Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.626
Filtrar
1.
Poult Sci ; 103(8): 103943, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38964271

RESUMEN

The purpose of this research was to see how different levels of Se-chitosan, a novel organic source of Se, affected the production performance, egg quality, egg Se concentration, microbial population, immunological response, antioxidant status, and yolk fatty acid profile of laying Japanese quail. This experiment used a totally randomized design, with 5 treatments, 6 repeats, and 10 birds in each repetition. The dietary treatment groups were as follows: no Se supplementation (control group), 0.2 mg/kg Na-selenite supplementation, and 0.2, 0.4, and 0.6 mg/kg Se-chitosan supplementation. The feed conversion ratio (FCR) improved linearly in quails fed different levels of Se-chitosan compared to the control group (P < 0.05). Furthermore, Se-chitosan at concentrations of 0.2 and 0.4 mg/kg demonstrated both linear and quadratic increases in albumen height, Haugh unit, and yolk color in fresh eggs compared to the control group. Additionally, Se-chitosan contributed to enhanced shell thickness and strength, along with an increased Se concentration in the yolk. Se-chitosan supplementation at different levels linearly and quadratically reduced coliforms (COL) while increasing lactic acid bacteria (LAB)/coliform ratios (P < 0.05). Se-chitosan supplementation linearly and quadratically increased the total antibody response to sheep red blood cells (SRBC) and IgG titers (P < 0.05). It also linearly decreased the level of malondialdehyde in fresh and stored egg yolks and increased the activity of antioxidant enzymes catalase and glutathione peroxidase linearly, and superoxide dismutase (SOD) both linearly and quadratically in quail blood serum (P < 0.05). Additionally, supplementation of Se-chitosan at levels of 0.2 and 0.6 mg/kg linearly decreased the ∑ n-6 PUFA/∑ n-3 PUFA ratio in the yolk compared to the control group (P < 0.05). It can be concluded that incorporating Se-chitosan as a novel organic source of Se in the diet of laying quails can enhance production performance, egg quality, egg Se concentration, yolk lipid oxidation, microbial population, immune response, antioxidant enzyme activity, and yolk fatty acid profile.

2.
J Nutr Biochem ; : 109697, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964724

RESUMEN

Long-term alcohol overconsumption impairs intestinal and hepatic structure and function, along with dysregulation of zinc homeostasis. We previously found that zinc-glutathione (Zn-GSH) complex effectively suppressed alcohol-induced liver injury in mice. This study was undertaken to test the hypothesis that Zn-GSH suppresses alcohol-induced liver injury by modulating intestinal zinc transporters. Mice were subjected to long-term ethanol feeding, as per the NIAAA model, with groups receiving either an ethanol diet alone or an ethanol diet supplemented with Zn-GSH. Treatment groups were carefully monitored for alcohol consumption and subjected to a final binge drinking treatment. The results showed that Zn-GSH increased the survival rate and decreased the recovery time from binge drinking-induced drunkenness. Histopathological analyses demonstrated a reduction in liver steatosis and the preservation of intestinal integrity by Zn-GSH. It was observed that Zn-GSH prevented the reduction of Zn and GSH levels while increasing alcohol dehydrogenase and aldehyde dehydrogenase in both liver and intestine. Importantly, the expression and protein abundance of zinc transporters ZnT-1, ZIP-1, ZIP-4, ZIP-6, and ZIP-14, all of which are critically involved in intestinal zinc transport and homeostasis, were significantly increased or preserved by Zn-GSH in response to alcohol exposure. This study thus highlights the critical role of Zn-GSH in maintaining intestinal zinc homeostasis by modulating zinc transporters, thereby preventing alcohol-induced intestinal and hepatic injury.

3.
BMC Genomics ; 25(1): 666, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961329

RESUMEN

BACKGROUND: Pruning is an important cultivation management option that has important effects on peach yield and quality. However, the effects of pruning on the overall genetic and metabolic changes in peach leaves and fruits are poorly understood. RESULTS: The transcriptomic and metabolomic profiles of leaves and fruits from trees subjected to pruning and unpruning treatments were measured. A total of 20,633 genes and 622 metabolites were detected. Compared with those in the control, 1,127 differentially expressed genes (DEGs) and 77 differentially expressed metabolites (DEMs) were identified in leaves from pruned and unpruned trees (pdLvsupdL), whereas 423 DEGs and 29 DEMs were identified in fruits from the pairwise comparison pdFvsupdF. The content of three auxin analogues was upregulated in the leaves of pruned trees, the content of all flavonoids detected in the leaves decreased, and the expression of almost all genes involved in the flavonoid biosynthesis pathway decreased. The phenolic acid and amino acid metabolites detected in fruits from pruned trees were downregulated, and all terpenoids were upregulated. The correlation analysis revealed that DEGs and DEMs in leaves were enriched in tryptophan metabolism, auxin signal transduction, and flavonoid biosynthesis. DEGs and DEMs in fruits were enriched in flavonoid and phenylpropanoid biosynthesis, as well as L-glutamic acid biosynthesis. CONCLUSIONS: Pruning has different effects on the leaves and fruits of peach trees, affecting mainly the secondary metabolism and hormone signalling pathways in leaves and amino acid biosynthesis in fruits.


Asunto(s)
Frutas , Perfilación de la Expresión Génica , Metabolómica , Hojas de la Planta , Prunus persica , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Prunus persica/genética , Prunus persica/metabolismo , Prunus persica/crecimiento & desarrollo , Frutas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Metaboloma , Transcriptoma , Flavonoides/metabolismo , Ácidos Indolacéticos/metabolismo
4.
Plant Physiol Biochem ; 214: 108878, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38968841

RESUMEN

In this paper, we discussed the physiological mechanism of enhanced chilling tolerance with combined treatment of nitric oxide (NO) and reduced glutathione (GSH) in cucumber seedlings. With prolonged low temperature (10 °C/6 °C), oxidative stress improved, which was manifested as an increase the hydrogen peroxide (H2O2) and malondialdehyde (MDA), causing cell membrane damage, particularly after 48 h of chilling stress. Exogenous sodium nitroprusside (SNP, NO donor) enhanced the activity of nitric oxide synthase NOS-like, the contents of GSH and polyamines (PAs), and the cellular redox state, thus regulating the activities of mitochondrial oxidative phosphorylation components (CI, CII, CIV, CV). However, buthionine sulfoximine (BSO, a GSH synthase inhibitor) treatment drastically reversed or attenuated the effects of NO. Importantly, the combination of SNP and GSH treatment had the best effect in alleviating chilling-induced oxidative stress by upregulating the activities of antioxidant enzyme, including superoxidase dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) and improved the PAs content, thereby increased activities of CI, CII, CIII, CIV, and CV. This potentially contributes to the maintenance of oxidative phosphorylation originating from mitochondria. In addition, the high activity of S-nitrosoglutathione reductase (GSNOR) in the combined treatment of SNP and GSH possibly mediates the conversion of NO and GSH to S-nitrosoglutathione. Our study revealed that the combined treatment with NO and GSH to synergistically improve the cold tolerance of cucumber seedlings under prolonged low-temperature stress.

5.
Anal Chim Acta ; 1316: 342860, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969429

RESUMEN

BACKGROUND: Glutathione (GSH), a highly abundant thiol compound within cells, plays a critical role in physiological processes and exhibits close correlation with cancer. Among molecular imaging technologies, most probes have relatively short emission wavelengths and lack photoacoustic imaging (PA) capability, resulting in the inability to obtain tissue images with high penetration depth. The presence of GSH in the tumor microenvironment neutralizes ROS, diminishing the therapeutic effect of PDT, thus resulting in often unsatisfactory therapeutic efficacy. Therefore, it is imperative to develop a dual-modal probe for the detection of GSH and the diagnosis and treatment of cancer. RESULTS: In this study, we synthesized a novel dual-modal probe, Cy-Bio-GSH, utilizing near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging techniques for GSH detection. The probe integrates cyanine dye as the fluorophore, nitroazobenzene as the recognition moiety, and biotin as the tumor-targeting moiety. Upon reacting with GSH, the probe emits NIR fluorescence at 820 nm and generates a PA signal. Significantly, this reaction activates the photodynamic and photothermal properties of the probe. By depleting GSH and employing a synergistic photothermal therapy (PTT) treatment, the therapeutic efficacy of photodynamic therapy (PDT) is remarkably enhanced. In-vivo experiments confirm the capability of the probe to detect GSH via NIRF and PA imaging. Notably, the combined tumor-targeting ability and PDT/PTT synergistic therapy enhance therapeutic outcomes for tumors and facilitate their ablation. SIGNIFICANCE: A novel tumor-targeting and dual-modal imaging probe (Cy-Bio-GSH) is synthesized, exhibiting remarkable sensitivity and selectivity to GSH, enabling the visualization of GSH in cells and the differentiation between normal and cancer cells. Cy-Bio-GSH enhances PDT/PTT with effective killing of cancer cells and makes the ablation of tumors in mice. This work represents the first tumor-targeting probe for GSH detection, and provides crucial tool for cancer diagnosis and treatment by dual-modal imaging with improved PDT/PTT synergistic therapy.


Asunto(s)
Biotina , Glutatión , Técnicas Fotoacústicas , Fotoquimioterapia , Glutatión/química , Glutatión/metabolismo , Animales , Humanos , Ratones , Biotina/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Imagen Óptica , Femenino , Terapia Fototérmica , Ratones Desnudos , Ratones Endogámicos BALB C , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/uso terapéutico
6.
Front Plant Sci ; 15: 1413653, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952846

RESUMEN

Reduced glutathione (γ-glutamyl-cysteinyl-glycine, GSH), the primary non-protein sulfhydryl group in organisms, plays a pivotal role in the plant salt stress response. This study aimed to explore the impact of GSH on the photosynthetic apparatus, and carbon assimilation in tomato plants under salt stress, and then investigate the role of nitric oxide (NO) in this process. The investigation involved foliar application of 5 mM GSH, 0.1% (w/v) hemoglobin (Hb, a nitric oxide scavenger), and GSH+Hb on the endogenous NO levels, rapid chlorophyll fluorescence, enzyme activities, and gene expression related to the Calvin cycle in tomato seedlings (Solanum lycopersicum L. cv. 'Zhongshu No. 4') subjected short-term salt stress (100 mM NaCl) for 24, 48 and 72 hours. GSH treatment notably boosted nitrate reductase (NR) and NO synthase (NOS) activities, elevating endogenous NO signaling in salt-stressed tomato seedling leaves. It also mitigated chlorophyll fluorescence (OJIP) curve distortion and damage to the oxygen-evolving complex (OEC) induced by salt stress. Furthermore, GSH improved photosystem II (PSII) electron transfer efficiency, reduced QA - accumulation, and countered salt stress effects on photosystem I (PSI) redox properties, enhancing the light energy absorption index (PIabs). Additionally, GSH enhanced key enzyme activities in the Calvin cycle and upregulated their genes. Exogenous GSH optimized PSII energy utilization via endogenous NO, safeguarded the photosynthetic reaction center, improved photochemical and energy efficiency, and boosted carbon assimilation, ultimately enhancing net photosynthetic efficiency (Pn) in salt-stressed tomato seedling leaves. Conversely, Hb hindered Pn reduction and NO signaling under salt stress and weakened the positive effects of GSH on NO levels, photosynthetic apparatus, and carbon assimilation in tomato plants. Thus, the positive regulation of photosynthesis in tomato seedlings under salt stress by GSH requires the involvement of NO.

7.
Cell Biochem Biophys ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38961034

RESUMEN

Triple-negative breast cancer (TNBC) is characterized by a grim prognosis and numerous challenges. The objective of our study was to examine the role of thymidylate synthase (TYMS) in TNBC and its impact on ferroptosis. The expression of TYMS was analyzed in databases, along with its prognostic correlation. TYMS positive expression was identified through immunohistochemistry (IHC), while real-time quantitative PCR (qRTPCR) was employed to measure TYMS mRNA levels in various cell lines. Western blotting was utilized to assess protein expression. Cell proliferation, mobility, apoptosis, and reactive oxygen species (ROS) levels were evaluated using CCK8, wound scratch healing assay, transwell assay, and flow cytometry, respectively. Additionally, a tumor xenograft model was established in BALB/c nude mice for further investigation. Tumor volume and weight were measured, and histopathological analysis using hematoxylin and eosin (H&E) staining was conducted to assess tumor tissue changes. IHC staining was employed to detect the expression of Ki67 in tumor tissues. High expression of TYMS was observed in TNBC and was found to be correlated with poor prognosis in patients. Among various cell lines, TYMS expression was highest in BT549 cells. Knockdown of TYMS resulted in suppression of cell proliferation and mobility, as well as promotion of apoptosis. Furthermore, knockdown of TYMS led to increased accumulation of ROS and Fe2+ levels, along with upregulation of ACLS4 expression and downregulation of glutathione peroxidase 4 (GPX4) expression. In vivo studies showed that knockdown of TYMS inhibited tumor growth. Additionally, knockdown of TYMS was associated with inhibition of mTOR, p-PI3K, and p-Akt expression. Our research showed that the knockdown of TYMS suppressed the TNBC progression by inhibited cells proliferation via ferroptosis. Its underlying mechanism is related to the PI3K /Akt pathway. Our study provides a novel sight for the suppression effect of TYMS on TNBC.

8.
J Mol Neurosci ; 74(3): 62, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958788

RESUMEN

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and has a great socio-economic impact. Modified oxidative lipid metabolism and dysregulated iron homeostasis have been implicated in the pathogenesis of this disorder, but the detailed pathophysiological mechanisms still remain unclear. Apolipoprotein E (APOE) is a lipid-binding protein that occurs in large quantities in human blood plasma, and a polymorphism of the APOE gene locus has been identified as risk factors for AD. The human genome involves three major APOE alleles (APOE2, APOE3, APOE4), which encode for three subtly distinct apolipoprotein E isoforms (APOE2, APOE3, APOE4). The canonic function of these apolipoproteins is lipid transport in blood and brain, but APOE4 allele carriers have a much higher risk for AD. In fact, about 60% of clinically diagnosed AD patients carry at least one APOE4 allele in their genomes. Although the APOE4 protein has been implicated in pathophysiological key processes of AD, such as extracellular beta-amyloid (Aß) aggregation, mitochondrial dysfunction, neuroinflammation, formation of neurofibrillary tangles, modified oxidative lipid metabolism, and ferroptotic cell death, the underlying molecular mechanisms are still not well understood. As for all mammalian cells, iron plays a crucial role in neuronal functions and dysregulation of iron homeostasis has also been implicated in the pathogenesis of AD. Imbalances in iron homeostasis and impairment of the hydroperoxy lipid-reducing capacity induce cellular dysfunction leading to neuronal ferroptosis. In this review, we summarize the current knowledge on APOE4-related oxidative lipid metabolism and the potential role of ferroptosis in the pathogenesis of AD. Pharmacological interference with these processes might offer innovative strategies for therapeutic interventions.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Ferroptosis , Metabolismo de los Lípidos , Humanos , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteína E4/genética , Animales , Hierro/metabolismo
9.
Front Neurol ; 15: 1356662, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978816

RESUMEN

A 78-year-old man with dementia experienced waxing and waning of symptoms with changes in altitude as he traveled from his home in the Rocky Mountains to lower elevations and back. To replicate the improvement in his symptoms with travel to lower elevations (higher pressure), the patient was treated with a near-identical repressurization in a hyperbaric chamber using compressed air. With four 1-h treatments at 1.3 Atmospheres Absolute (ATA) and concurrent administration of low-dose oral glutathione amino acid precursors, he recovered speech and showed improvement in activities of daily living. Regional broadcast media had documented his novel recovery. Nosocomial COVID-19 and withdrawal of hyperbaric air therapy led to patient demise 7 months after initiation of treatment. It is theorized that hyperbaric air therapy stimulated mitochondrial biochemical and physical changes, which led to clinical improvement.

10.
Biosens Bioelectron ; 262: 116559, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38981320

RESUMEN

Glutathione (GSH) is indispensable for maintaining redox homeostasis in biological fluids and serves as a key component in cellular defense mechanisms. Accurate assessment of GSH relative to its oxidized counterpart, glutathione disulfide (GSSG), is critical for the early diagnosis and understanding of conditions related to oxidative stress. Despite existing methods for their quantification, the label-free and simultaneous measurement of GSH and GSSG in biological fluid presents significant challenges. Herein, we report the use of an alpha-hederin (Ah) nanopore for the direct measurement of the GSH:GSSG ratio in simulated biological fluid, containing fetal bovine serum (FBS). This system hinges on detecting characteristic relative ion blockades (ΔI/Io) as GSH and GSSG molecules pass through the Ah nanopore under an applied electric field. The distinct current blockage signals derived from the translocation of GSH and GSSG enabled us to determine the molar ratio of GSH and its oxidized form. Notably, the interactions between the hydroxyl groups of the sugar moiety lining the nanopore's inner surface and the sulfhydryl group of GSH significantly influence the translocation dynamics, resulting in a longer translocation time for GSH compared to GSSG. The Ah nanopore technology proposed in this study offers a promising approach for real-time, single molecule-level monitoring of glutathione redox status in biological fluids, eliminating the need for labeling or extensive sample preparation.

11.
J Gastrointest Oncol ; 15(3): 1002-1019, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38989407

RESUMEN

Background: Tumor cell inhibition is a pivotal focus in anti-cancer research, and extensive investigations have been conducted regarding the role of p53. Numerous studies have highlighted its close association with reactive oxygen species (ROS). However, the precise impact of the antioxidant glutathione (GSH) in this context remains inadequately elucidated. Here, we will elucidate the anti-cancer mechanisms mediated by p53 following treatment with GSH. Methods: In this study, we employed a p53 gene knockout approach in SW480 colorectal cells and conducted comprehensive analyses of 20 amino acids and proteomics using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Results: These analyses unveiled profound alterations in amino acids and proteins triggered by GSH treatment, shedding light on novel phenomena and delineating the intricate interplay between GSH and cellular proteins. The deletion of the p53 gene exerts a profound influence on tumor cell proliferation. Moreover, tumor cell proliferation is significantly affected by elevated GSH levels. Importantly, in the absence of the p53 gene, cells exhibit heightened sensitivity to GSH, leading to inhibited cell growth. The combined therapeutic approach involving GSH and p53 gene deletion expedites the demise of tumor cells. It is noteworthy that this treatment leads to a marked decline in amino acid metabolism, particularly affecting the down-regulation of methionine (Met) and phenylalanine (Phe) amino acids. Among the 41 proteins displaying significant changes, 8 exhibit consistent alterations, with 5 experiencing decreased levels and 3 demonstrating increased quantities. These proteins primarily participate in crucial cellular metabolic processes and immune functions. Conclusions: In conclusion, the concurrent administration of GSH treatment and p53 gene deletion triggers substantial modifications in the amino acid and protein metabolism of tumor cells, primarily characterized by down-regulation. This, in turn, compromises cell metabolic activity and immune function, ultimately culminating in the demise of tumor cells. These newfound insights hold promising implications and could pave the way for the development of straightforward and efficacious anti-cancer treatments.

12.
World J Gastrointest Surg ; 16(6): 1742-1748, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38983347

RESUMEN

BACKGROUND: Infant hepatitis syndrome (IHS) is a clinical syndrome in infants less than one year of age with generalized skin jaundice, abnormal liver function, and hepatomegaly due to various etiologies such as infection. AIM: To investigate the effect of IHS patients, after treatment with arsphenamine-based peptides, on patients' liver function damage and immune function. METHODS: Of 110 patients with IHS treated in our hospital from January 2019 to January 2021 were grouped according to the randomized residual grouping method, with 5 cases in each group shed due to transfer, etc. Ultimately, 50 cases remained in each group. The control group was treated with reduced glutathione, and the treatment group was treated with sesquiterpene peptide based on the control group. Observe and compare the differences in indicators after treatment. RESULTS: The comparison of serum total bilirubin, direct bilirubin, and serum alanine transferase after treatment was significantly different and lower in the treatment group than in the control group (P < 0.05). The comparison of CD4+, CD3+, CD4+/CD8+ after treatment was significantly different and higher in the treatment group than in the control group, and the comparison was statistically significant (P < 0.05). The complication of the two groups showed that the rash, cough and sputum, elevated platelets, and gastrointestinal reactions in the treatment group were significantly lower than those in the control group, and the differences were statistically significant by test (P < 0.05). CONCLUSION: The comparative study of IHS treated with arsphenamine combined with reduced glutathione is more effective.

13.
Cell Metab ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38986617

RESUMEN

The intestinal tract generates significant reactive oxygen species (ROS), but the role of T cell antioxidant mechanisms in maintaining intestinal homeostasis is poorly understood. We used T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), which impaired glutathione (GSH) production, crucially reducing IL-22 production by Th17 cells in the lamina propria, which is critical for gut protection. Under steady-state conditions, Gclc deficiency did not alter cytokine secretion; however, C. rodentium infection induced increased ROS and disrupted mitochondrial function and TFAM-driven mitochondrial gene expression, resulting in decreased cellular ATP. These changes impaired the PI3K/AKT/mTOR pathway, reducing phosphorylation of 4E-BP1 and consequently limiting IL-22 translation. The resultant low IL-22 levels led to poor bacterial clearance, severe intestinal damage, and high mortality. Our findings highlight a previously unrecognized, essential role of Th17 cell-intrinsic GSH in promoting mitochondrial function and cellular signaling for IL-22 protein synthesis, which is critical for intestinal integrity and defense against gastrointestinal infections.

14.
Clin Sci (Lond) ; 138(14): 883-900, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38959295

RESUMEN

Hypertension is a leading risk factor for disease burden worldwide. Vascular contraction and remodeling contribute to the development of hypertension. Glutathione S-transferase P1 (Gstp1) plays several critical roles in both normal and neoplastic cells. In this study, we investigated the effect of Gstp1 on hypertension as well as on vascular smooth muscle cell (VSMC) contraction and phenotypic switching. We identified the higher level of Gstp1 in arteries and VSMCs from hypertensive rats compared with normotensive rats for the first time. We then developed Adeno-associated virus 9 (AAV9) mediated Gstp1 down-regulation and overexpression in rats and measured rat blood pressure by using the tail-cuff and the carotid catheter method. We found that the blood pressure of spontaneously hypertensive rats (SHR) rose significantly with Gstp1 down-regulation and reduced apparently after Gstp1 overexpression. Similar results were obtained from the observations of 2-kidney-1-clip renovascular (2K1C) hypertensive rats. Gstp1 did not influence blood pressure of normotensive Wistar-Kyoto (WKY) rats and Sprague-Dawley (SD) rats. Further in vitro study indicated that Gstp1 knockdown in SHR-VSMCs promoted cell proliferation, migration, dedifferentiation and contraction, while Gstp1 overexpression showed opposite effects. Results from bioinformatic analysis showed that the Apelin/APLNR system was involved in the effect of Gstp1 on SHR-VSMCs. The rise in blood pressure of SHR induced by Gstp1 knockdown could be reversed by APLNR antagonist F13A. We further found that Gstp1 enhanced the association between APLNR and Nedd4 E3 ubiquitin ligases to induce APLNR ubiquitination degradation. Thus, in the present study, we discovered a novel anti-hypertensive role of Gstp1 in hypertensive rats and provided the experimental basis for designing an effective anti-hypertensive therapeutic strategy.


Asunto(s)
Presión Sanguínea , Gutatión-S-Transferasa pi , Hipertensión , Músculo Liso Vascular , Ubiquitina-Proteína Ligasas Nedd4 , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Ratas Sprague-Dawley , Ubiquitinación , Animales , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Gutatión-S-Transferasa pi/metabolismo , Gutatión-S-Transferasa pi/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Ratas , Proliferación Celular
15.
World J Gastroenterol ; 30(23): 2931-2933, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38946877

RESUMEN

In this editorial we comment on the article published in a recent issue of the World Journal of Gastroenterology. Acute liver failure (ALF) is a critical condition characterized by rapid hepatocellular injury and organ dysfunction, and it often necessitates liver transplant to ensure patient survival. Recent research has elucidated the involvement of distinct cell death pathways, namely ferroptosis and pyroptosis, in the pathogenesis of ALF. Ferroptosis is driven by iron-dependent lipid peroxidation, whereas pyroptosis is an inflammatory form of cell death; both pathways contribute to hepatocyte death and exacerbate tissue damage. This comprehensive review explores the interplay between ferroptosis and pyroptosis in ALF, highlighting the role of key regulators such as silent information regulator sirtuin 1. Insights from clinical and preclinical studies provide valuable perspectives on the dysregulation of cell death pathways in ALF and the therapeutic potential of targeting these pathways. Collaboration across multiple disciplines is essential for translating the experimental insights into effective treatments for this life-threatening condition.


Asunto(s)
Ferroptosis , Fallo Hepático Agudo , Piroptosis , Animales , Humanos , Hepatocitos/metabolismo , Hierro/metabolismo , Peroxidación de Lípido , Hígado/metabolismo , Hígado/patología , Fallo Hepático Agudo/metabolismo , Fallo Hepático Agudo/terapia , Trasplante de Hígado , Transducción de Señal , Sirtuina 1/metabolismo
16.
J Cancer ; 15(13): 4097-4112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947389

RESUMEN

Ferroptosis has been characterized as non-apoptotic programmed cell death and is considered a novel strategy for antitumor treatment. The factor that binds to inducer of short transcripts-1 (FBI-1) is an important proto-oncogene playing multiple roles in human malignancies and the development of resistance to therapy. However, the roles of FBI-1 in ferroptosis of endocrine independent prostate carcinoma are still unknown. The results of this study showed that FBI-1 inhibited the ferroptosis of prostate carcinoma PC-3 cells (a typical endocrine-independent prostate carcinoma cell line) via the miR-324-3p/glutathione peroxidase 4 (miR-324-3p/GPX4) axis. Overexpression of FBI-1 enhanced the expression levels of GPX4. In contrast, knockdown of FBI-1 decreased the expression of GPX4 and induced the ferroptosis of PC-3 cells. The miR-324-3p decreased the expression of GPX4 by targeting the 3'-untranslated region of GPX4 to induce ferroptosis. Notably, FBI-1 increased the expression of GPX4 by repressing the levels of miR-324-3p. The transcription of miR-324-3p was mediated by specificity protein 1 (SP1), and FBI-1 repressed the expression of miR-324-3p by repressing the activation of SP1. In clinical specimens, the endogenous levels of FBI-1 were positively associated with Glutathione Peroxidase 4 (GPX4) and negatively related with the expression of miR-324-3p. Therefore, the results indicated that the miR-324-3p/GPX4 axis participates in the FBI-1-mediated ferroptosis of prostate carcinoma cells.

17.
J Cancer ; 15(13): 4047-4058, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947399

RESUMEN

Background: Tamoxifen is commonly used in the treatment of hormonal-positive breast cancer. However, 30%-40% of tumors treated with tamoxifen develop resistance; therefore, an important step to overcome this resistance is to understand the underlying molecular and metabolic mechanisms. In the present work, we used metabolic profiling to determine potential biomarkers of tamoxifen resistance, and gene expression levels of enzymes important to these metabolites and then correlated the expression to the survival of patients receiving tamoxifen. Methods: Tamoxifen-resistant cell lines previously developed and characterized in our laboratory were metabolically profiled with nuclear magnetic resonance spectroscopy (NMR) using cryogenic probe, and the findings were correlated with the expression of genes that encode the key enzymes of the significant metabolites. Moreover, the effect of significantly altered genes on the overall survival of patients was assessed using the Kaplan-Meier plotter web tool. Results: We observed a significant increase in the levels of glutamine, taurine, glutathione, and xanthine, and a significant decrease in the branched-chain amino acids, valine, and isoleucine, as well as glutamate and cysteine in the tamoxifen-resistant cells compared to tamoxifen sensitive cells. Moreover, xanthine dehydrogenase and glutathione synthase gene expression were downregulated, whereas glucose-6-phosphate dehydrogenase was upregulated compared to control. Additionally, increased expression of xanthine dehydrogenase was associated with a better outcome for breast cancer patients. Conclusion: Overall, this study sheds light on metabolic pathways that are dysregulated in tamoxifen-resistant cell lines and the potential role of each of these pathways in the development of resistance.

18.
Cureus ; 16(5): e61328, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38947688

RESUMEN

A rare complication, 5-oxoproline-induced high anion gap metabolic acidosis (HAGMA) is associated with chronic acetaminophen use, predominantly reported in outpatient settings. However, its occurrence in hospitalized patients, particularly those with end-stage renal disease (ESRD), remains underreported. We present a case of a 74-year-old female with ESRD on hemodialysis who developed HAGMA highly suspicious for 5-oxoproline toxicity from acetaminophen usage following cardiac surgery. Despite a standard analgesic dose, the patient's renal impairment likely predisposed her to 5-oxoproline accumulation, resulting in severe metabolic acidosis. Discontinuation of acetaminophen led to the resolution of HAGMA, highlighting the importance of recognizing this rare but potentially life-threatening complication in the inpatient and critical care setting. This case suggests a potential interaction between acetaminophen metabolism and renal dysfunction in the pathogenesis of 5-oxoproline-induced HAGMA.

19.
Drug Des Devel Ther ; 18: 2653-2679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974119

RESUMEN

Purpose: Over the last few years, covalent fragment-based drug discovery has gained significant importance. Thus, striving for more warhead diversity, we conceived a library consisting of 20 covalently reacting compounds. Our covalent fragment library (CovLib) contains four different warhead classes, including five α-cyanoacacrylamides/acrylates (CA), three epoxides (EO), four vinyl sulfones (VS), and eight electron-deficient heteroarenes with a leaving group (SNAr/SN). Methods: After predicting the theoretical solubility of the fragments by LogP and LogS during the selection process, we determined their experimental solubility using a turbidimetric solubility assay. The reactivities of the different compounds were measured in a high-throughput 5,5'-dithiobis-(2-nitrobenzoic acid) DTNB assay, followed by a (glutathione) GSH stability assay. We employed the CovLib in a (differential scanning fluorimetry) DSF-based screening against different targets: c-Jun N-terminal kinase 3 (JNK3), ubiquitin-specific protease 7 (USP7), and the tumor suppressor p53. Finally, the covalent binding was confirmed by intact protein mass spectrometry (MS). Results: In general, the purchased fragments turned out to be sufficiently soluble. Additionally, they covered a broad spectrum of reactivity. All investigated α-cyanoacrylamides/acrylates and all structurally confirmed epoxides turned out to be less reactive compounds, possibly due to steric hindrance and reversibility (for α-cyanoacrylamides/acrylates). The SNAr and vinyl sulfone fragments are either highly reactive or stable. DSF measurements with the different targets JNK3, USP7, and p53 identified reactive fragment hits causing a shift in the melting temperatures of the proteins. MS confirmed the covalent binding mode of all these fragments to USP7 and p53, while additionally identifying the SNAr-type electrophile SN002 as a mildly reactive covalent hit for p53. Conclusion: The screening and target evaluation of the CovLib revealed first interesting hits. The highly cysteine-reactive fragments VS004, SN001, SN006, and SN007 covalently modify several target proteins and showed distinct shifts in the melting temperatures up to +5.1 °C and -9.1 °C.


Asunto(s)
Proteína Quinasa 10 Activada por Mitógenos , Proteína p53 Supresora de Tumor , Peptidasa Específica de Ubiquitina 7 , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/química , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/química , Humanos , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 10 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 10 Activada por Mitógenos/química , Sulfonas/química , Sulfonas/farmacología , Estructura Molecular , Solubilidad , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Acrilamidas/química , Acrilamidas/farmacología , Acrilatos/química , Acrilatos/farmacología , Unión Proteica
20.
Food Chem ; 458: 140285, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38970956

RESUMEN

Sprouting can enhance the bioavailability and stimulate the production of health-promoting compounds. This research explored the potential health benefits of wheat sprouting, focusing on underexplored areas in existing literature such as alterations in phenylalanine ammonia-lyase (PAL) activity and glutathione levels during wheat sprouting. Furthermore, special attention was directed toward asparagine (Asn), the main precursor of acrylamide formation, as regulatory agencies are actively seeking to impose limitations on the presence of acrylamide in baked products. The results demonstrate elevated levels of PAL (4.5-fold at 48 h of sprouting), antioxidants, and total phenolics (1.32 mg gallic acid equivalent/g dry matter at 72 h of sprouting), coupled with a reduction in Asn (i.e. 11-fold at 48 h of sprouting) and glutathione concentrations, after wheat sprouting. These findings suggest that sprouting can unlock health-promoting properties in wheat. Optimizing the sprouting process to harness these benefits, however, may have implications for the techno-functionality of wheat flour in food processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...