Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 168724, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38007135

RESUMEN

The vertical sequestration of dissolved organic matter (DOM) by iron minerals along the soil profile is assumed to be central to the long-term storage of the soil organic matter (SOM) pool. However, there is limited information available about how the interaction between DOM and natural iron-bearing minerals shape mineral SOM associations quantitatively and qualitatively in forest subsoils. Here, we systematically investigated the influences of forest organic layer-pyrolyzed biochar-derived DOM (BDOM) and leached DOM (LDOM) on quantity, molecular composition, and diversity of deposition layer-derived iron minerals-associated OM by using Fourier transform ion cyclotron resonance mass spectrometry and other complementary spectroscopy. Results indicated natural iron minerals (FeOx1 and FeOx2) had a greater capacity for sorbing LDOM with higher aromaticity and molecular weight than those of BDOM, and the higher proportion of goethite and short-order-range phase in natural iron minerals was closely related to the increased OM adsorption capacity. We also observed the preferential sorption of oxygen/nitrogen-rich polycyclic aromatic compounds and carboxylic-containing compounds in LDOM and concurrent the potential release of lignin-like/aromatics compounds and carboxyl/nitrogen-less aliphatic compounds from native OM coprecipitates into the solution. However, unsaturated and oxidized phenolic compounds in BDOM had a stronger affinity for FeOx through hydrophobic partitioning and specific polar interactions, and concomitantly the partial release of nitrogen-free aliphatic and other carboxyl-rich compounds. More nitrogen structures in aromatic-containing compounds can improve the saturation level and polarity of BDOM. Compared with BDOM, LDOM exerted a stronger control over the exchange of native OM from subsoil natural iron-bearing minerals and substantially enhanced the molecular diversity of the reconstituted mineral-associated OM during the adsorptive fractionation. Overall, these findings suggest the compositional evolution of DOM profoundly shapes SOM formation and persistence in forest subsoils, which is the key to understanding DOM cycling and contaminant fate during its passage through the soil.

2.
Sci Total Environ ; 904: 167001, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37704155

RESUMEN

As a toxic element of global concern, the elevated concentration of antimony (Sb) in the environment has attracted increasing attention. Microorganisms have been reported as important driving forces for Sb transformation. Iron (Fe) is the most important metal associated element of Sb, however, how Fe-bearing minerals affect the biological transformation of Sb is still unclear. In this study, the effects of Fe-bearing minerals on biological Sb(V) reduction were investigated by employing a marine Shewanella sp. CNZ-1 (CNZ-1). Our results showed that the presence of hematite, magnetite and ferrihydrite (1 g/L) resulted in a decrease in Sb(III) concentration of ~19-31 % compared to the Fe(III)-minerals free system. The calculated Sb(V) reduction rates are 0.0256 (R2 0.71), 0.0389 (R2 0.87), 0.0299 (R2 0.96) and 0.0428 (R2 0.95) h-1 in the hematite-, magnetite-, ferrihydrite-supplemented and Fe(III)-minerals free systems, respectively. The cube-shaped Sb2O3 was characterized as a reductive product by using XRD, XPS, FTIR, TG and SEM approaches. Differential proteomic analysis showed that flagellar protein, cytochrome c, electron transfer flavoprotein, nitrate reductase and polysulfide reductase (up-regulation >1.5-fold, p value <0.05) were supposed to be included in the electron transport pathway of Sb(V) reduction by strain CNZ-1, and the key role of nitrate reductases was further highlighted during this reaction process based on the RT-qPCR and confirmatory experiments. Overall, these findings are beneficial to understand the environmental fate of Sb in the presence of Fe-bearing minerals and provide guidance in developing the bacteria/enzyme-mediated control strategy for Sb pollution.


Asunto(s)
Compuestos Férricos , Hierro , Compuestos Férricos/metabolismo , Hierro/metabolismo , Nitrato-Reductasa/metabolismo , Óxido Ferrosoférrico , Proteómica , Oxidación-Reducción , Minerales/metabolismo , Antimonio/análisis
3.
J Hazard Mater ; 459: 132213, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37549581

RESUMEN

Sulfate-reducing bacteria (SRB) can immobilize heavy metals in soils through biomineralization, and the parent rock and minerals in the soil are critical to the immobilization efficiency of SRB. To date, there is little knowledge about the fate of Cd associated with the parent rocks and minerals of soil during Cd immobilized by SRB. In this study, we created a model system using clay-size fraction of soil and SRB to explore the role of SRB in immobilizing Cd in soils from stratigraphic successions with high geochemical background. In the system, clay-size fractions (particle size < 2 µm) with concentration of Cd (0.24-2.84 mg/kg) were extracted from soils for bacteria inoculation. After SRB reaction for 10 days, the Cd fraction tended to transform into iron-manganese bound. Further, two clay-size fractions, i.e., the non-crystalline iron oxide (Fe-OX) and the crystalline iron oxide (Fe-CBD), were separated by extraction. The reaction of SRB with them verified the transformation of primary iron-bearing minerals into secondary iron-bearing minerals, which contributed to Cd redistribution. This study shows that SRB could exploit the composition and structure of minerals to induce mineral recrystallization, thereby aggravating Cd redistribution and immobilization in clay-size fractions from stratigraphic successions with high geochemical background.


Asunto(s)
Desulfovibrio , Contaminantes del Suelo , Arcilla , Suelo/química , Cadmio/química , Contaminantes del Suelo/análisis , Minerales/química , Hierro/metabolismo , Desulfovibrio/metabolismo , Sulfatos
4.
Sci Total Environ ; 806(Pt 3): 151220, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34717993

RESUMEN

Elevated sediment-bound trace elements and iron-bearing minerals in intertidal habitats have been drawing more attention, but there is rarely a comparative study assessing these features between halophyte plants habitat and mudflats. In this paper, sediment samples were collected in S. alterniflora and the corresponding mudflat at 7 typical intertidal habitats (Chongming, Xiapu, Yueqing, Yunxiao, Zhanjiang, Beihai, and Zhuhai) from north to south of China, respectively. Trace element concentrations, including arsenic (As), mercury (Hg), cadmium (Cd), antimony (Sb) and scandium (Sc), and magnetic characteristics were determined. Variations in sediment-bound As, Hg, Cd, Sb were associated with S. alterniflora. Accumulations of sediment-bound As, Hg, Sb, Cd and Sc in S. alterniflora in Beihai were much higher than those in the mudflat. Concentration of sediment-bound As, Hg, Sb, Cd and Sc in S. alterniflora and mudflat were comparable in Yueqing, Xiapu, Yunxiao and Zhanjiang, respectively. Variations in low-frequency susceptibility, susceptibility of anhysteretic remanence magnetization, saturation isothermal remanence magnetization and frequency dependent susceptibility can explain the site-dependent accumulation of magnetic minerals in intertidal habitats. S. alterniflora tend to deplete sediment magnetic concentration and enhance sediment-bound As, Hg, and Sb concentration. The results of our study further revealed the coexistence of trace elements and magnetic minerals between the sampling sites and vegetative in intertidal habitats.


Asunto(s)
Oligoelementos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , Hierro , Minerales , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis
5.
Sci Total Environ ; 726: 138650, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32305773

RESUMEN

Soluble iron from atmospheric aerosol particles has toxicological effects on ambient environment due to their oxidative potential. However, the dissolution process and factors affecting this process are poorly understood. In this study, by solid phase characterization and aqueous dissolution experiments, we investigated the influence of acids, including HCl, H2SO4 and HNO3, and H+ concentration on iron dissolution rate, solubility and speciation of iron in chlorite, illite, kaolinite and pyrite. The dissolution of iron-bearing clay minerals, i.e. chlorite, illite and kaolinite, was a multi-stage process with a rapid rate in the initial stage and then decreasing rate in the following stages. In contrast, the regularly crystallized pyrite proceeded with an extremely rapid dissolution rate at very beginning and then remained almost constant. In all acid solutions, the dissolution rate was in the order of pyrite > illite > chlorite > kaolinite. H2SO4 was stronger than HCl and HNO3 in the destruction of mineral structures to release iron, while HNO3 dissolved more iron in pyrite (FeS2). High H+ concentration easily destroyed the mineral structures to release the structural or interlayer iron, whereas low H+ concentration increased the proportion of Fe (II) in clay minerals. Non-linear fitting of continuous dissolution models showed that the iron dissolution rates and iron redox speciation as functions of time were well predicted, with r2 > 0.99 for chlorite and illite, and r2 > 0.96 for kaolinite. Oxidative potential analysis proved that the dissolved iron possessed a considerable potential to generate reactive oxygen species.

6.
J Hazard Mater ; 392: 122295, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32105955

RESUMEN

A facile and cost effective acid leaching-coprecipitation method was developed to prepare spinel-type (Mg,Ni)(Fe,Al)2O4 from saprolite laterite ore in large scale. The as-prepared (Mg,Ni)(Fe,Al)2O4 exhibited excellent photo-Fenton-like catalytic activity in decomposing different kinds of organic dyes and antibiotic tetracycline in the present of oxalic acid (H2C2O4). The influential factors of RhB degradation efficiency were investigated, including the (Mg,Ni)(Fe,Al)2O4 dosage, H2C2O4 concentration and the intensity of simulated sunlight. Meanwhile, the reaction mechanism of (Mg,Ni)(Fe,Al)2O4/H2C2O4/simulated sunlight system was also proposed. As the formation of highly photochemical [≡Fe(C2O4)3]3- complex ions on the surface of the (Mg,Ni)(Fe,Al)2O4, the obtained (Mg,Ni)(Fe,Al)2O4 showed degradation efficiency (η) over 90.0 % for common organic dyes and antibiotic tetracycline within 180 min under the optimum conditions. The η and TOC removal for RhB were still over 98.0 % and 46.0 % after five reuse cycles, respectively. The excellent catalytic performance and recyclability make the (Mg,Ni)(Fe,Al)2O4 fabricated from natural saprolite laterite ore more competitive in dealing with wastewaters contaminated by organic pollutants.

7.
Artículo en Inglés | MEDLINE | ID: mdl-27117707

RESUMEN

Ordinary chondrites from H, L and LL groups were studied using Mössbauer spectroscopy with a high velocity resolution. Mössbauer parameters of spectral components were obtained using new fitting model excluding the effect of previous misfits of troilite component. Obtained parameters were related to corresponding iron-bearing minerals in ordinary chondrites. The differences of these minerals content as well as small differences in the hyperfine parameters of the same iron-bearing minerals were revealed for different meteorites. The temperatures of equilibrium cations distribution in silicates were estimated and suitable parameters for classification of H, L and LL chondrites were supposed using Mössbauer parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA