLPX-KO cells expressing WT CLPX. These results suggest that the dissociation of CLPX from its target proteins is essential for the induction of ß-oxidation in HepG2 cells. Moreover, specific phosphorylation of AMP-activated protein kinase and a decrease in the expression of acetyl-CoA carboxylase 2 were observed in CLPX-KO cells, suggesting that CLPX might participate in the regulation of the cytosolic signaling pathway for ß-oxidation. The mechanism for AMP-activated protein kinase phosphorylation remains elusive; however, our results uncovered the hitherto unknown role of CLPX in mitochondrial ß-oxidation in human liver cells.

16.
J Physiol ; 601(18): 4151-4169, 2023 09.
Article En | MEDLINE | ID: mdl-37602663

Well-regulated placental palmitic acid (PA) and oleic acid (OA) metabolism is vital for optimal placental function and fetal development, but dysregulation occurs with gestational diabetes (GDM). We hypothesized that such dysregulation might arise from increased maternofetal glucose, leptin or insulin concentrations present in GDM, and that dysregulated PA and OA lipid metabolism could be moderated by myo-inositol, a natural polyol and potential GDM intervention. Placental explants from 21 women were incubated with stable isotope-labelled 13 C-PA or 13 C-OA for 48 h. Explants were treated with glucose (5, 10 mm) or leptin (13 nm) or insulin (150 nm) in combination with myo-inositol (0.3, 30, 60 µm). Forty-seven 13 C-PA lipids and 37 13 C-OA lipids were measured by liquid chromatography-mass spectrometry (LCMS). Compared with controls (5 mm glucose), glucose (10 mm) increased 19 13 C-OA lipids and nine 13 C-PA lipids, but decreased 13 C-OA phosphatidylethanolamine 38:5 and 13 C-PA phosphatidylethanolamine 36:4. The effects of leptin and insulin were less prominent than glucose, with leptin increasing 13 C-OA acylcarnitine 18:1, and insulin increasing four 13 C-PA triacylglycerides. Most glucose, leptin and insulin-induced alterations in lipids were attenuated by co-incubation with myo-inositol (30 or 60 µm), with attenuation also occurring in all subgroups stratified by GDM status and fetal sex. However, glucose-induced increases in acylcarnitine were not attenuated by myo-inositol and were even exaggerated in some instances. Myo-inositol therefore appears to generally act as a moderator, suppressing the perturbation of lipid metabolic processes by glucose, leptin and insulin in placenta in vitro. Whether myo-inositol protects the fetus and pregnancy from unfavourable outcomes requires further research. KEY POINTS: Incubation of placental explants with additional glucose, or to a lesser extent insulin or leptin, alters the placental production of 13 C-lipids from 13 C-palmitic acid (PA) and 13 C-oleic acid (OA) in vitro compared with untreated controls from the same placenta. Co-incubation with myo-inositol attenuated most alterations induced by glucose, insulin or leptin in 13 C-lipids, but did not affect alterations in 13 C-acylcarnitines. Alterations induced by glucose and leptin in 13 C-PA triacylglycerides and 13 C-PA phospholipids were influenced by fetal sex and gestational diabetes status, but were all still attenuated by myo-inositol co-incubation. Insulin differently affected 13 C-PA triacylglycerides and 13 C-PA phospholipids depending on fetal sex, with alterations also attenuated by myo-inositol co-incubation.


Diabetes, Gestational , Insulin , Pregnancy , Female , Humans , Oleic Acid/pharmacology , Palmitic Acid/pharmacology , Phosphatidylethanolamines , Leptin/pharmacology , Placenta , Glucose/pharmacology
17.
ESC Heart Fail ; 10(5): 3114-3122, 2023 Oct.
Article En | MEDLINE | ID: mdl-37614055

AIMS: Heart failure in adults is characterized by reduction of long-chain fatty acid oxidation in favour of carbohydrate metabolism. This adaptive phenomenon becomes maladaptive because energy conversion decreases and lipid toxic derivatives known to impair cardiac function are accumulating. No data are available concerning metabolic modification in heart failure in children. METHODS AND RESULTS: In order to evaluate the fatty acid oxidation in children suffering from heart failure, acylcarnitine profiles on dried blood spots were obtained from children under 16 years old with dilated cardiomyopathy and clinical heart failure (DCM-HF) and control children. Nine children were included in the DCM-HF group and eight in the control group. Acylcarnitine profiles revealed a significant 3.1-fold increase of total acylcarnitines (sum of C3 to C18 acylcarnitine species) in DCM-HF children compared with controls. This result persisted considering the sum of long-chain acylcarnitines (sum of C14 to C18 species), medium-chain acylcarnitines (sum of C8 to C12 species), and short-chain acylcarnitines (sum of C3 to C6 species), respectively, 2.0-, 2.6-, and 1.9-fold increase compared with the control group. A significant linear correlation was found between left ventricular dilatation or ejection fraction and acylcarnitines accumulation. Finally, acylcarnitine ratio C16OH/C16 and C18OH/C18 enhanced in the DCM-HF group, suggesting a diminution of the long-chain hydroxyl acyl-CoA dehydrogenase activity. CONCLUSIONS: Our results suggest down-regulation of fatty acid oxidation in children with heart failure. Such lipidomic alteration could worsen heart function and may suggest considering a metabolic treatment of heart failure in children.

18.
Metab Eng ; 79: 49-65, 2023 09.
Article En | MEDLINE | ID: mdl-37414134

To advance the sustainability of the biobased economy, our society needs to develop novel bioprocesses based on truly renewable resources. The C1-molecule formate is increasingly proposed as carbon and energy source for microbial fermentations, as it can be efficiently generated electrochemically from CO2 and renewable energy. Yet, its biotechnological conversion into value-added compounds has been limited to a handful of examples. In this work, we engineered the natural formatotrophic bacterium C. necator as cell factory to enable biological conversion of formate into crotonate, a platform short-chain unsaturated carboxylic acid of biotechnological relevance. First, we developed a small-scale (150-mL working volume) cultivation setup for growing C. necator in minimal medium using formate as only carbon and energy source. By using a fed-batch strategy with automatic feeding of formic acid, we could increase final biomass concentrations 15-fold compared to batch cultivations in flasks. Then, we engineered a heterologous crotonate pathway in the bacterium via a modular approach, where each pathway section was assessed using multiple candidates. The best performing modules included a malonyl-CoA bypass for increasing the thermodynamic drive towards the intermediate acetoacetyl-CoA and subsequent conversion to crotonyl-CoA through partial reverse ß-oxidation. This pathway architecture was then tested for formate-based biosynthesis in our fed-batch setup, resulting in a two-fold higher titer, three-fold higher productivity, and five-fold higher yield compared to the strain not harboring the bypass. Eventually, we reached a maximum product titer of 148.0 ± 6.8 mg/L. Altogether, this work consists in a proof-of-principle integrating bioprocess and metabolic engineering approaches for the biological upgrading of formate into a value-added platform chemical.


Cupriavidus necator , Cupriavidus necator/genetics , Crotonates/metabolism , Metabolic Engineering/methods , Formates/metabolism , Carbon/metabolism
19.
Free Radic Biol Med ; 206: 22-32, 2023 09.
Article En | MEDLINE | ID: mdl-37355054

Reduced (NADH) and oxidized (NAD+) nicotinamide adenine dinucleotides are ubiquitous hydride-donating/accepting cofactors that are essential for cellular bioenergetics. Peroxisomes are single-membrane-bounded organelles that are involved in multiple lipid metabolism pathways, including beta-oxidation of fatty acids, and which contain several NAD(H)-dependent enzymes. Although maintenance of NAD(H) homeostasis in peroxisomes is considered essential for peroxisomal beta-oxidation, little is known about the regulation thereof. To resolve this issue, we have developed methods to specifically measure intraperoxisomal NADH levels in human cells using peroxisome-targeted NADH biosensors. By targeted CRISPR-Cas9-mediated genome editing of human cells, we showed with these sensors that the NAD+/NADH ratio in cytosol and peroxisomes are closely connected and that this crosstalk is mediated by intraperoxisomal lactate and malate dehydrogenases, generated via translational stop codon readthrough of the LDHB and MDH1 mRNAs. Our study provides evidence for the existence of two independent redox shuttle systems in human peroxisomes that regulate peroxisomal NAD+/NADH homeostasis. This is the first study that shows a specific metabolic function of protein isoforms generated by translational stop codon readthrough in humans.


NAD , Peroxisomes , Humans , NAD/metabolism , Codon, Terminator/metabolism , Peroxisomes/metabolism , Protein Biosynthesis , Oxidation-Reduction , Homeostasis
20.
Metabolism ; 145: 155596, 2023 08.
Article En | MEDLINE | ID: mdl-37244415

Platelets are circulating cells central to haemostasis that follows vessel injury, as well as thrombosis that ensues as a consequence of pathological stasis or plaque rupture. Platelet responses to various stimuli that mediate these processes are all energy-intensive. Hence, platelets need to adapt their energy metabolism to fulfil the requirements of clot formation while overcoming the adversities of the thrombus niche such as restricted access to oxygen and nutrient. In the present review, we describe the changes in energy metabolism of platelets upon agonist challenge and their underlying molecular mechanisms. We briefly discuss the metabolic flexibility and dependency of stimulated platelets in terms of choice of energy substrates. Finally, we discuss how targeting the metabolic vulnerabilities of stimulated platelets such as aerobic glycolysis and/or beta oxidation of fatty acids could forestall platelet activation and thrombus formation. Thus, we present a case for modulating platelet energy metabolism using small-molecules as a novel anti-platelet strategy in the management of vaso-occlusive disorders like acute myocardial infarction, ischemic stroke, deep vein thrombosis and pulmonary embolism.


Blood Platelets , Thrombosis , Humans , Energy Metabolism , Fatty Acids/metabolism , Platelet Activation , Platelet Aggregation
...