Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.594
Filtrar
1.
J Environ Sci (China) ; 147: 294-309, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003048

RESUMEN

Endocrine-disrupting chemicals (EDCs) are compounds, either natural or man-made, that interfere with the normal functioning of the endocrine system. There is increasing evidence that exposure to EDCs can have profound adverse effects on reproduction, metabolic disorders, neurological alterations, and increased risk of hormone-dependent cancer. Stem cells (SCs) are integral to these pathological processes, and it is therefore crucial to understand how EDCs may influence SC functionality. This review examines the literature on different types of EDCs and their effects on various types of SCs, including embryonic, adult, and cancer SCs. Possible molecular mechanisms through which EDCs may influence the phenotype of SCs are also evaluated. Finally, the possible implications of these effects on human health are discussed. The available literature demonstrates that EDCs can influence the biology of SCs in a variety of ways, including by altering hormonal pathways, DNA damage, epigenetic changes, reactive oxygen species production and alterations in the gene expression patterns. These disruptions may lead to a variety of cell fates and diseases later in adulthood including increased risk of endocrine disorders, obesity, infertility, reproductive abnormalities, and cancer. Therefore, the review emphasizes the importance of raising broader awareness regarding the intricate impact of EDCs on human health.


Asunto(s)
Disruptores Endocrinos , Células Madre , Disruptores Endocrinos/toxicidad , Humanos , Células Madre/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Exposición a Riesgos Ambientales
2.
Cancer Rep (Hoboken) ; 7(7): e2080, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967113

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a malignant brain tumor that frequently occurs alongside other central nervous system (CNS) conditions. The secretome of GBM cells contains a diverse array of proteins released into the extracellular space, influencing the tumor microenvironment. These proteins can serve as potential biomarkers for GBM due to their involvement in key biological processes, exploring the secretome biomarkers in GBM research represents a cutting-edge strategy with significant potential for advancing diagnostic precision, treatment monitoring, and ultimately improving outcomes for patients with this challenging brain cancer. AIM: This study was aimed to investigate the roles of secretome biomarkers and their pathwayes in GBM through bioinformatics analysis. METHODS AND RESULTS: Using data from the Gene Expression Omnibus and the Cancer Genome Atlas datasets-where both healthy and cancerous samples were analyzed-we used a quantitative analytical framework to identify differentially expressed genes (DEGs) and cell signaling pathways that might be related to GBM. Then, we performed gene ontology studies and hub protein identifications to estimate the roles of these DEGs after finding disease-gene connection networks and signaling pathways. Using the GEPIA Proportional Hazard Model and the Kaplan-Meier estimator, we widened our analysis to identify the important genes that may play a role in both progression and the survival of patients with GBM. In total, 890 DEGs, including 475 and 415 upregulated and downregulated were identified, respectively. Our results revealed that SQLE, DHCR7, delta-1 phospholipase C (PLCD1), and MINPP1 genes are highly expressed, and the Enolase 2 (ENO2) and hexokinase-1 (HK1) genes are low expressions. CONCLUSION: Hence, our findings suggest novel mechanisms that affect the occurrence of GBM development, growth, and/or establishment and may also serve as secretory biomarkers for GBM prognosis and possible targets for therapy. So, continued research in this field may uncover new avenues for therapeutic interventions and contribute to the ongoing efforts to combat GBM effectively.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Células Madre Neoplásicas , Humanos , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Secretoma/metabolismo , Perfilación de la Expresión Génica , Transducción de Señal , Pronóstico , Redes Reguladoras de Genes , Mapas de Interacción de Proteínas , Microambiente Tumoral
3.
Discov Oncol ; 15(1): 267, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967742

RESUMEN

OBJECTIVE: To reveal the mechanisms by which miR-513b-5p inhibits metastasis of colon cancer stem cells (CCSCs) through IL-6/STAT3 in HCT116 cells. METHODS: Sphere formation media and magnetic cell sorting were used to enrich and screen CCSCs. We used a colony formation assay, cell proliferation and viability assays, and a nude mouse transplantation tumor assay to identify CCSCs. ELISA was performed to identify IL-6 in the cell culture medium, and the growth, viability, wound healing, and transwell migration of distinct cell groups were compared to differentiate them. Dual-luciferase reporter assay, RT-PCR, and/or Western Blot analysis were conducted to determine the correlation between them. RESULTS: CD133+CD44+ HCT116 cells were shown to have higher cloning efficiency, greater proliferation ability and viability, and stronger tumorigenicity. A dual-luciferase reporter assay revealed that miR-513b-5p negatively affected STAT3 expression. RT-PCR and/or Western Blot analysis suggested that miR-513b-5p negatively affected STAT3 and Vimentin, while positively affecting E-cadherin expression. The STAT3 overexpression vector + miR-513b-5p inhibitor cell group had the highest efficiency, greatest proliferation ability and viability, and the highest IL-6 level in the experiments. CONCLUSIONS: Mir-513b-5p inhibited the epithelial-mesenchymal transition (EMT) of CCSCs through IL-6/STAT3. This potential mechanism may provide a new therapeutic target for colon cancer.

4.
J Cancer ; 15(13): 4313-4327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947397

RESUMEN

Aquaporin 5 (AQP5) has been shown to have a pro-carcinogenic effect in numerous types of malignancies. This research intends to investigate the role and the molecular mechanism of AQP5 on enriched gastric cancer stem cells (GCSCs). Methods: Immunohistochemistry, western blot (WB), and RT-qPCR techniques were employed to identify the presence of AQP5 in gastric cancer (GC) and the neighboring paracancerous tissues. Additionally, a statistical analysis was conducted to determine the correlation between AQP5 expression and the pathological and histological parameters. Furthermore, the study aimed to assess the predictive value of AQP5 expression in long-term survival after GC surgery. GCSCs were enriched using the serum-free culture method. The expression of AQP5 in enriched GCSCs was explored using RT-qPCR and WB. Plate cloning, transwell, WB, RT-qPCR, and the sphere-forming assay were utilized to monitor the proliferation, migration, and self-renewal capability of GCSCs after AQP5 knockdown. WB and Immunofluorescence for Detecting the Effect of AQP5 on Autophagy. WB, RT-qPCR, and other experiments were used for in-depth investigation of the potential molecular regulatory mechanism of AQP5 in GC. Results: AQP5 was highly expressed in GC tissues and GC cells, and overexpression of AQP5 was associated with lymph node metastasis, increased tumor size, and low 5-year postoperative survival in GC patients; other studies have shown that the AQP5 was highly expressed in GCSCs. Knockdown of AQP5 suppressed tumorigenesis in vivo and inhibited the proliferative, migratory, and self-renewal capability of GCSCs. It was also found that AQP5 could activate the autophagy phenomenon of GCSCs, and mechanistically, we found that AQP5 could regulate TRPV4 to affect the self-renewal ability of GCSCs. Conclusion: AQP5 can be further explored for GC therapy, as it has shown a significant impact on the self-renewal capability of GCSCs, which prevents GC progression.

5.
Biomater Adv ; 163: 213936, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38959652

RESUMEN

Matrix stiffening is one of the major risk factors for hepatocellular carcinoma (HCC) and drives tumor progression. The extracellular matrix (ECM) stiffness of HCC displays mechanical heterogeneity, with stiffness increasing from the core to the invasive frontier. The distribution of liver cancer stem cells (CSCs) is related to this mechanical property. However, it is not sufficiently understood how heterogeneous matrix stiffness regulates the stemness of CSCs. In this study, we developed an adjustable gelatin/alginate hydrogel to investigate the effect of various matrix stiffnesses on CSC stemness under three-dimensional culture conditions. Gelatin/alginate hydrogel with the stiffness of soft (5 kPa), medium (16 kPa), and stiff (81 kPa) were prepared by altering the concentration of calcium ions. It was found that a stiffer matrix promoted stemness-associated gene expression, reduced drug sensitivity, enhanced sphere-forming and clonogenic ability, and tumorigenic potential. Mechanistically, matrix stiffening facilitates CSC stemness by increasing Yes-associated protein (YAP) activity and inhibiting Bcl-2 modifying factor (BMF) expression. Knockdown of YAP or overexpression of BMF significantly attenuated matrix stiffening-induced stemness, suggesting the involvement of YAP and BMF in this process. Together, our results unravel the regulatory mechanism of heterogeneous matrix stiffness on CSC stemness and also provide a novel therapeutic strategy for eradicating CSCs and improving the efficiency of HCC treatment.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38958784

RESUMEN

BACKGROUND: Cancer stem cells (CSCs) in triple-negative breast cancer (TNBC) are recognized as a highly challenging subset of cells, renowned for their heightened propensity for relapse and unfavorable prognosis. Monensin, an ionophoric antibiotic, has been reported to exhibit significant therapeutic efficacy against various cancers, especially CSCs. Erlotinib is classified as one of the EGFR-TKIs and has been previously identified as a promising therapeutic target for TNBC. Our research aims to assess the effectiveness of combination of monensin and erlotinib as a potential treatment strategy for TNBC. METHODS: The combination of monensin and erlotinib was assessed for its potential anticancer activity through various in vitro assays, including cytotoxicity assay, colony formation assay, wound healing assay, transwell assay, mammosphere formation assay, and proportion of CSCs assay. Additionally, an in vivo study using tumor-bearing nude mice was conducted to evaluate the inhibitory effect of the monensin and erlotinib combination on tumor growth. RESULTS: The results indicated that combination of monensin with erlotinib synergistically inhibited cell proliferation, the migration rate, the invasion ability and decreased the CSCs proportion, and CSC markers SOX2 and CD133 in vivo and in vitro. Furthermore, the primary proteins involved in the signaling pathways of the EGFR/ERK and PI3K/AKT are simultaneously inhibited by the combination treatment of monensin and erlotinib in vivo and in vitro. CONCLUSIONS: The simultaneous inhibition of the EGFR/ERK and PI3K/AKT/mTOR signaling pathways by the combination of monensin and erlotinib exhibited a synergistic effect on suppressing tumor proliferation and cancer cell stemness in TNBC.

7.
Sci China Life Sci ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38951428

RESUMEN

Cancer stem cells (CSCs) play an important role in metastasis development, tumor recurrence, and treatment resistance, and are essential for the eradication of cancer. Currently, therapies fail to eradicate CSCs due to their therapeutic stress-induced cellular escape, which leads to enhanced aggressive behaviors compared with CSCs that have never been treated. However, the underlying mechanisms regulating the therapeutic escape remain unknown. To this end, we established a model to isolate the therapeutic escaped CSCs (TSCSCs) from breast CSCs and performed the transcription profile to reveal the mechanism. Mechanistically, we demonstrated that the behavior of therapeutic escape was regulated through the p38/MAPK signaling pathway, resulting in TSCSCs exhibiting enhanced motility and metastasis. Notably, blocking the p38/MAPK signaling pathway effectively reduced motility and metastasis ability both in vitro and in vivo, which were further supported by downregulated motility-related genes and epithelial-mesenchymal transition (EMT)-related proteins vimentin and N-cadherin. The obtained findings reveal the p38/MAPK pathway as a potential therapeutic target for TSCSCs and would provide profound implications for cancer therapy.

8.
Front Immunol ; 15: 1362120, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962016

RESUMEN

Cancer stem cells (CSCs), accounting for only a minor cell proportion (< 1%) within tumors, have profound implications in tumor initiation, metastasis, recurrence, and treatment resistance due to their inherent ability of self-renewal, multi-lineage differentiation, and tumor-initiating potential. In recent years, accumulating studies indicate that CSCs and tumor immune microenvironment act reciprocally in driving tumor progression and diminishing the efficacy of cancer therapies. Extracellular vesicles (EVs), pivotal mediators of intercellular communications, build indispensable biological connections between CSCs and immune cells. By transferring bioactive molecules, including proteins, nucleic acids, and lipids, EVs can exert mutual influence on both CSCs and immune cells. This interaction plays a significant role in reshaping the tumor immune microenvironment, creating conditions favorable for the sustenance and propagation of CSCs. Deciphering the intricate interplay between CSCs and immune cells would provide valuable insights into the mechanisms of CSCs being more susceptible to immune escape. This review will highlight the EV-mediated communications between CSCs and each immune cell lineage in the tumor microenvironment and explore potential therapeutic opportunities.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Células Madre Neoplásicas , Microambiente Tumoral , Microambiente Tumoral/inmunología , Humanos , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Animales , Comunicación Celular/inmunología , Escape del Tumor , Inmunomodulación
9.
Front Pharmacol ; 15: 1362675, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962320

RESUMEN

Sympathetic activation triggered by chronic stress afflicting cancer survivors is an emerging modulator of tumorigenesis. Adrenergic blockade was previously associated with improving response to doxorubicin (DOX) in triple-negative breast cancer (TNBC), yet the precise underlying mechanisms remain obscure. The resilience of cancer stem cells (CSCs) during chemotherapy fosters resistance and relapse. Hypoxia-inducible factor-1α (HIF-1α) and ß-catenin are intertwined transcriptional factors that enrich CSCs and evidence suggests that their expression could be modulated by systemic adrenergic signals. Herein, we aimed to explore the impact of adrenoreceptor blockade using carvedilol (CAR) on DOX and its potential to modulate CSCs overcoming chemoresistance. To achieve this aim, in vitro studies were conducted using adrenaline-preincubated MDA-MB-231 cells and in vivo studies using a chronic restraint stress-promoted solid tumor mouse model. Results revealed that adrenaline increased TNBC proliferation and induced a phenotypic switch reminiscent of CSCs, as evidenced by enhanced mammosphere formation. These results paralleled an increase in aldehyde dehydrogenase-1 (ALDH-1) and Nanog expression levels as well as HIF-1α and ß-catenin upsurge. In vivo, larger tumor volumes were observed in mice under chronic stress compared to their unstressed counterparts. Adrenergic blockade using CAR, however, enhanced the impact DOX had on halting TNBC cell proliferation and tumor growth via enhanced apoptosis. CAR also curbed HIF-1α and ß-catenin tumor levels subsequently suppressing ALDH-1 and SOX2. Our study unveils a central role for HIF-1α linking stress-induced sympathetic activation fueling CSC enrichment via the ß-catenin pathway. It also highlights novel insights into CAR's capacity in reversing DOX chemoresistance in TNBC.

10.
Trends Cancer ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971642

RESUMEN

Multiple myeloma (MM) is a hematological malignancy of bone marrow (BM) plasma cells with excessive clonal expansion and is associated with the overproduction of light-chain or monoclonal immunoglobulins (Igs). MM remains incurable, with high rates of relapses and refractory disease after first-line treatment. Cancer stem cells (CSCs) have been implicated in drug resistance in MM; however, the evidence for CSCs in MM is not adequate, partly due to a lack of uniformity in the definitions of multiple myeloma stem cells (MMSCs). We review advances in understanding MMSCs and their role in drug resistance to MM therapies. We also discuss novel therapeutic strategies to overcome MMSC-mediated relapses and drug resistance.

11.
Heliyon ; 10(13): e34096, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39071677

RESUMEN

Sox2 and Oct4 dysregulations could significantly increase in the cancer stem cell (CSC) population in some cancer cells and resistance to common treatments. In this study, the synergistic effects of Sox2-Oct4 decoy oligodeoxynucleotides-encapsulated Niosomes-zinc hybrid nanocarriers along with X-irradiation conditions as a combinational therapy tool were investigated in the treatment of cancer-like stem cells (NTERA-2). The NTERA-2 cell line known as a cancer-like stem cell line was used in this investigation. Sox2-Oct4 decoy oligodeoxynucleotides were designed based on the sequence of the Sox2 promoter and synthesized. Physicochemical characteristics of ODNs-encapsulated niosomes-zinc hybrid nanocarriers (NISM@BSA-DEC-Zn) investigated with FT-IR, DLS, FESEM, and ODNs release kinetic estimation assays. Further investigations such as hemolysis, uptake, cell viability, apoptosis, cell cycle, and scratch repair tests were performed. All the above assays were completed with and without X-ray exposure conditions (fractionated 2Gy). Physicochemical characteristics results showed that the Niosomes-Zn nanocarriers were successfully synthesized. NISM@BSA-DEC-Zn was efficiently taken up by NTERA-2 cells and significantly inhibited cell growth, increased apoptosis, and reduced cell migration in both conditions (with and without X-ray exposure). Furthermore, NISM@BSA-DEC-Zn treatment resulted in G1 and G2/M cell cycle arrest without and with X-irradiation, respectively. The prepared nanocarrier system can be a promising tool for drug delivery in cancer treatment. Decoy ODN strategy along with zinc nanoparticles could increase the sensitivity of cancer cells toward irradiation, which has the potential for combinational cancer therapies.

12.
Biomolecules ; 14(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39062471

RESUMEN

Circulating tumor cells (CTCs) are some of the key culprits that cause cancer metastasis and metastasis-related deaths. These cells exist in a dynamic microenvironment where they experience fluid shear stress (FSS), and the CTCs that survive FSS are considered to be highly metastatic and stem cell-like. Biophysical stresses such as FSS are also known to cause the production of extracellular vesicles (EVs) that can facilitate cell-cell communication by carrying biomolecular cargos such as microRNAs. Here, we hypothesized that physiological FSS will impact the yield of EV production, and that these EVs will have biomolecules that transform the recipient cells. The EVs were isolated using direct flow filtration with and without FSS from the MDA-MB-231 cancer cell line, and the expression of key stemness-related genes and microRNAs was characterized. There was a significantly increased yield of EVs under FSS. These EVs also contained significantly increased levels of miR-21, which was previously implicated to promote metastatic progression and chemotherapeutic resistance. When these EVs from FSS were introduced to MCF-7 cancer cells, the recipient cells had a significant increase in their stem-like gene expression and CD44+/CD24- cancer stem cell-like subpopulation. There was also a correlated increased proliferation along with an increased ATP production. Together, these findings indicate that the presence of physiological FSS can directly influence the EVs' production and their contents, and that the EV-mediated transfer of miR-21 can have an important role in FSS-existing contexts, such as in cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , MicroARNs , Células Madre Neoplásicas , Humanos , Vesículas Extracelulares/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Células MCF-7 , Línea Celular Tumoral , Estrés Mecánico , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Regulación Neoplásica de la Expresión Génica , Fenotipo , Antígeno CD24/metabolismo , Antígeno CD24/genética
13.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39063149

RESUMEN

Research on the energy metabolism of cancer cells is becoming a central element in oncology, and in recent decades, it has allowed us to better understand the mechanisms underlying the onset and chemoresistance of oncological pathologies. Mitochondrial bioenergetic processes, in particular, have proven to be fundamental for the survival of tumor stem cells (CSC), a subpopulation of tumor cells responsible for tumor recurrence, the onset of metastasis, and the failure of conventional anticancer therapies. Over the years, numerous natural products, in particular flavonoids, widely distributed in the plant kingdom, have been shown to interfere with tumor bioenergetics, demonstrating promising antitumor effects. Herein, the anticancer potential of Licoflavanone, a flavanone isolated from the leaves of G. glabra, was explored for the first time in breast cancer cells. The results obtained highlighted a marked antitumor activity that proved to be greater than that mediated by Glabranin or Pinocembrin, flavanones isolated from the same plant matrix. Furthermore, the investigation of Licoflavanone's effects on breast cancer energy metabolism highlighted the inhibitory activity of this natural product on tumor bioenergetics, a mechanism that could underlie its ability to reduce tumor proliferation, invasiveness, and stemness.


Asunto(s)
Neoplasias de la Mama , Metabolismo Energético , Flavanonas , Glycyrrhiza , Humanos , Flavanonas/farmacología , Flavanonas/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Metabolismo Energético/efectos de los fármacos , Femenino , Glycyrrhiza/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células MCF-7
14.
Front Oncol ; 14: 1322795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988707

RESUMEN

Current therapy protocols fail to cure high-grade gliomas and prevent recurrence. Therefore, novel approaches need to be developed. A re-programing of glioma cell fate is an alternative attractive way to stop tumor growth. The two-step protocol applies the antiproliferative GQ bi-(AID-1-T) and small molecule inducers with BDNF to trigger neural differentiation into terminally differentiated cells, and it is very effective on GB cell cultures. This original approach is a successful example of the "differentiation therapy". To demonstrate a versatility of this approach, in this publication we have extended a palette of cell cultures to gliomas of II, III and IV Grades, and proved an applicability of that version of differential therapy for a variety of tumor cells. We have justified a sequential mode of adding of GQIcombi components to the glioma cells. We have shown a significant retardation of tumor growth after a direct injection of GQIcombi into the tumor in rat brain, model 101/8. Thus, the proposed strategy of influencing on cancer cell growth is applicable to be further translated for therapy use.

15.
Transl Cancer Res ; 13(6): 2971-2984, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988936

RESUMEN

Background: Esophageal squamous cell carcinoma (ESCC), a prevalent malignancy within the upper gastrointestinal system, is characterized by its unfavorable prognosis and the absence of specific indicators for outcome prediction and high-risk case identification. In our research, we examined the expression levels of cancer stem cells (CSCs), markers CD44/SOX2 in ESCC, scrutinized their association with clinicopathological parameters, and developed a predictive nomogram model. This model, which incorporates CD44/SOX2, aims to forecast the overall survival (OS) of patients afflicted with ESCC. Methods: Immunohistochemistry was utilized to detect the expression levels of CD44 and SOX2 in both cancerous and paracancerous tissues of 68 patients with ESCC. The correlation between CD44/SOX2 expression and clinicopathological parameters was subsequently analyzed. Factors impacting the prognosis of ESCC patients were assessed through univariate and multivariate Cox regression analyses. Leveraging the results of these multivariate regression analyses, a nomogram prognostic model was established to provide individualized predictions of ESCC patient survival outcomes. The predictive accuracy of the nomogram prognostic model was evaluated using the consistency index (C-index) and calibration curves. Results: The expression levels of CD44 were markedly elevated in the tumor tissues of ESCC patients. Similarly, SOX2 was significantly overexpressed in the tumor tissues of ESCC patients. The positive expression of SOX2 in ESCC demonstrated a strong correlation with both the pathological T-stage and the presence of carcinoembryonic antigen. CD44 and SOX2 co-positive expression was significantly associated with the pathological T-stage and tumor node metastasis (TNM) stage. Furthermore, ESCC patients exhibiting CD44-positive expression in their tumor tissue generally had a more adverse prognosis. The co-expression of CD44 and SOX2 resulted in a grimmer prognosis compared to patients with other combinations. Multivariate Cox regression analysis identified the co-expression of CD44 and SOX2, the pathological T-stage, and lymph node metastasis as independent prognostic indicators for ESCC patients. The three identified variables were subsequently incorporated into a nomogram for predicting OS. The C-index of the measurement model and the area under the curve of the subjects' work characteristics showed good individual prediction. This prognostic model stratified patients into low- and high-risk categories. Analysis revealed that the 5-year OS rate was significantly higher in the low-risk group compared to the high-risk group. Conclusions: Elevated CD44 levels, indicative of CSC presence, are intimately linked with the oncogenesis of ESCC and are strongly predictive of unfavorable patient outcomes. Concurrently, the SOX2 gene exhibits a heightened expression in ESCC, markedly accelerating tumor progression and fostering more extensive disease infiltration. The co-expression of CD44 and SOX2 correlates significantly with ESCC patient prognosis, serving as a reliable, independent prognostic marker. Our constructed nomogram, incorporating CD44/SOX2 expression, enhances the prediction of OS and facilitates risk stratification in ESCC patients.

16.
Open Med (Wars) ; 19(1): 20240995, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978960

RESUMEN

Osteosarcoma is a highly aggressive bone tumor primarily affecting children and adolescents. Despite advancements in treatment modalities, the prognosis for osteosarcoma patients remains poor, emphasizing the need for a deeper understanding of its underlying mechanisms. In recent years, the concept of cancer stem cells (CSCs) has emerged as a crucial factor in tumor initiation, progression, and therapy resistance. These specialized subpopulations of cells possess self-renewal capacity, tumorigenic potential, and contribute to tumor heterogeneity. Sox9, a transcription factor known for its critical role in embryonic development and tissue homeostasis, has been implicated in various malignancies, including osteosarcoma. This review aims to summarize the current knowledge regarding the role of Sox9 in CSCs in osteosarcoma and its potential implications as a prognosis and therapeutic target.

17.
Adv Sci (Weinh) ; : e2402327, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981014

RESUMEN

Dysregulation of the transforming growth factor-ß (TGF-ß) signaling pathway regulates cancer stem cells (CSCs) and drug sensitivity, whereas it remains largely unknown how feedback regulatory mechanisms are hijacked to fuel drug-resistant CSCs. Through a genome-wide CRISPR activation screen utilizing stem-like drug-resistant properties as a readout, the TGF-ß receptor-associated binding protein 1 (TGFBRAP1) is identified as a TGF-ß-inducible positive feedback regulator that governs sensitivity to tyrosine kinase inhibitors (TKIs) and promotes liver cancer stemness. By interacting with and stabilizing the TGF-ß receptor type 1 (TGFBR1), TGFBRAP1 plays an important role in potentiating TGF-ß signaling. Mechanistically, TGFBRAP1 competes with E3 ubiquitin ligases Smurf1/2 for binding to TGFΒR1, leading to impaired receptor poly-ubiquitination and proteasomal degradation. Moreover, hyperactive TGF-ß signaling in turn up-regulates TGFBRAP1 expression in drug-resistant CSC-like cells, thereby constituting a previously uncharacterized feedback mechanism to amplify TGF-ß signaling. As such, TGFBRAP1 expression is correlated with TGFΒR1 levels and TGF-ß signaling activity in hepatocellular carcinoma (HCC) tissues, as well as overall survival and disease recurrence in multiple HCC cohorts. Therapeutically, blocking TGFBRAP1-mediated stabilization of TGFBR1 by selective inhibitors alleviates Regorafenib resistance via reducing CSCs. Collectively, targeting feedback machinery of TGF-ß signaling pathway may be an actionable approach to mitigate drug resistance and liver cancer stemness.

18.
Virchows Arch ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981932

RESUMEN

Cancer stem cells (CSC), a small population of neoplastic cells, are associated with worse prognosis. The aim of this study was to evaluate the expression of ALDH1, CD117, CD133 and OCT4; potential markers of CSC; and their associations with the prognosis of women diagnosed with cervical cancer. This retrospective cohort study included 126 women diagnosed with cervical cancer whose biopsies were analyzed by immunohistochemistry. Median values of marked cells were used to define cutoff points for low and high expression. For specific survival, multivariate analyses showed statistical significance for lymph node metastases (HR 8.15; 95% CI 3.00-22.18) and borderline significance for high CD133 expression (p = 0.058). For overall survival, multivariate analyses showed statistical significance for IIA-IVB staging (HR 4.60; 95% CI 1.46-14.56), lymph node metastases (HR 5.13; 95% CI 12.02-13.03) and high CD133 expression (2.67; 95% CI 1.11-6.43). Considering only women with SCC, the same clinicopathological variables were associated with worse specific and overall survival in univariate analyses. However, higher expression of CD 133 (HR 11.10; 95% CI 2.42-50.94 and 6.00; 95% CI 2.02-17.87) and staging IIA-IVB (HR 5.96; 95% CI 1.30-27.34 and HR 12.47; 95% CI 2.45-63.54) respectively impacted negatively specific and overall survival, as multivariate analyses showed. Secondarily, it was observed that ALDH1 expression was associated with adenocarcinoma and CD117 expression with squamous cells carcinoma. Higher expression of CD133 was associated with worse specific and overall survival, indicating that it could have relevance as a clinical marker and therapeutic target.

19.
Front Pharmacol ; 15: 1367981, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994204

RESUMEN

Cancer stem cells (CSCs) represent a small subset of heterogeneous cells within tumors that possess the ability to self-renew and initiate tumorigenesis. They serve as potential drivers for tumor initiation, metastasis, recurrence, and drug resistance. Recent research has demonstrated that the stemness preservation of CSCs is heavily reliant on their unique lipid metabolism alterations, enabling them to maintain their own environmental homeostasis through various mechanisms. The primary objectives involve augmenting intracellular fatty acid (FA) content to bolster energy supply, promoting ß-oxidation of FA to optimize energy utilization, and elevating the mevalonate (MVA) pathway for efficient cholesterol synthesis. Additionally, lipid droplets (LDs) can serve as alternative energy sources in the presence of glycolysis blockade in CSCs, thereby safeguarding FA from peroxidation. Furthermore, the interplay between autophagy and lipid metabolism facilitates rapid adaptation of CSCs to the harsh microenvironment induced by chemotherapy. In this review, we comprehensively review recent studies pertaining to lipid metabolism in CSCs and provide a concise overview of the indispensable role played by LDs, FA, cholesterol metabolism, and autophagy in maintaining the stemness of CSCs.

20.
Autophagy Rep ; 3(1)2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39006309

RESUMEN

Breast cancer is a heterogeneous disease, with a subpopulation of tumor cells known as breast cancer stem cells (BCSCs) with self-renewal and differentiation abilities that play a critical role in tumor initiation, progression, and therapy resistance. The tumor microenvironment (TME) is a complex area where diverse cancer cells reside creating a highly interactive environment with secreted factors, and the extracellular matrix. Autophagy, a cellular self-digestion process, influences dynamic cellular processes in the tumor TME integrating diverse signals that regulate tumor development and heterogeneity. Autophagy acts as a double-edged sword in the breast TME, with both tumor-promoting and tumor-suppressing roles. Autophagy promotes breast tumorigenesis by regulating tumor cell survival, migration and invasion, metabolic reprogramming, and epithelial-mesenchymal transition (EMT). BCSCs harness autophagy to maintain stemness properties, evade immune surveillance, and resist therapeutic interventions. Conversely, excessive, or dysregulated autophagy may lead to BCSC differentiation or cell death, offering a potential avenue for therapeutic exploration. The molecular mechanisms that regulate autophagy in BCSCs including the mammalian target of rapamycin (mTOR), AMPK, and Beclin-1 signaling pathways may be potential targets for pharmacological intervention in breast cancer. This review provides a comprehensive overview of the relationship between autophagy and BCSCs, highlighting recent advancements in our understanding of their interplay. We also discuss the current state of autophagy-targeting agents and their preclinical and clinical development in BCSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA