Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.254
Filtrar
1.
J Neurooncol ; 170(1): 11-29, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126591

RESUMEN

PURPOSE: Stereotactic brain biopsies are highly efficient for diagnosing intracerebral pathologies, particularly when surgical resection is infeasible. Fluorescence-based agents such as 5-aminolevulinic acid (5-ALA) and fluorescein sodium (NaFl) can enhance diagnostic accuracy and safety, improving the visualization of lesional tissues. This meta-analysis aimed to evaluate their effect on diagnostic yield and complication rates of brain biopsies. METHODS: This study adhered to Cochrane and PRISMA guidelines. We assessed studies for diagnostic yield and complication rates. Data was analyzed using a random-effects model in RStudio. Diagnostic accuracy measures such as sensitivity and predictive values were calculated based on fluorescence visibility in biopsy samples. RESULTS: Thirty-two non-randomized studies were included, comprising 947 patients, with a mean age ranging from 37 to 77 years, and a mean sample number ranging from 1 to 15 specimens. Diagnostic yields were high: 93% for NaFl and 96% for 5-ALA. Major complications occurred in 3% of procedures with both agents, while minor complications were reported in 7% and 5% with NaFl and 5-ALA respectively. The Negative-predictive-value (NPV) of 5-ALA and NaFl were 8-11% and 60-80% respectively. NaFl demonstrates higher sensitivity and specificity at 84% and 100% compared to 5-ALA's 66%. and 85% respectively. CONCLUSION: 5-ALA and NaFl provide high diagnostic yields with acceptable safety profiles in stereotactic biopsies. NaFl showed higher sensitivity and specificity. NaFl outperforms 5ALA in terms of NPV making it more efficient for small lesions near eloquent regions or major blood vessels. The significance of these findings can be further ascertained through randomized trials.


Asunto(s)
Ácido Aminolevulínico , Neoplasias Encefálicas , Fluoresceína , Humanos , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/cirugía , Colorantes Fluorescentes , Biopsia Guiada por Imagen/métodos , Encéfalo/patología
2.
Oxf Med Case Reports ; 2024(8): omae084, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39119014

RESUMEN

Lower digestive tract bleeding occurs distal to the angle of Treitz. While many cases remit spontaneously; some pose a diagnostic challenge for surgeons. We present the case of a 68-year-old man with unexplained digestive tract bleeding. Despite various diagnostic efforts, the source remained unknown. Faced with the challenge of persistent bleeding and hemodynamic instability, surgery became necessary. During the procedure, intraoperative angiography with indocyanine green was used to facilitate the identification of the bleeding site, revealing a gastrointestinal stromal tumor in the small bowel. Resection was performed with favorable outcomes. Indocyanine green staining has become popular for locating intestinal bleeding during emergency surgeries, aiding surgeons in making precise decisions.

3.
Environ Sci Pollut Res Int ; 31(38): 50722-50732, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102133

RESUMEN

Copper oxide nanoparticles (CuONPs) have been produced on a large scale because they can be applied across various fields, especially in nano-enabled healthcare and agricultural products. However, the increasing use of CuONPs leads to their release and accumulation into the environment. The CuONPs uptaken by seeds and their implications on germination behavior have been reported, but little is known or understood about their impact on photosynthesis in seed tissues. To fill knowledge gaps, this study evaluated the effects of CuONP concentrations (0-300 mg L-1) on the photosynthetic activity of Inga laurina seeds. The microscopy data showed that CuONPs had an average size distribution of 57.5 ± 0.7 nm. Copper ion release and production of reactive oxygen species (ROS) by CuONPs were also evaluated by dialysis and spectroscopy experiments, respectively. CuONPs were not able to intrinsically generate ROS and released a low content of Cu2⁺ ions (4.5%, w/w). Time evolution of chlorophyll fluorescence imaging and laser-induced fluorescence spectroscopy were used to monitor the seeds subjected to nanoparticles during 168 h. The data demonstrate that CuONPs affected the steady-state maximum chlorophyll fluorescence ( F m ' ), the photochemical efficiency of photosystem II ( F v / F m ), and non-photochemical quenching ( NPQ ) of Inga laurina seeds over time. Besides, the NPQ significantly increased at the seed development stage, near the root protrusion stage, probably due to energy dissipation at this germination step. Additionally, the results indicated that CuONPs can change the oscillatory rhythms of energy dissipation of the seeds, disturbing the circadian clock. In conclusion, the results indicate that CuONPs can affect the photosynthetic behavior of I. laurina seeds. These findings open opportunities for using chlorophyll fluorescence as a non-destructive tool to evaluate nanoparticle impact on photosynthetic activity in seed tissues.


Asunto(s)
Cobre , Fabaceae , Fotosíntesis , Semillas , Fotosíntesis/efectos de los fármacos , Semillas/efectos de los fármacos , Fabaceae/efectos de los fármacos , Germinación/efectos de los fármacos , Nanopartículas , Clorofila/metabolismo
4.
Chem Biodivers ; : e202401011, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110090

RESUMEN

Porphyrins are intermediate metabolites in the biosynthesis of vital molecules, including heme, cobalamin, and chlorophyll. Bacterial porphyrins are known to be proinflammatory and have been associated with biofilm production. This study investigated porphyrin production by strains of Corynebacterium diphtheriae using emission spectroscopy, high-performance liquid chromatography with fluorescence detection, a diode array detector, and mass spectrometry. Emission spectroscopy revealed characteristic porphyrin emission spectra in all strains, with coproporphyrin III predominating. Qualitative analysis via different chromatography methods revealed identified coproporphyrin III, uroporphyrin I, and protoporphyrin IX in all the strains. Quantitative analysis revealed strain-dependent coproporphyrin III production. More studies are needed to investigate the relationship between porphyrin production and the virulence potential of Corynebacterium diphtheriae.

5.
PeerJ ; 12: e17641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099655

RESUMEN

Background: Due to the copious disposal of plastics, marine ecosystems receive a large part of this waste. Microplastics (MPs) are solid particles smaller than 5 millimeters in size. Among the plastic polymers, polystyrene (PS) is one of the most commonly used and discarded. Due to its density being greater than that of water, it accumulates in marine sediments, potentially affecting benthic communities. This study investigated the ingestion of MP and their effect on the meiofauna community of a sandy beach. Meiofauna are an important trophic link between the basal and higher trophic levels of sedimentary food webs and may therefore be substantially involved in trophic transfer of MP and their associated compounds. Methods: We incubated microcosms without addition of MP (controls) and treatments contaminated with PS MP (1-µm) in marine sediments at three nominal concentrations (103, 105, 107particles/mL), for nine days, and sampled for meiofauna with collections every three days. At each sampling time, meiofauna were collected, quantified and identified to higher-taxon level, and ingestion of MP was quantified under an epifluorescence microscope. Results: Except for Tardigrada, all meiofauna taxa (Nematoda, turbellarians, Copepoda, Nauplii, Acari and Gastrotricha) ingested MP. Absorption was strongly dose dependent, being highest at 107 particles/mL, very low at 105 particles/mL and non-demonstrable at 103 particles/mL. Nematodes accumulated MP mainly in the intestine; MP abundance in the intestine increased with increasing incubation time. The total meiofauna density and species richness were significantly lower at the lowest MP concentration, while at the highest concentration these parameters were very similar to the control. In contrast, Shannon-Wiener diversity and evenness were greater in treatments with low MP concentration. However, these results should be interpreted with caution because of the low meiofauna abundances at the lower two MP concentrations. Conclusion: At the highest MP concentration, abundance, taxonomic diversity and community structure of a beach meiofauna community were not significantly affected, suggesting that MP effects on meiofauna are at most subtle. However, lower MP concentrations did cause substantial declines in abundance and diversity, in line with previous studies at the population and community level. While we can only speculate on the underlying mechanism(s) of this counterintuitive response, results suggest that further research is needed to better understand MP effects on marine benthic communities.


Asunto(s)
Biodiversidad , Microplásticos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Cadena Alimentaria , Organismos Acuáticos , Poliestirenos , Invertebrados/efectos de los fármacos , Monitoreo del Ambiente/métodos
6.
Sci Total Environ ; 950: 175137, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39094642

RESUMEN

Cross-border flow of untreated sewage from Mexico into the USA via the Tijuana River is public health issue with negative consequences for coastal communities. Here we evaluate the potential application of fluorescence-based, submersible tryptophan-like (TRP) and humic-like (CDOM) fluorescence sensors for real-time tracking of wastewater pollution in an estuarine environment. Sonde fluorescence measurements were compared with benchtop fluorescence, fecal indicator bacteria (FIB) concentrations, and real-time specific conductivity measurements in the Tijuana River Estuary during dry and wet weather conditions, and with and without cross-border flow. TRP and CDOM fluorescence concentrations were low during times without cross-border flow and two-three orders of magnitude higher during storm events and after cross-border sewage flow events. Major deterioration in water quality, including hypoxic conditions, was observed after consistent, long-term cross-border sewage flow. Real-time TRP and CDOM fluorescence concentrations had a significant linear relationship with fecal indicator bacteria (FIB) concentrations during dry weather periods with cross-border flow (p < 0.001) but were poorly correlated during stormflow and during less polluted periods with no cross-border flow. TRP and CDOM fluorescence acquired on discrete samples using a benchtop fluorometer correlated significantly (p < 0.001) with FIB concentrations under all cross-border flow conditions. Based on relationships between benchtop TRP fluorescence and percent wastewater, the greatest amount of untreated wastewater in the estuary's surface layer during cross-border flow events was estimated at >80 % and occurred during neap tides, when concentrated, sewage-laden freshwater flowed over dense saline seawater due to stratification and lack of mixing in the estuary. These results are important because exposure to untreated sewage poses severe health risks for residents and visitors to adjacent coastal areas. While benchtop fluorescence was more effective for estimating the degree of wastewater pollution, submersible TRP and CDOM sensors provided a real-time alert of sewage contamination, which can be utilized in other sewage impacted estuarine environments.


Asunto(s)
Monitoreo del Ambiente , Estuarios , Ríos , Aguas del Alcantarillado , Aguas del Alcantarillado/análisis , Monitoreo del Ambiente/métodos , México , Ríos/microbiología , Ríos/química , Estados Unidos , Fluorescencia
7.
J Endod ; 50(10): 1484-1494, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038534

RESUMEN

INTRODUCTION: The aim of this study was to evaluate the volume of dentin removal and the volume of remnants of restorative material after the removal of an esthetic restorative coronal set and cervical barrier in endodontically treated mandibular molars with the aid of different magnification methods using 3-dimensional (3D) micro-computed tomographic (micro-CT) morphometric analysis. METHODS: A sample of 30 mandibular first molars (N = 30) was used. All teeth were endodontically treated, and the specimens were initially scanned using micro-CT imaging and reconstructed. The molars were filled by a single-cone technique, and immediately the material at the initial 2-mm cervical level was removed. Cervical barriers were confected using ionomer glass cement with fluorescein 0.1%, filling the 2 mm at the cervical level of the canals and an additional 2 mm as the base. The coronal restoration set was performed using esthetic resin composites. A simulated tooth aging process was performed with 20,000 thermocycling cycles. The sample was distributed into the following 3 groups (n = 10) for the removal of the restoration set and cervical barrier with diamond burs based on the magnification aid: no magnification aid (naked eye), operative microscope aid, and REVEAL device (Design for Vision Inc, Bohemia, NY) aid. After removal, the final 3D micro-CT scanning and reconstruction were conducted with the same parameters as the initial scanning, and superposition of the final and initial scanning was performed. Morphometric analysis was conducted using CTAn software (Bruker microCT, Kontich, Belgium) to assess the volume of remnant restorative material (mm³), the volume of dentin removal (mm³), and the direction and site of dentin removal. Data were analyzed using 1-Way analysis of variance (P < .05). RESULTS: The REVEAL group showed better results regarding the volume of remnant material (3.17 ± 1.65) and the percentage of dentin removal (2.56 ± 1.34). The microscope group showed no statistical difference compared with the REVEAL group regarding dentin removal (3.30 ± 1.48) and was statistically similar to the naked eye group in the volume of remnant material (9.63 ± 4.33). The naked eye group showed the worst results for the volume of remnant material (7.60 ± 2.68) and the percentage of dentin removal (6.60 ± 3.70). CONCLUSIONS: The use of fluorescence associated with magnification was the method that presented the best results, with lower percentages of dentin removal and smaller volumes of remaining restorative material. This is an innovative technology in endodontics that shows potential to overcome the challenge of reaccessing root canals in the context of endodontic retreatment.


Asunto(s)
Cavidad Pulpar , Microtomografía por Rayos X , Microtomografía por Rayos X/métodos , Humanos , Cavidad Pulpar/diagnóstico por imagen , Cavidad Pulpar/anatomía & histología , Fluorescencia , Diente no Vital/diagnóstico por imagen , Diente Molar/diagnóstico por imagen , Imagenología Tridimensional/métodos , Preparación del Conducto Radicular/métodos , Preparación del Conducto Radicular/instrumentación
8.
J Environ Sci Health B ; 59(8): 540-549, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39034761

RESUMEN

The variation in light within the environment triggers morphophysiological changes in plants and can lead to distinct responses in sun-exposed or shaded plants to glyphosate. The response of Urochloa genotypes subjected to desiccation with 2160, 1622.4, 1080, 524.4, 273.6, and 0.0 g ha-1 of glyphosate was evaluated in full sun and shade conditions. Cayana grass, mulato II grass, and sabiá grass - hybrids recently launched on the market, in addition to palisade grass and congo grass were evaluated. Under full sun, we achieved control of congo grass using 1080 g ha-1 of glyphosate, while the other grasses required 2160 g ha-1. In the low-light environment, sabiá grass was effectively controlled with 524.4 g ha-1 of glyphosate, but the other grasses needed 273.6 g ha-1. In shading, compared to full sun, the savings with glyphosate were 75 and 76% for the control of congo grass and sabiá grass, respectively, and 87% for palisade grass, mulato II grass and cayana grass. Increasing glyphosate doses leads to a decline in the quantum efficiency of photosystem II and in the electron transport rate, especially in the shade. Urochloa genotypes are more sensitive to glyphosate in the shade, which must be considered when determining the herbicide dose.


Asunto(s)
Glicina , Glifosato , Herbicidas , Poaceae , Glicina/análogos & derivados , Glicina/farmacología , Herbicidas/farmacología , Poaceae/efectos de los fármacos , Poaceae/efectos de la radiación , Poaceae/genética , Poaceae/metabolismo , Luz , Luz Solar
9.
Methods Enzymol ; 700: 33-48, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38971606

RESUMEN

Biomolecular condensates play a major role in numerous cellular processes, including several that occur on the surface of lipid bilayer membranes. There is increasing evidence that cellular membrane trafficking phenomena, including the internalization of the plasma membrane through endocytosis, are mediated by multivalent protein-protein interactions that can lead to phase separation. We have recently found that proteins involved in the clathrin-independent endocytic pathway named Fast Endophilin Mediated Endocytosis can undergo liquid-liquid phase separation (LLPS) in solution and on lipid bilayer membranes. Here, the protein solution concentrations required for phase separation to be observed are significantly smaller compared to those required for phase separation in solution. LLPS is challenging to systematically characterize in cellular systems in general, and on biological membranes in particular. Model membrane approaches are more suitable for this purpose as they allow for precise control over the nature and amount of the components present in a mixture. Here we describe a method that enables the imaging of LLPS domain formation on solid supported lipid bilayers. These allow for facile imaging, provide long-term stability, and avoid clustering of vesicles and vesicle-attached features (such as buds and tethers) in the presence of multi-valent membrane interacting proteins.


Asunto(s)
Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Aciltransferasas/metabolismo , Aciltransferasas/química , Imagen Óptica/métodos , Membrana Celular/metabolismo , Membrana Celular/química , Endocitosis , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo
10.
J Photochem Photobiol B ; 257: 112965, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955078

RESUMEN

This research aimed to develop natural plant systems to serve as biological sentinels for the detection of organophosphate pesticides in the environment. The working hypothesis was that the presence of the pesticide in the environment caused changes in the content of pigments and in the photosynthetic functioning of the plant, which could be evaluated non-destructively through the analysis of reflected light and emitted fluorescence. The objective of the research was to furnish in vivo indicators derived from spectroscopic parameters, serving as early alert signals for the presence of organophosphates in the environment. In this context, the effects of two pesticides, Chlorpyrifos and Dimethoate, on the spectroscopic properties of aquatic plants (Vallisneria nana and Spathyfillum wallisii) were studied. Chlorophyll-a variable fluorescence allowed monitoring both pesticides' presence before any damage was observed at the naked eye, with the analysis of the fast transient (OJIP curve) proving more responsive than Kautsky kinetics, steady-state fluorescence, or reflectance measurements. Pesticides produced a decrease in the maximum quantum yield of PSII photochemistry, in the proportion of PSII photochemical deexcitation relative to PSII non photochemical decay and in the probability that trapped excitons moved electrons into the photosynthetic transport chain beyond QA-. Additionally, an increase in the proportion of absorbed energy being dissipated as heat rather than being utilized in the photosynthetic process, was notorious. The pesticides induced a higher deactivation of chlorophyll excited states by photophysical pathways (including fluorescence) with a decrease in the quantum yields of photosystem II and heat dissipation by non-photochemical quenching. The investigated aquatic plants served as sentinels for the presence of pesticides in the environment, with the alert signal starting within the first milliseconds of electronic transport in the photosynthetic chain. Organophosphates damage animals' central nervous systems similarly to certain compounds found in chemical weapons, thus raising the possibility that sentinel plants could potentially signal the presence of such weapons.


Asunto(s)
Clorofila , Cloropirifos , Clorofila/metabolismo , Clorofila/química , Cloropirifos/metabolismo , Cloropirifos/toxicidad , Fluorescencia , Plaguicidas/toxicidad , Plaguicidas/metabolismo , Fotosíntesis/efectos de los fármacos , Dimetoato/toxicidad , Dimetoato/metabolismo , Espectrometría de Fluorescencia , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/química , Monitoreo del Ambiente/métodos , Clorofila A/metabolismo , Clorofila A/química , Cinética , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
11.
J Fluoresc ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39009903

RESUMEN

Oleic acid-capped CdSe/ZnS quantum dots (QDs) were used to investigate their photoluminescence (PL) response to Hg2+ ions as a function of the surface properties of QDs. Three distinctly-size CdSe/ZnS QDs were obtained by varying the molar ratio of shell precursors, which were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), Fourier-Transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), absorption spectroscopy, and time-resolved fluorescence spectroscopy. Results revealed the obtention of zinc blende nanocrystals with sizes ranging from 2.7 to 3.2 nm (± 0.5) and ZnS thickness between 0.3 and 1.0 monolayer (ML). The variation of the [S]/[Zn] molar ratio introduced chemical species that act as traps, affecting the PL properties differently. Depending on the thickness of the shell and chemical speciation on surface, Hg2+ ions could induce quenching or enhancement of PL. Detection of mercury ions was evaluated in terms of Stern-Volmer equation, where the limit of detection (LOD) for the PL quenching system was 11.2 nM, while for the PL enhancing systems were 8.98 nM and 10.7 nM. Results demonstrate the performance of oleic acid-capped CdSe/ZnS QDs to detect Hg2+ and their capacity to turn the PL on/off depending on surface properties.

12.
Adv Tech Stand Neurosurg ; 52: 7-19, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39017783

RESUMEN

Tractography fluorescence and confocal endomicroscopy are complementary technologies to targeted tumor resection, and it is certain that as our technology for fluorescent probes continues to evolve, the confocal microscope will continue to be refined. Recent work suggests that intraoperative high-resolution augmented reality endomicroscopy, a real-time alternative to invasive biopsy and histopathology, has the potential to better quantify tumor burden at the final stages of surgery and ultimately to improve patient outcomes when combined with wide-field imaging approaches. Additional studies are needed to further elucidate the clinical benefits of these new technologies for brain tumor patients.


Asunto(s)
Neoplasias Encefálicas , Imagen de Difusión Tensora , Microscopía Confocal , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Microscopía Confocal/métodos , Imagen de Difusión Tensora/métodos , Neuroendoscopía/métodos
13.
Bioengineering (Basel) ; 11(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39061720

RESUMEN

In this work, the cell line SW620-GFP has been used in a complete magnetic hyperthermia assay, from the preparation of the ferrofluid with folate-coated iron oxide nanoparticles to in vivo experiments. The physical and chemical characterization of the nanoparticles evidenced their superparamagnetic behaviour, an average diameter of 12 ± 4 nm, a 2 nm coat thickness, and a high-power loss density. The main innovation of the work is the exclusive capability of viable SW620-GFP cells to emit fluorescence, enabling fast analysis of both, cell viability in vitro with an epifluorescence microscope and tumour size and shape in vivo in a non-invasive manner using the iBox technology. Moreover, with this imaging technique, it was possible to demonstrate the successful tumour size reduction in mice applying magnetic hyperthermia three times a week over 3 weeks.

14.
Vitam Horm ; 125: 183-229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38997164

RESUMEN

Hemoglobin (Hb) is a hemeprotein found inside erythrocytes and is crucial in transporting oxygen and carbon dioxide in our bodies. In erythrocytes (Ery), the main energy source is glucose metabolized through glycolysis. However, a fraction of Hb can undergo glycation, in which a free amine group from the protein spontaneously binds to the carbonyl of glucose in the bloodstream, resulting in the formation of glycated hemoglobin (HbA1c), widely used as a marker for diabetes. Glycation leads to structural and conformational changes, compromising the function of proteins, and is intensified in the event of hyperglycemia. The main changes in Hb include structural alterations to the heme group, compromising its main function (oxygen transport). In addition, amyloid aggregates can form, which are strongly related to diabetic complications and neurodegenerative diseases. Therefore, this chapter discusses in vitro protocols for producing glycated Hb, as well as the main techniques and biophysical assays used to assess changes in the protein's structure before and after the glycation process. This more complete understanding of the effects of glycation on Hb is fundamental for understanding the complications associated with hyperglycemia and for developing more effective prevention and treatment strategies.


Asunto(s)
Hemoglobinas , Humanos , Glicosilación , Hemoglobinas/metabolismo , Hemoglobinas/química , Hemoglobina Glucada/metabolismo , Conformación Proteica , Animales
15.
Methods Mol Biol ; 2796: 97-103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38856897

RESUMEN

The development of cell-based fluorescent assays has resulted in an incredible tool for searching new ion channels' modulators with a biophysical and clinical profile. Among all the ion channels, potassium (K+)-permeable channels represent the most diverse and relevant for cell function, making them attractive targets for drug discovery. Some of the cell-based assays for K+ channels take advantage of a thallium-sensitive dye whose fluorescence increased upon the binding of thallium (Tl+), an ion able to move through K+ channels. We optimize the FLIPR Potassium Assay Kit based on thallium influx to measure the Kv10.1 activity.


Asunto(s)
Talio , Talio/metabolismo , Humanos , Colorantes Fluorescentes/química , Células HEK293 , Fluorescencia , Canales de Potasio Éter-A-Go-Go
16.
Plants (Basel) ; 13(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38891327

RESUMEN

The Valdivian region has a temperate rainy climate with differences in rainfall throughout the year. This heterogeneity results in periods of summer drought that expose the poikilohydric epiphytes to desiccation. With this research, we aim to answer different research questions related to phorophyte preference, response to desiccation, and response to radiation. How does the diversity of macrolichens vary at a local and microclimate scale in three tree species within an evergreen forest? What is the tolerance limit of macrolichens against prolonged desiccation, according to evaluation of the maximum efficiency of PSII (Fv/Fm) and pigment concentration? What is the tolerance limit against a potential increase in radiation? We found that macrolichen communities are determined by tree species, which regulate the suitability of the substrate by modifying the temperature and humidity conditions. In addition, our results show a rapid photosynthetic alteration in temporal exposure to desiccation, measured through Fv/Fm and pigment concentration. Our results showed that the most sensitive lichens to radiation and desiccation are not coincident. We confirm the low tolerance of macrolichen species to high radiation, reflected in the saturation profile obtained for the set studied. The lichen community in the evergreen forest showed high complexity and vulnerability, pointing to the importance of more research.

17.
Int J Surg Case Rep ; 120: 109820, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38870655

RESUMEN

INTRODUCTION AND IMPORTANCE: Iatrogenic injury to the cavernous nerve and its branches results in post-operative erectile dysfunction in up to 85 % of men undergoing a radical prostatectomy. Here, we describe using a novel fluorescence-imaging system developed to detect nerve autofluorescence in a 66-year-old gentleman with prostate adenocarcinoma (Gleason Score 8 [4 + 4], prognostic group 4, indicating a highly-aggressive prostate cancer) who underwent laparotomic radical prostatectomy. CASE PRESENTATION: Under general anesthesia, a laparotomic radical prostatectomy was performed using standard operative techniques. During surgery, a Dendrite imaging camera (Dendrite® Imaging, Germany) was employed to permit the surgical team to toggle freely between standard operating room (white) light and near-ultraviolet light (NUVL), with the specific purpose of enhancing visualization of the periprostatic nerve plexus, including the cavernous nerve and all its branches. Under white light, neither the cavernous nerve nor any of its branches were clearly visible. However, under NUVL, all fluoresced brightly and were easily avoided during prostate resection. Prostate resection proceeded with no intra-operative or post-operative complications. Moreover, upon one-month follow-up in the surgery clinic, the patient reported no erectile dysfunction, difficulties voiding, or other neurological or non-neurological complaints. CLINICAL DISCUSSION: In this case, autofluorescence of the cavernous nerve and its branches during radical prostatectomy aided in their visualization and appeared to help prevent post-operative erectile dysfunction and all other potential neurological deficits. CONCLUSION: Novel intra-operative technology enabling nerves to auto-fluoresce warrants larger series and comparative trials to assess its effectiveness reducing iatrogenic nerve injury during radical prostatectomies.

18.
Photochem Photobiol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38932563

RESUMEN

The impact of the polymeric matrix on the photophysical characteristics of monomeric dyes responsive to excited-state intramolecular proton transfer (ESIPT) was investigated through UV-Vis absorption as well as steady-state and time-resolved emission spectroscopies. For this purpose, two benzoxazole monomers (M1 and M2) with acryloyl groups at different positions in their molecular structures were employed to facilitate covalent bonding within a styrene chain. Our findings reveal significant variations in their excited-state properties due to the proximity of the acryloyl groups, which affects the energy barrier of the ESIPT reaction, the emission wavelength, and the balance between the normal and tautomeric forms. The experimental results were corroborated through theoretical investigations at the DFT/TDDFT level, specifically using the B3LYP-D3/def2-TZVP methodology. Three notable observations emerged: donor/acceptor groups at the meta/para positions induced electron distribution changes, causing red-shifted emission for M2; in the polymer film, particularly in PM1, intramolecular hydrogen bond deactivation favored N* emission over T* emission; and the zwitterionic character of the T* species. This study underscores the advantages of functionalization in polymers, which can lead to colorless films and prevalent N* or T* emission, and contributes valuable insights into molecular design strategies for tailoring the photophysical properties of polymeric materials.

19.
J Agric Food Chem ; 72(26): 14570-14580, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38887997

RESUMEN

Enhancing the initial stages of plant growth by using polymeric gels for seed priming presents a significant challenge. This study aimed to investigate a microgel derived from polyetheramine-poly(propylene oxide) (PPO) and a bisepoxide (referred to as micro-PPO) as a promising alternative to optimize the seed germination process. The micro-PPO integrated with an iron micronutrient showed a positive impact on seed germination compared with control (Fe solutions) in which the root length yield improved up to 39%. Therefore, the element map by synchrotron-based X-ray fluorescence shows that the Fe intensities in the seed primers with the micro-PPO-Fe gel are about 3-fold higher than those in the control group, leading to a gradual distribution of Fe species through most internal embryo tissues. The use of micro-PPO for seed priming underscores their potential for industrial applications due to the nontoxicity results in zebrafish assays and environmentally friendly synthesis of the water-dispersible monomers employed.


Asunto(s)
Aminas , Cucumis sativus , Germinación , Hierro , Microgeles , Semillas , Germinación/efectos de los fármacos , Semillas/química , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Cucumis sativus/metabolismo , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/química , Hierro/metabolismo , Hierro/química , Aminas/química , Aminas/metabolismo , Microgeles/química , Compuestos Epoxi/química , Compuestos Epoxi/metabolismo , Pez Cebra/metabolismo , Animales
20.
ACS Appl Mater Interfaces ; 16(26): 34303-34312, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885089

RESUMEN

Perovskite nanocrystals hold significant promise for a wide range of applications, including solar cells, LEDs, photocatalysts, humidity and temperature sensors, memory devices, and low-cost photodetectors. Such technological potential stems from their exceptional quantum efficiency and charge carrier conduction capability. Nevertheless, the underlying mechanisms of photoexcitation, such as phase segregation, annealing, and ionic diffusion, remain insufficiently understood. In this context, we harnessed hyperspectral fluorescence microspectroscopy to advance our comprehension of fluorescence enhancement triggered by UV continuous-wave (cw) laser irradiation of CsPbBr3 colloidal nanocrystal thin films. Initially, we explored the kinetics of fluorescence enhancement and observed that its efficiency (φph) correlates with the laser power (P), following the relationship φph = 7.7⟨P⟩0.47±0.02. Subsequently, we estimated the local temperature induced by the laser, utilizing the finite-difference method framework, and calculated the activation energy (Ea) required for fluorescence enhancement to occur. Our findings revealed a very low activation energy, Ea ∼ 9 kJ/mol. Moreover, we mapped the fluorescence photoenhancement by spatial scanning and real-time static mode to determine its microscale length. Below a laser power of 60 µW, the photothermal diffusion length exhibited nearly constant values of approximately (22 ± 5) µm, while a significant increase was observed at higher laser power levels. These results were ascribed to the formation of nanocrystal superclusters within the film, which involves the interparticle spacing reduction, creating the so-called quantum dot solid configuration along with laser-induced annealing for higher laser powers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA