Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.956
Filtrar
1.
Methods Mol Biol ; 2857: 137-146, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39348062

RESUMEN

Extracellular vesicles (EVs) are lipid-bound particles produced by a wide variety of cells from different biological species. EVs can carry molecules, such as nucleic acids and metabolites, and are involved in cell functioning, communication, and signaling. Recent literature reported that pathogenic or commensal yeast strains can produce EVs targeting the host's immune system and exerting immunomodulatory actions. In humans, yeast EVs can be endocytosed by dendritic cells (DCs), characterized by phagocyting and migrating capabilities with the role of capturing antigens to present to T lymphocytes, triggering the immune response. Physiological or disease-associated immunosenescence impairs both DC functionality and gut microbiota; thus investigating the interaction between commensal microorganisms and the host's immune system would help elucidate the impact of aging on the immune system-microbiota interplay. We hereby present a protocol for the incubation of in vitro-generated human monocyte-derived DCs with EVs purified from different yeast strains isolated from fermented milk. The protocol includes flow cytometry analysis on DC activation markers and endocytosis assay.


Asunto(s)
Células Dendríticas , Vesículas Extracelulares , Monocitos , Humanos , Células Dendríticas/metabolismo , Células Dendríticas/inmunología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Monocitos/metabolismo , Monocitos/inmunología , Monocitos/microbiología , Citometría de Flujo/métodos , Endocitosis , Levaduras/metabolismo , Saccharomyces cerevisiae/metabolismo , Células Cultivadas
2.
Methods Mol Biol ; 2861: 111-126, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39395101

RESUMEN

The calcium-sensing receptor (CaSR), which regulates parathyroid hormone secretion by sensing serum calcium concentrations, has developed unique trafficking mechanisms to respond to constant exposure to its orthosteric ligand calcium. CaSR rapidly responds to fluctuations in serum calcium by driving forward trafficking of the receptor to cell surfaces in a mechanism known as agonist-driven insertional signaling (ADIS). This increase in CaSR at cell surfaces is counterbalanced by both constitutive and agonist-driven internalization of the receptor. Deciphering these mechanisms is important to understand how mutations in the CaSR and components of its signaling and trafficking pathways cause human disorders of calcium homeostasis.This chapter describes a protocol to measure CaSR ADIS and endocytosis in parallel using total internal reflection fluorescence (TIRF) microscopy. This utilizes a mammalian expression construct comprising the full-length human CaSR with an N-terminal bungarotoxin minimal-binding site that can be labeled with commercially available fluorescent ligands to measure endocytosis, and a super-ecliptic pHluorin (SEP) to measure total cell surface expression and exocytic events. This protocol could easily be adapted to simultaneously assess forward trafficking and endocytosis of other membrane proteins by TIRF microscopy.


Asunto(s)
Endocitosis , Microscopía Fluorescente , Transporte de Proteínas , Receptores Sensibles al Calcio , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/agonistas , Receptores Sensibles al Calcio/genética , Humanos , Microscopía Fluorescente/métodos , Transducción de Señal , Células HEK293 , Calcio/metabolismo , Membrana Celular/metabolismo , Proteínas Fluorescentes Verdes
3.
Small ; : e2405524, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39359045

RESUMEN

Starch-based nanoparticles are highly utilized in the realm of drug delivery taking advantage of their biocompatibility and biodegradability. Studies have utilized Quaternized starch (Q-starch) for small interfering RNA (siRNA) delivery, in which quaternary amines enable interaction with negatively charged siRNA, resulting in self-assembly complexation. Although reports present numerous applications, the demonstrated efficacy is nonetheless limited due to undiscovered cellular mechanistic delivery. In this study, a deep dive into Q-starch/siRNA complexes' cellular mechanism and kinetics at the cellular level is revealed using single-particle tracking and cell population level using imaging flow cytometry. Uptake studies depict the efficient cellular internalization via endocytosis while a significant fraction of complexes' intracellular fate is lysosome. Utilizing single-particle tracking, it is found that an average of 15% of cellular detected complexes escape the endosome which holds the potential for the integration in the cytoplasmatic gene silencing mechanism. Additional experimental manipulations (overcoming endosomal escape) demonstrate that the complex's disassembly is the rate-limiting step, correlating Q-starch's structure-function properties as siRNA carrier. Structure-function properties accentuating the high affinity of the interaction between Q-starch's quaternary groups and siRNA's phosphate groups that results in low release efficiency. However, low-frequency ultrasound (20 kHz) application may have induced siRNA release resulting in faster gene silencing kinetics.

4.
Adv Sci (Weinh) ; : e2402317, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360573

RESUMEN

Disruptions of the eukaryotic plasma membrane due to chemical and mechanical challenges are frequent and detrimental and thus need to be repaired to maintain proper cell function and avoid cell death. However, the cellular mechanisms involved in wound resealing and restoration of homeostasis are diverse and contended. Here, it is shown that clathrin-mediated endocytosis is induced at later stages of plasma membrane wound repair following the actual resealing of the wound. This compensatory endocytosis occurs near the wound, predominantly at sites of previous early endosome exocytosis which is required in the initial stage of membrane resealing, suggesting a spatio-temporal co-ordination of exo- and endocytosis during wound repair. Using cytoskeletal alterations and modulations of membrane tension and membrane area, membrane tension is identified as a major regulator of the wounding-associated exo- and endocytic events that mediate efficient wound repair. Thus, membrane tension changes are a universal trigger for plasma membrane wound repair modulating the exocytosis of early endosomes required for resealing and subsequent clathrin-mediated endocytosis acting at later stages to restore cell homeostasis and function.

5.
Colloids Surf B Biointerfaces ; 245: 114272, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39366110

RESUMEN

The mechanism of cellular uptake of nanoparticles (NPs) is critical for both bio-application and risk evaluation of NPs, but is still not fully understood due to many influencing factors, among which particle size is a major one. Recent studies show that there is an unusual interplay among differently-sized NPs when they simultaneously interact with cells, e.g., 100 nm silica NPs (SNP100) can promote the cellular uptake of 50 nm silica NPs (SNP50). However, the underlying mechanism is still unclear. Herein, we manage to capture individual endocytosis events in HeLa and A549 cells after co-exposure to SNP50 and SNP100 for 2 hours, using transmission electron microscopy (TEM). TEM images clearly show that there is a size threshold for SNPs to trigger clathrin-mediated endocytosis: One single SNP100 can efficiently trigger it, while it needs about 6 SNP50 to do so. Remarkably, TEM also captures how SNP100 triggers the endocytosis and carries nearby SNP50 into cells, and statistical data show that the average number of SNP50 carried by one SNP100 could be up to about 6. In addition, the mechanism was further verified by using mixed 60 nm SNPs (SNP60) and SNP100. This mechanism has an immediate implication for the design of drug-deliver nanocarriers, and as a proof-of-concept, more catalase functionalized SNP50 (CAT@SNP50) was delivered into HeLa cells by adding some SNP100, resulting in a more severe cell damage compared to CAT@SNP50 alone under same conditions. The findings have general impact on the nanotoxicity study of NP products that commonly have certain distributions in size, and provide new insights on designing efficient drug delivery systems by deliberately control the combinations of NPs of different sizes.

6.
J Physiol ; 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39367867

RESUMEN

Communication within the nervous system relies on the calcium-triggered release of neurotransmitter molecules by exocytosis of synaptic vesicles (SVs) at defined active zone release sites. While decades of research have provided detailed insight into the molecular machinery for SV fusion, much less is known about the mechanisms that form functional SVs during the development of synapses and that control local SV reformation following exocytosis in the mature nervous system. Here we review the current state of knowledge in the field, focusing on the pathways implicated in the formation and axonal transport of SV precursor organelles and the mechanisms involved in the local reformation of SVs within nerve terminals in mature neurons. We discuss open questions and outline perspectives for future research.

7.
J Hazard Mater ; 480: 136052, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368354

RESUMEN

Nanoplastics can transfer from the environment to plants and potentially harm organisms. However, the mechanisms on how crop root systems absorb and transport nanoplastics are still unclear. Here, original and fluorescent labeled polystyrene and polyvinyl chloride nanoparticles (PS-NPs, PVC-NPs; 30 nm; 10 mg L-1) were employed to study the distribution and internalization pathways in wheat seedling roots. In the study, nanoplastics accumulated more in the root tip and surface, with PVC-NPs more prevalent than PS-NPs. After being treated with inhibitors (Na3VO4, chlorpromazine and amiloride), the nanoplastics mean fluorescence intensities were reduced by 4.0-51.1 %. During the uptake, both passive and energy-consuming pathways occurred. For the energy-consuming uptake pathway, macropinocytosis contributed more to cytoplasm than clathrin-mediated endocytosis. H+ influx was observed during nanoplastic transport into the cytoplasm, and the reduction in plasma membrane ATPase activity led to a decrease in nanoplastic internalization. These results elucidate the pathways of nanoplastics absorption and transport in wheat roots, provide crucial evidence for assessing nanoplastics' ecological risks and support the development of technologies to block nanoplastics absorption by crop roots, ensuring agricultural and ecosystem safety.

8.
J Membr Biol ; 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39369356

RESUMEN

Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system that regulates multiple different forms of synaptic plasticity, including learning and memory. Glutamate transduces its signal by activating ionotropic glutamate receptors and metabotropic glutamate receptors (mGluRs). Group I mGluRs belong to the G protein-coupled receptor (GPCR) family. Regulation of cell surface expression and trafficking of the glutamate receptors represents an important mechanism that assures proper transmission of information at the synapses. There is growing evidence implicating dysregulated glutamate receptor trafficking in the pathophysiology of several neuropsychiatric disorders. The postsynaptic density (PSD) region consists of many specialized proteins which are assembled beneath the postsynaptic membrane of dendritic spines. Many of these proteins interact with group I mGluRs and have essential roles in group I mGluR-mediated synaptic function and plasticity. This review provides up-to-date information on the molecular determinants regulating cell surface expression and trafficking of group I mGluRs and discusses the role of few of these PSD proteins in these processes. As substantial evidences link mGluR dysfunction and maladaptive functioning of many PSD proteins to the pathophysiology of various neuropsychiatric disorders, understanding the role of the PSD proteins in group I mGluR trafficking may provide opportunities for the development of novel therapeutics in multiple neuropsychiatric disorders.

9.
J Leukoc Biol ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365278

RESUMEN

Galectins constitute a family of soluble lectins with unique capacity to induce macroscale rearrangements upon interacting with cell membrane glycoconjugates. Galectin-8 (Gal-8) is acknowledged for its role in facilitating antigen uptake and processing upon engaging with cell surface glycoconjugates on antigen-presenting cells (APCs). Gal-8 consists of two covalently fused N- and C-terminal carbohydrate recognition domains (N- and C-CRD), each exhibiting distinct glycan specificity. In this study, we utilized single N- and C-CRD recombinant proteins to dissect the nature of Gal-8-glycan interactions during antigen internalization enhancement. Single C-CRD was able to replicate the effect of full-length Gal-8 (FLGal-8) on antigen internalization in BMDCs. Antigen uptake enhancement was diminished in the presence of lactose or when N-glycosylation-deficient macrophages served as APCs, underscoring the significance of glycan recognition. Measurement of the elastic modulus using Atomic Force Microscopy unveiled that FLGal-8- and C-CRD-stimulated macrophages exhibited heightened membrane stiffness compared to untreated cells, providing a plausible mechanism for their involvement in endocytosis. C-CRD proved to be as efficient as FLGal-8 in promoting antigen degradation, suggesting its implication in antigen-processing induction. Lastly, C-CRD was able to replicate FLGal-8-induced antigen presentation in the MHC-II context both in vitro and in vivo. Our findings support the notion that Gal-8 binds through its C-CRD to cell surface N-glycans, thereby altering membrane mechanical forces conducive to soluble antigen endocytosis, processing, and presentation to cognate CD4 T-cells. These findings contribute to a deeper comprehension of Gal-8 and its mechanisms of action, paving the way for the development of more efficacious immunotherapies.

10.
Food Chem ; 463(Pt 4): 141420, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39369603

RESUMEN

This study aimed to investigate how hyaluronic acid interfacial decoration affects the stability, cellular absorption, and anti-inflammatory effects of curcumin-loaded nanostructured lipid carriers. Nanocarriers were synthesized with an ovalbumin single layer and ovalbumin/hyaluronic acid double, mixed, or conjugated layers. All nanocarriers were spherical (200-300 nm diameter), and their encapsulation efficiency exceeded 95 %. Among the layers, the conjugated one exhibited the highest elastic surface dilatational modulus of approximately 40 mN/m, and the longest curcumin half-life of 186.07 days at 4 °C. Spearman's correlation analysis showed a negative correlation (r = -0.6698) between the recrystallization index and curcumin stability. The layer's mechanical strength improved curcumin stability by preventing crystal transition. Hyaluronic acid decoration enhanced the curcumin uptake of Caco-2 cells by 1.96-2.48 folds. Among the layers, the conjugate one was the most effective because of its strong binding constant with the receptor. Hyaluronic acid decoration improved the anti-inflammatory effects of curcumin.

11.
Curr Top Membr ; 94: 49-83, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39370213

RESUMEN

Trypanosomes are protozoan parasites responsible for human diseases such as Chagas disease, African trypanosomiasis, and leishmaniasis. These organisms' growth in various environments and exhibit multiple morphological stages, while adapting their surface components. They acquire and release materials extensively to get nutrients and manage interactions with the extracellular environment. They acquire and utilize proteins, lipids, and carbohydrates for growth via using membrane transport and endocytosis. Endocytosis takes place through distinct membrane areas known as the flagellar pocket and cytostome, depending on the parasite species and its developmental stage. Some forms establish a complex endocytic system to either store or break down the absorbed materials. In contrast, membrane transport facilitates the uptake of small molecules like amino acids, carbohydrates, and iron via particular receptors on the plasma membrane. Concurrently, these parasites secrete various molecules such as proteins, enzymes, nucleic acids, and glycoconjugates either in soluble form or enclosed in extracellular vesicles, which significantly contribute to their parasitic behavior. These activities require exocytosis through a secretory pathway in certain membrane domains such as the flagellum, flagellar pocket, and plasma membrane, which are controlled at various developmental stages. The main features of the endocytic and exocytic mechanisms, as well as the organelles involved, are discussed in this chapter along with their connection to the formation of exosomes and extracellular vesicles in the Tritryp species.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Endocitosis , Animales , Humanos , Trypanosomatina/metabolismo
12.
Cell Signal ; : 111456, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39384005

RESUMEN

Leptin, a hormone mainly secreted by adipocytes, has attracted significant attention since its discovery in 1994. Initially known for its role in appetite suppression and energy regulation, leptin is now recognized for its influence on various physiological processes, including immune response, bone formation, and reproduction. It exerts its effects by binding to receptors and initiating an intracellular signaling cascade. Heparan sulfate (HS) is known to regulate the intracellular signaling of various ligands. HS is present as the glycan portion of HSPGs on cell surfaces and in intercellular spaces, with diverse structures due to extensive sulfation and epimerization. Although HS chains on HSPGs are involved in many physiological processes, the detailed effects of HS chains on leptin signaling are not well understood. This study examined the role of HS chains on HSPGs in leptin signaling using Neuro2A cells expressing the full-length leptin receptor (LepR). We showed that cell surface HS was essential for efficient leptin signaling. Enzymatic degradation of HS significantly reduced leptin-induced phosphorylation of downstream molecules, such as signal transducer and activator of transcription 3 and p44/p42 Mitogen-activated protein kinase. In addition, HS regulated LepR expression and internalization, as treatment with HS-degrading enzymes decreased cell surface LepR. HS was also found to exhibit a weak interaction with LepR. Enzymatic removal of HS enhanced the interaction between LepR and low-density lipoprotein receptor-related protein 1, suggesting that HS negatively regulates this interaction. In conclusion, HS plays a significant role in modulating LepR availability on the cell surface, thereby influencing leptin signaling. These findings provide new insights into the complex regulation of leptin signaling and highlight potential therapeutic targets for metabolic disorders and obesity.

13.
Genes Cells ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377417

RESUMEN

A single epithelial cell embedded in extracellular matrix (ECM) can proliferate to form an apical lumen-harboring cyst, whose formation is a fundamental step in epithelial organ development. At an early two-cell stage after cell division, the cell doublet typically displays "inverted" polarity, with apical and basolateral proteins being located to the ECM-facing and cell-cell-contacting plasma membranes, respectively. Correct cystogenesis requires polarity reorientation, a process containing apical protein endocytosis from the ECM-abutting periphery and subsequent apical vesicle delivery to a cell-cell contact site for lumen formation. Here, we show that downstream of the ECM-signal-transducer ß1-integrin, Rac1, and its effector IQGAP1 promote apical protein endocytosis, contributing to polarity reorientation of mammalian epithelial Madin-Darby canine kidney (MDCK) cells at a later two-cell stage in three-dimensional culture. Rac1-GTP facilitates IQGAP1 interaction with the Rac-specific activator Tiam1, which also contributes to the endocytosis and enhances the effect of IQGAP1. These findings suggest that Tiam1 and IQGAP1 form a positive feedback loop to activate Rac1. With Rac1-GTP, IQGAP1 also binds to AP2α, an adaptor protein subunit for clathrin-mediated endocytosis; depletion of the AP2 complex impairs apical protein endocytosis in MDCK doublets. Thus, Rac1 likely participates in polarity reorientation at the two-cell stage via its interaction with IQGAP1.

14.
Cell Commun Signal ; 22(1): 468, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354505

RESUMEN

Dysregulation of Abelson interactor 1 (ABI1) is associated with various states of disease including developmental defects, pathogen infections, and cancer. ABI1 is an adaptor protein predominantly known to regulate actin cytoskeleton organization processes such as those involved in cell adhesion, migration, and shape determination. Linked to cytoskeleton via vasodilator-stimulated phosphoprotein (VASP), Wiskott-Aldrich syndrome protein family (WAVE), and neural-Wiskott-Aldrich syndrome protein (N-WASP)-associated protein complexes, ABI1 coordinates regulation of various cytoplasmic protein signaling complexes dysregulated in disease states. The roles of ABI1 beyond actin cytoskeleton regulation are much less understood. This comprehensive, protein-centric review describes molecular roles of ABI1 as an adaptor molecule in the context of its dysregulation and associated disease outcomes to better understand disease state-specific protein signaling and affected interconnected biological processes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas del Citoesqueleto , Homeostasis , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Enfermedad , Transducción de Señal
15.
Eur J Pharmacol ; : 177055, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39395584

RESUMEN

IL-6 is an important cytokine involved in metabolic, immunological, and cell-fate responses. It is released upon stimulation by skeletal muscle cells through partially characterized mechanisms. In some cell types, IL-6 has been reported to activate a positive feedback loop involving endocytic vesicles, but evidence is mostly based on transcription and signal transduction mechanisms and is very scarce in muscle cells. Our aim was to directly demonstrate the presence of positive feedback in the ATP-induced release of IL-6 into the supernatant of human skeletal muscle cultures. The total release (production) of IL-6 was reduced for higher volumes of supernatant, when the secreted IL-6 molecules are more diluted, and enhanced when the supernatant volume was lower. In addition, secretion was impaired both by tocilizumab, a blocker of human IL-6 receptors, and by the soluble form of the receptor. The secretion in response to ATP was also inhibited by treatment with the endocytosis inhibitor dynasore, and by disruption of the acidic gradient of the endocytic compartment using different methods (chloroquine, NH4Cl or monensin). IL-6 secretion was also impaired by NED-19, a specific inhibitor of the two pore channels receptor mediating Ca2+ release from the endolysosomal compartment. IL-6 and ATP increased IL-6 mRNA levels, an effect blocked by tocilizumab. Altogether, our results demonstrate that ATP-secreted IL-6 activates a positive loop based on IL-6 receptors, endocytosis, two pore channels and IL-6 transcription. Given the importance of muscle IL-6 as a systemic regulator and as an inflammatory mediator, our study can help to understand muscle pathophysiology.

16.
Autophagy ; 2024 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-39396122

RESUMEN

Extensive interconnection has been established between clathrin-mediated endocytosis (CME) and the macroautophagy/autophagy pathway in yeast and mammals. However, the evidence that connects these two pathways in plants has been limited. Starting from the phenotypic similarities in carbon starvation and immune responses shared between the double mutant of CLC2 (clathrin light chain 2) and CLC3, clc2-1 clc3-1, and the atg2-1 mutant in Arabidopsis, we found that the autophagy pathway is compromised in the clc2-1 clc3-1 mutant. Subsequently, we demonstrated that CLC2 interacts specifically with ATG8h and ATG8i, two clade II ATG8 isoforms. The CLC2-ATG8h/ATG8i interaction depends on an Atg8-family interacting motif (AIM) present in CLC2 and an AIMs docking site (ADS) present in ATG8h, respectively. In addition, CLC2-GFP is subjected to autophagic degradation and the degradation of GFP-ATG8h is significantly reduced in the clc2-1 clc3-1 mutant. Last, simultaneously knocking out ATG8h and ATG8i enhances disease resistance, corroborating the functional relevance of the CLC2-ATG8h/8i interactions. These findings reveal that CME and the autophagy pathway are intersected via CLC2-ATG8h/8i interactions in Arabidopsis.

17.
Dev Biol ; 517: 1-12, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241854

RESUMEN

Clathrin is one of the leading players in the endocytic process during oocyte maturation. Immunofluorescence and transmission electron analysis on fully-grown germinal vesicle (GV) mouse oocytes shows Clathrin localization on the cortical region with three peculiar patterns: complete, incomplete, and half-moon. The first configuration is characterized by Clathrin lattices along the cortex; the second is represented by Clathrin lattices interrupted by invaginations forming coated vesicles as an indication of active endocytosis. The half-moon profile, the less frequent but the most interesting one, refers to Clathrin lattices distributed to one-half of the cell. The in vivo analysis of organelles' positioning and cytoplasmic rearrangements, performed to understand the possible relation between endocytosis and oocyte maturation, suggests that the half-moon pattern indicates those fully-grown oocytes that may have likely undergone Germinal Vesicle Breakdown, MI, and MII. Our results show that, before oocytes undergo maturation, Clathrin localizes on the side of the cell, opposite to future spindle migration, thus marking spindle orientation in mouse oocytes.

18.
Traffic ; 25(9): e12951, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39238078

RESUMEN

Mitochondria, the dynamic organelles responsible for energy production and cellular metabolism, have the metabolic function of extracting energy from nutrients and synthesizing crucial metabolites. Nevertheless, recent research unveils that intercellular mitochondrial transfer by tunneling nanotubes, tumor microtubes, gap junction intercellular communication, extracellular vesicles, endocytosis and cell fusion may regulate mitochondrial function within recipient cells, potentially contributing to disease treatment, such as nonalcoholic steatohepatitis, glioblastoma, ischemic stroke, bladder cancer and neurodegenerative diseases. This review introduces the principal approaches to intercellular mitochondrial transfer and examines its role in various diseases. Furthermore, we provide a comprehensive overview of the inhibitors and activators of intercellular mitochondrial transfer, offering a unique perspective to illustrate the relationship between intercellular mitochondrial transfer and diseases.


Asunto(s)
Mitocondrias , Humanos , Mitocondrias/metabolismo , Animales , Comunicación Celular , Vesículas Extracelulares/metabolismo , Transporte Biológico , Endocitosis/fisiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/terapia
19.
Angew Chem Int Ed Engl ; : e202413244, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227862

RESUMEN

Membrane fission involves a crucial step of lipid remodeling, in which the dynamin collar constricts and severs the tubulated lipid membrane at the neck of budding vesicles. Nevertheless, the difficulty in accurately determining the rotational dynamics of live endocytotic vesicles poses a limit on the elucidation of dynamin-induced membrane remodeling for endocytotic vesicle scission. Herein, we designed a DNA-modified gold homodimer (AuHD)-based anisotropic plasmonic probe with uniform surface chemistry, minimizing orientational fluctuation within vesicle encapsulation. Using AuHDs as cargos to image the dynamics of cargo-containing vesicles during endocytosis, we showed that, prior to detachment from plasma membrane, the cargo-containing vesicles underwent multiple intermittent twists of ~4° angular orientation relative to plasma membrane with a ~0.2 s dwell time. These findings suggest that the membrane torques resulting from dynamin actions in vivo constitute the pathway to membrane fission, potentially shedding light on how dynamin-mediated lipid remodeling orchestrates membrane fission.

20.
J Exp Bot ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39269332

RESUMEN

Clathrin-mediated endocytosis (CME) is one of the main pathways for plant cells to internalize the membrane proteins in response to changing environmental conditions. The Epsin-like Clathrin adaptor proteins (ECAs) play important roles in the assembly of clathrin coat; however, their involvement in plant response to heat stress remains unclear. Here we report that SlECA4 responded to heat stress, and the silencing and knockout of SlECA4 increased tomato sensitivity to heat stress, while the overexpression of SlECA4 enhanced tomato tolerance to heat stress. Meanwhile, the treatment with a CME inhibitor, ES9-17, reduced tomato heat tolerance. SlECA4 localized to the plasma membrane (PM), the trans-Golgi network/early endosomes (TGN/EE), and the prevacuolar compartment (PVC)/late endosomes. In SlECA4-KO line, both CME and recycling from the TGN/EE to the PM were inhibited. These data suggest that SlECA4 involved in CME. After heat treatment, more punctate structures of SlECA4:GFP accumualted in tobacco leaf epidermal cells by transient expression. Furthermore, compared to WT, the rate of CME was inhibited under heat stress in SlECA4-KO line. Taken together, the Epsin-like Clathrin adaptor protein SlECA4 plays a positive role in tomato tolerance to heat stress via the CME pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA