Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.664
Filtrar
1.
PeerJ ; 12: e17650, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952965

RESUMEN

Background: This study explored the utilization of luffa sponge (LS) in enhancing acetification processes. LS is known for having high porosity and specific surface area, and can provide a novel means of supporting the growth of acetic acid bacteria (AAB) to improve biomass yield and acetification rate, and thereby promote more efficient and sustainable vinegar production. Moreover, the promising potential of LS and luffa sponge coated with κ-carrageenan (LSK) means they may represent effective alternatives for the co-production of industrially valuable bioproducts, for example bacterial cellulose (BC) and acetic acid. Methods: LS and LSK were employed as adsorbents for Acetobacter pasteurianus UMCC 2951 in a submerged semi-continuous acetification process. Experiments were conducted under reciprocal shaking at 1 Hz and a temperature of 32 °C. The performance of the two systems (LS-AAB and LSK-AAB respectively) was evaluated based on cell dry weight (CDW), acetification rate, and BC biofilm formation. Results: The use of LS significantly increased the biomass yield during acetification, achieving a CDW of 3.34 mg/L versus the 0.91 mg/L obtained with planktonic cells. Coating LS with κ-carrageenan further enhanced yield, with a CDW of 4.45 mg/L. Acetification rates were also higher in the LSK-AAB system, reaching 3.33 ± 0.05 g/L d as opposed to 2.45 ± 0.05 g/L d for LS-AAB and 1.13 ± 0.05 g/L d for planktonic cells. Additionally, BC biofilm formation during the second operational cycle was more pronounced in the LSK-AAB system (37.0 ± 3.0 mg/L, as opposed to 25.0 ± 2.0 mg/L in LS-AAB). Conclusions: This study demonstrates that LS significantly improves the efficiency of the acetification process, particularly when enhanced with κ-carrageenan. The increased biomass yield, accelerated acetification, and enhanced BC biofilm formation highlight the potential of the LS-AAB system, and especially the LSK-AAB variant, in sustainable and effective vinegar production. These systems offer a promising approach for small-scale, semi-continuous acetification processes that aligns with eco-friendly practices and caters to specialized market needs. Finally, this innovative method facilitates the dual production of acetic acid and bacterial cellulose, with potential applications in biotechnological fields.


Asunto(s)
Ácido Acético , Acetobacter , Biomasa , Carragenina , Carragenina/química , Acetobacter/metabolismo , Ácido Acético/química , Ácido Acético/metabolismo , Luffa/química , Adsorción , Celulosa/metabolismo , Celulosa/química , Biopelículas/crecimiento & desarrollo
2.
Int J Biol Macromol ; : 133647, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964693

RESUMEN

Teeth discoloration poses a widespread challenge in dental health across various regions. Conventional teeth whitening methods often result in enamel deterioration and soft tissue harm due to the utilization of incompatible whitening agents and continuous intense light exposure. Here, we propose an effective phototherapy technique for teeth whitening, employing pathways of energy transition through intersystem crossing. The integration of MoS2 nanosheets into carrageenan gel (MoS2 NSs@Carr) facilitates both photothermal-hyperthermia and the generation of reactive oxygen species (ROS) through photocatalytic processes. The efficacy of ROS generation by the phototherapeutic MoS2 NSs@Carr on teeth whitening in all scenarios. This approach ensures comprehensive teeth whitening by eliminating deep-seated stains on the teeth while preserving structural integrity and avoiding any tissue toxicity. This research highlights the efficacy of the phototherapeutic MoS2 NSs@Carr for dental whitening and underscores the potential of exploring nanostructures based on MoS2 NSs for treating oral ailments.

3.
Food Chem ; 459: 140272, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38996635

RESUMEN

In this study, cationic starch-carrageenan­sodium alginate (CAS/CR/SA) hydrogels with different weight ratios of carrageenan and sodium alginate were prepared and their properties such as scanning electron microscopy (SEM), rheological properties, Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR), X-ray diffraction (XRD), and methylene blue adsorption test were measured. The results showed that the viscosity and the shear strain resistance of the CAS/CR/SA hybrid hydrogels positively correlated with their sodium alginate contents. The hybrid hydrogels with high carrageenan contents exhibited a high energy storage modulus (G') and a high loss modulus (G"). The swelling and methylene blue adsorption experiments showed that the CAS/CR/SA hydrogels had pH and temperature sensitivity. The hydrogels reached adsorption equilibrium in 12 h (alkaline conditions) and 24-36 h (acidic conditions). The adsorption kinetics of the hybrid hydrogels showed that their adsorption process was mainly controlled by chemisorption and that adsorption was exothermic (ΔH° < 0).

4.
Indian J Microbiol ; 64(2): 593-602, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39011007

RESUMEN

Seaweed, a valuable marine resource widely cultivated worldwide, can be vulnerable to stress and microbiome alterations, resulting in the decay of seaweeds and substantial economic losses. To investigate the seaweed-microbiome interaction, our study aimed to isolate marine bacteria and fungi that can cause Ice-Ice disease and evaluate their enzymatic characteristics for potential application in bioethanol production from seaweed biomass. Three red seaweed species (Gracilaria edulis, Kappaphycus alvarezii, and Eucheuma cottonii) were obtained for our study and placed in separate culture tanks. Among the 18 isolated marine microbial species, 12 tested positive for agar and carrageenan activity: six exhibited both activities, three displayed only agar activity, and three only carrageenan activity. DNA sequencing of the positive microbes identified ten bacteria and two yeast species. The 3,5-Dinitrosalicylic acid (DNSA) assay results revealed that the identified bacterial Caldibacillus kokeshiiformis strain FJAT-47861 exhibited the highest carrageenase activity (0.76 units/ml), while the yeast Pichia fermentans strain PM79 demonstrated the highest agarase activity (0.52 units/ml). Notably, Pichia fermentans strain PM79 exhibited the highest overall agarase and carrageenase activity, averaging 0.63 units/ml. The average carrageenase activity of all six positive microbes was 1.5 times higher than their agarase activity. These findings suggest that the 12 isolated microbes hold potential for bioethanol production from macroalgae, as their agarase and carrageenase activity indicates their ability to break down seaweed cell wall carbohydrates, causing ice-ice disease. Moreover, these results provide exciting prospects for harnessing the bioconversion capabilities of these microbes, paving the way for sustainable and efficient bioethanol production from seaweed resources. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01205-w.

5.
Int J Biol Macromol ; : 133999, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39033898

RESUMEN

Erythromycin (ERY) molecules are robust to the environment and hard to remove due to their aromatic structure. Nowadays, numerous researches have reported that the ERY amount in water is above the standard level and its removal is necessary. Here, we prepared three solid adsorbents: graphitic carbon nitride (g-C3N4), potassium carrageenan beads (Cr), and graphitic carbon nitride/gum Arabic/potassium carrageenan composite (g-ACr). Several techniques such as XRD, SEM, TEM, TGA, ATR-FTIR, Zeta potential, and N2 adsorption were employed to characterize the fabricated adsorbents. Five essential factors of adsorbent dose, initial ERY concentration, contact time, temperature, and pH were optimized to investigate the batch adsorption of ERY. The maximum adsorption capacity of 356.12 mg/g was attained by g-ACr composite at an adsorbent dose of 1.25 g/L, contact time of 6 h, and pH 7 at 15 °C. The data showed that the experimental findings exhibited the best agreement with Langmuir, Temkin, and DR isotherm models, in addition to the kinetic models of pseudo-second-order, Elovich, and intra-particle diffusion. The evaluated thermodynamic factors designated that the ERY adsorption is endothermic, physisorption, favorable, and spontaneous process. The g-ACr reusability displayed a decline in the adsorption capacity after seven adsorption/desorption runs by 5.7 %. Finally, this work outcomes depict that g-ACr composite is an efficient reusable adsorbent for ERY elimination from wastewater.

6.
Int J Biol Macromol ; 276(Pt 1): 133868, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009266

RESUMEN

Intervertebral disc degeneration is a clinical disease that reduces the quality of patient's life. The degeneration usually initiates in the nucleus pulposus (NP), hence the use of hydrogels represents a promising therapeutic approach. However, the viscoelastic nature of hydrogel and its ability to provide biomimetic architecture and biochemical cues influence the regeneration capability. This study focused on tuning the physical nature of a glycosaminoglycan hydrogel (κ-carrageenan) as well as the release kinetics of a chondrogenic factor (kartogenin - KGN) through physical cross-linking. For this, κ-carrageenan was cross linked with 2.5 % and 5 % potassium chloride (KCl) for 15 and 30 min and loaded with KGN molecule at 50 µM and 100 µM. The tight network structure with low water retention and degradation property was seen in hydrogel cross-linked with increased KCl concentration and time. However, optimal degradation along with NP mimicking viscoelastic nature was exhibited by 5 wt% KCl treated hydrogel (H3 hydrogel). All hydrogel groups exhibited burst KGN release at 24 h followed by a sustained release for 5 days. However, hydrogel cross-linked with 5 wt% KCl enhanced chondrogenic differentiation, mainly at lower KGN dose. In summary, this study shows the potential application of biomimetic KGN laden carrageenan hydrogel in NP regeneration.

7.
Polymers (Basel) ; 16(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000669

RESUMEN

Chitosan (CS) has a natural origin and is a biodegradable and biocompatible polymer with many skin-beneficial properties successfully used in the cosmetics and pharmaceutical industry. CS derivatives, especially those synthesized via a Schiff base reaction, are very important due to their unique antimicrobial activity. This study demonstrates research results on the use of hydrogel microspheres made of [chitosan-graft-poly(ε-caprolactone)]-blend-(ĸ-carrageenan)], [chitosan-2-pyridinecarboxaldehyde-graft-poly(ε-caprolactone)]-blend-(ĸ-carrageenan), and chitosan-sodium-4-formylbenzene-1,3-disulfonate-graft-poly(ε-caprolactone)]-blend-(ĸ-carrageenan) as innovative vitamin carriers for cosmetic formulation. A permeation study of retinol (vitamin A), L-ascorbic acid (vitamin C), and α-tocopherol (vitamin E) from the cream through a human skin model by the Franz Cell measurement system was presented. The quantitative analysis of the release of the vitamins added to the cream base, through the membrane, imitating human skin, showed a promising profile of its release/penetration, which is promising for the development of a cream with anti-aging properties. Additionally, the antibacterial activity of the polymers from which the microspheres are made allows for the elimination of preservatives and parabens as cosmetic formulation ingredients.

8.
Nutrients ; 16(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38999863

RESUMEN

The emptying rate of specific nutrients in enteral formulas is poorly understood, despite the importance of controlling the emptying rate in tube-fed patients. Because of their viscosity, thickened formulas are widely used to avoid gastric reflux and reduce the burden on caregivers. This study examined how thickeners in enteral formulas affected the gastric emptying rates of proteins and carbohydrates. A semi-dynamic gastric model was used to prepare and digest test enteral formulas that contained either no thickeners or agar (0.2%). The amounts of protein and carbohydrates in each emptied aliquot were determined, and the emptying rate was calculated. We found that agar accelerated protein emptying, and an exploratory experiment with agar (0.5%) suggested the possibility of concentration dependence. Additionally, experiments using gellan gum (0.08%), guar gum (0.2%), or carrageenan (0.08%, 0.2%) suggested that protein emptying could vary depending on the thickener type and that carrageenan might slow it. These results could help with the appropriate selection of thickeners added to liquid foods based on the patient's metabolic profile to manage nutrition, not only for tube-fed patients but also for those with oropharyngeal dysphagia or diabetes.


Asunto(s)
Proteínas en la Dieta , Nutrición Enteral , Alimentos Formulados , Galactanos , Vaciamiento Gástrico , Mananos , Gomas de Plantas , Vaciamiento Gástrico/efectos de los fármacos , Nutrición Enteral/métodos , Humanos , Mananos/farmacología , Mananos/administración & dosificación , Viscosidad , Galactanos/farmacología , Proteínas en la Dieta/administración & dosificación , Carbohidratos de la Dieta/administración & dosificación , Carragenina , Agar , Polisacáridos Bacterianos/farmacología , Modelos Biológicos
9.
Int J Biol Macromol ; 276(Pt 1): 133689, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971272

RESUMEN

Benzyl isothiocyanate (BITC) is a naturally active bacteriostatic substance and κ-carrageenan (KC) is a good film-forming substrate. In the present study, a nanoemulsion incorporating BITC was fabricated with a particle size of 224.1 nm and an encapsulation efficiency of 69.2 %. Subsequently, the acquired BITC nanoemulsion (BITC-NE) was incorporated into the KC-based film, and the light transmittance of the prepared composite films was lower than that of the pure KC film. Fourier transform infrared spectroscopy and scanning electron microscopy revealed that BITC-NE was compatible with the KC matrix. BITC-NE incorporation enhanced the tensile strength of the KC-based films by 33.7 %, decreased the elongation at break by 33.8 %, decreased the water vapor permeability by 60.1 %, increased the maximum thermal degradation temperature by 48.8 %, and decreased the oxygen permeability by 42 % (p < 0.05). Furthermore, the composite films showed enhanced antimicrobial activity against Staphylococcus aureus, Salmonella typhimurium, and Pseudomonas fluorescens. The developed KC-based composite films were applied to wrap raw beef, which significantly delayed the increase in total viable count, total volatile base nitrogen content, and thiobarbituric acid reactive substances, and prolonged the shelf-life of the raw beef by up to 10 days. These results indicated that the composite films prepared by incorporating BITC nanoemulsions into KC matrices have great antimicrobial application potential.

10.
Int J Biol Macromol ; 276(Pt 1): 133769, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992533

RESUMEN

This work aimed to develop and characterize a novel bi-layer film (BIF) for monitoring the freshness of salmon. The indicator layer consists of carrageenan (Car), pectin (PEC) and purple sweet potato anthocyanin (PSPA), and the antibacterial layer consists of Car and magnolol (Mag). The results showed that the Car/Mag2 had the optimal water resistance: the static water contact angle of 80.36 ± 0.92 °, moisture content of 31.38 ± 0.86 %, swelling degree of 92.96 ± 0.46 %, and water solubility of 40.08 ± 1.17 %, and showed excellent antibacterial properties against E. coli and S. aureus with antibacterial rate of 86.13 % ± 0.10 % and 97.53 % ± 0.02 %, respectively. Then BIFs with different PSPA concentration were tested. The morphology, mechanical and water vapor properties (WVP) of the BIFs were studied, and its application in salmon preservation was evaluated. The mechanical properties and WVP test results showed that the BIF0.2 had the optimal Tensile strength (TS) and WVP values. The BIFs showed distinguishable color changes between the pH ranges of 3-10. The shelf life of salmon packaged by BIF0.2 was prolonged by 2 days. Moreover, the BIF0.2 was able to effectively monitor salmon freshness. In conclusion, the BIF has great potential for monitoring salmon meat freshness.

11.
Int J Biol Macromol ; 276(Pt 1): 133668, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992537

RESUMEN

This review explores the intricate wound healing process, emphasizing the critical role of dressing material selection, particularly for chronic wounds with high exudate levels. The aim is to tailor biodegradable dressings for comprehensive healing, focusing on maximizing moisture retention, a vital element for adequate recovery. Researchers are designing advanced wound dressings that enhance techno-functional and bioactive properties, minimizing healing time and ensuring cost-effective care. The study delves into wound dressing materials, highlighting carrageenan biocomposites superior attributes and potential in advancing wound care. Carrageenan's versatility in various biomedical applications demonstrates its potential for tissue repair, bone regeneration, and drug delivery. Ongoing research explores synergistic effects by combining carrageenan with other novel materials, aiming for complete biocompatibility. As innovative solutions emerge, carrageenan-based wound-healing medical devices are poised for global accessibility, addressing challenges associated with the complex wound-healing process. The exceptional physico-mechanical properties of carrageenan make it well-suited for highly exudating wounds, offering a promising avenue to revolutionize wound care through freeze-drying techniques. This thorough approach to evaluating the wound healing effectiveness of carrageenan-based films, particularly emphasizing the development potential of lyophilized films, has the potential to significantly improve the quality of life for patients receiving wound healing treatments.

12.
Int J Biol Macromol ; 276(Pt 2): 133922, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39029841

RESUMEN

κ-Carrageenan is a soluble dietary fiber widely used in meat products. Although its regulatory effect on glycolipid metabolism has been reported, the underlying mechanism remains unclear. The present study established a pork diet model for in vitro digestion to study how κ-carrageenan affected its digestive behavior and lipid bioavailability. The results revealed that κ-carrageenan addition to a pork-based high-fat diet reduced the rate of lipolysis and increased the number and size of lipid droplets in an in vitro digestion condition. However, κ-carrageenan did not inhibit lipolysis when lipids and κ-carrageenan were mixed directly or with the addition of pork protein. Furthermore, the pork protein in the diet significantly enhanced the inhibitory effect of κ-carrageenan on lipolysis with decreased proteolysis and raised hydrophobicity of protein hydrolysate. Our findings suggest that κ-carrageenan can inhibit dietary lipid bioavailability by interacting with pork protein in meat products or meat-based diets during digestion and indicate the positive role of carrageenan in the food industry to alleviate the excessive accumulation of lipids in the body.

13.
Cureus ; 16(5): e61139, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38933614

RESUMEN

INTRODUCTION: Periodontitis, a persistent inflammatory condition, results in the deterioration of both the hard and soft tissues in the periodontium, leading to the formation of intrabony defects. Restoring the lost tissues, particularly bone, is possible through tissue engineering techniques utilizing scaffolds made from different polymers. Consequently, this research focuses on creating and assessing a scaffold infused with alginate (Sigma Aldrich, Gillingham, UK) and carrageenan (Sigma Aldrich, Gillingham, UK) for the purpose of bone regeneration. METHODS: An in vitro investigation was conducted to assess the characteristics of the recently formulated scaffold. Spectroscopic analysis, tensile strength testing, scanning electron microscopy (SEM) analysis, and degradation testing were carried out to evaluate both the physical and biological attributes of the scaffold. RESULTS: IBM SPSS Statistics for Windows, V. 1.2 (IBM Corp., Armonk, NY, USA) was used for statistical analysis. A one-way ANOVA test was done to determine the significance of tensile strength, and a paired t-test was done to check the significance of the degradation test. The in vitro research unveiled notable distinctions in the physical and biological attributes between the scaffold infused with alginate and carrageenan and the PerioCol® (p<0.05). CONCLUSION: The scaffold incorporating alginate and carrageenan demonstrated superior outcomes concerning parameters such as tensile stress and strain, degradation rate, percentage bone volume, and object surface density when contrasted with the conventional PerioCol®. Therefore, the scaffold infused with alginate and carrageenan emerges as a promising candidate for bone regeneration.

14.
Food Chem ; 457: 140126, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38936119

RESUMEN

To assess the effectiveness of carrageenan oligosaccharides (COs) in enhancing superchilling storage of crayfish, the physicochemical features of muscle and protein abundance in the refrigerated sample (RS), superchilled sample (SS) and COs soaked superchilled sample (CS) were evaluated. Microstructural and SDS-PAGE analyses suggested that CS exhibited fewer pores, with a microstructure and protein subunits distribution more similar to RS. Tandem Mass Tags quantitative proteomic analysis revealed 66 up-regulated differentially abundant proteins (DAPs) in the CS vs. SS batch, including myosin light chain 2, neural cadherin, integrin beta, lectin-like protein, toll-1, reticulon-1, and moesin/ezrin/radixin homolog 1, which facilitate cells adhesion and maintain membrane/cytoskeleton integrity. Eukaryotic Clusters of Orthologous Groups results confirmed that COs treatment increased the stability of crayfish myofibrillar proteins by up-regulating DAPs, which were concentrated in functional categories such as "posttranslation modification, protein turnover, chaperones", "signal transduction mechanisms", "energy production and conversion", and "cytoskeleton".

15.
Inflammation ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902540

RESUMEN

Deciphering the complex and redundant process of acute inflammation remains challenging. The failure of numerous clinical trials assessing anti-inflammation agents which had promising preclinical effects inevitably questions the validity of current animal models of inflammation. This study aimed to better understand the process of immune inflammatory response and to select more suitable models to evaluate the effect of potential anti-inflammatory drugs. Zymosan and λ-carrageenan are the most used representatives of particulate and soluble irritants that trigger acute inflammation in the air pouch inflammation model. When zymosan was used, the number of exudate cells first increased at 4 h-8 h, followed by a drop at 12 h-24 h. While, the changes in number of leukocytes in peripheral blood and proportion of neutrophils in bone marrow have the opposite trend. Meanwhile, neutrophils released neutrophil extracellular traps (NETs) to clean zymosan particles. In contrast, the cell migration response to carrageenan increased during 4 h to 24 h, no obvious NETs were observed, and the number of leukocytes in peripheral blood increased and the proportion of neutrophils in bone marrow decreased slightly. This study indicated that although both zymosan and carrageenan are sterile irritants, the characteristics of the inflammatory response induced by each other were different. In the acute phase of inflammation, zymosan-stimulated neutrophils were mobilized, recruited, and engulfed, and then died by NETs. Carrageenan stimulated the production of cytokines/chemokines by neutrophils or macrophages, but did not lead to an obvious death by releasing NETs.

16.
Food Chem X ; 22: 101497, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38840725

RESUMEN

The demand for crayfish surimi products has grown recently due to its high protein content. This study examined the effects of varying κ-carrageenan (CAR) and crayfish surimi (CSM) concentrations on the gelling properties of CAR-CSM composite gel and its intrinsic formation process. Our findings demonstrated that with the increasing concentration of carrageenan, the quality of CAR-CSM exhibited rising trend followed by subsequently fall. Based on the textural qualities, the highest quality CAR-CSM was achieved at 0.3% carrageenan addition. With the exception of chewiness, and the cooking loss of the gel system was 1.62%, whiteness was 82.35%, and the percentage of ß-sheets increased to 57.18%. Further increase in CAR (0.4-0.5%) addition resulted in internal build-up of LCAR-CSM, conversion of intermolecular forces into disulfide bonds and gel breakage. This study exudes timely recommendations for extending the CAR application for the continuous development of crayfish surimi and its derivatives and its overall economic worth.

17.
Meat Sci ; 215: 109554, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38838569

RESUMEN

This study investigated the effect of ultrasound (US) combined with pre- and post-addition of κ-carrageenan (KC) on the gelling properties, structural characteristics and rheological behavior of myofibrillar proteins (MP) under low-salt conditions. The results showed that US combined with either pre- or post-addition of KC rendered higher gel strength and water holding capacity (WHC) of MP gels than those treated with US alone and added with KC alone (P < 0.05). US combined with pre-addition of KC facilitated the binding between MP and KC, which enhanced the gel strength and WHC of the mixed MP gels and significantly improved the rheological behavior of MP. This was also confirmed by the highest surface hydrophobicity, disulfide bonds and ß-sheet content of the MP gels with US combined with pre-addition of KC. Moreover, microstructural results reflected a denser structure for the pre-addition of KC in combination with US. However, US combined with post-addition of KC resulted in limited MP unfolding and relatively weak hydrophobic interactions in the composite gels, which were less effective in improving the gel properties of the MP gels. This study provides potential strategies for enhancing the gelling properties of low-salt meat products via application of US and KC.


Asunto(s)
Carragenina , Manipulación de Alimentos , Geles , Interacciones Hidrofóbicas e Hidrofílicas , Productos de la Carne , Reología , Carragenina/química , Animales , Geles/química , Productos de la Carne/análisis , Manipulación de Alimentos/métodos , Proteínas Musculares/química , Porcinos , Miofibrillas/química
18.
Int J Biol Macromol ; 273(Pt 1): 133009, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852727

RESUMEN

The rheological and mechanical properties of mixed κ/ι-carrageenan - LM pectin gels were determined, and the potential of these gels for the formation of beads using the extrusion method and for the encapsulation of Lacticaseibacillus rhamnosus ATCC 53103 (LGG) was evaluated. Self-standing gels were obtained with all formulations evaluated. Carrageenan-rich gels, with carrageenan fraction (XC) ≥ 0.75, exhibited the highest storage modulus, but they were also brittle, while pectin-rich gels (XC ≤ 0.25) presented the highest hardness and cohesiveness. Pectin-rich formulations formed beads with the smallest initial diameter (2.40-2.45 mm), and the addition of carrageenan produced significantly more spherical beads compared to pure-pectin ones. As pectin-rich beads were the formulations that resisted simulated gastrointestinal conditions, these were selected for the encapsulation of LGG. These beads showed high encapsulation yields (87-96 %), and the percentage reduction of CFU/g during storage and simulated gastrointestinal conditions was not significantly different among formulations, the latter being significantly lower for encapsulated cells (8.64-15.03 %) compared to free cells (71.20 %). These results indicate that carrageenan-pectin gel beads with XC ≤ 0.25 were successful in encapsulating probiotic bacteria, and this capacity was related to the rheological and mechanical properties of the gels.


Asunto(s)
Carragenina , Geles , Lacticaseibacillus rhamnosus , Pectinas , Probióticos , Reología , Carragenina/química , Pectinas/química , Probióticos/química , Geles/química , Lacticaseibacillus rhamnosus/química , Fenómenos Mecánicos
19.
Int J Biol Macromol ; 273(Pt 1): 132994, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38862050

RESUMEN

As flexible electronics devices for energy storage, mechanical energy collection and self-powered sensing, stretchable flexible supercapacitor and triboelectric nanogenerator (TENG) have attracted extensive attention. However, it is difficult to satisfy the requirements of high safety and resistance to extreme conditions. Dual roles of mechanical and electrical enhancement of inorganic salt are put forward, and a carrageenan (CG) enhanced poly (N-hydroxyethyl acrylamide)/CG/lithium chloride/glycerol (PCLG) conductive gel is prepared by designing hydrogen bonding self-crosslinking and chain entanglement. A high concentration and rapid deposition strategy is proposed to prepare a PCLG gel-based stretchable flexible all-in-one supercapacitor for energy storage, and a single electrode PCLG gel-based TENG is designed for mechanical energy collection, self-powered strain and tactile sensing. The supercapacitor has high capacitance, excellent cycling stability. The TENG possesses efficient energy harvesting with high and stable output voltage and power density, and sensitive and stable self-powered strain and tactile sensing without external power supply. Even under extreme conditions such as low temperatures, self-healing after damage, prolonged placement, deformation, post-deformation, multiple continuous work, pinprick and burning, the supercapacitor and TENG still have excellent properties. Therefore, we provide novel ideas to design flexible supercapacitor and TENG used under extreme conditions for future wearable electronics.


Asunto(s)
Carragenina , Capacidad Eléctrica , Suministros de Energía Eléctrica , Geles , Carragenina/química , Geles/química , Dispositivos Electrónicos Vestibles , Nanotecnología
20.
Foods ; 13(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928863

RESUMEN

λ-carrageenan oligosaccharides can be widely applied in the food, pharmaceutical, medicine and cosmetic industries due to their abundant bioactivities, and they are important products for the high-value utilization of λ-carrageenan. However, oligosaccharides with different degrees of polymerization have different properties, and the final products of λ-carrageenase reported so far are mainly λ-neocarrabiose, λ-neocarratetraose and λ-neocarrahexaose without longer-chain oligosaccharides. Further research is consequently required. Herein, a mutant λ-carrageenase was constructed by deleting the pyrroloquinoline quinone-like domain of OUC-CglA derived from Maribacter vaceletii. Interestingly, it was discovered that the majority of final products of the mutant OUC-CglA-DPQQ were long-chain oligosaccharides with a polymerization degree of 10-20, which underwent significant changes compared to that of OUC-CglA. Additionally, without the pyrroloquinoline quinone-like domain, fewer inclusion bodies were produced throughout the expression process, and the yield of the λ-carrageenase increased about five-fold. However, compared to its parental enzyme, significant changes were made to its enzymatic properties. Its optimal temperature and pH were 15 °C and pH 7.0, and its specific activity was 51.59 U/mg. The stability of the enzyme decreased. Thus, it was found that the deleting domain was related to the formation of inclusion bodies, the stability of the enzyme, the activity of the enzyme and the composition of the products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA