Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.427
Filtrar
1.
Neotrop Entomol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963529

RESUMEN

Body size is an important morphological characteristic that covaries with the quality of parasitoids and predators. Data show that the larger the organism is, the better the biological parameters and the host location by natural enemies in the field. The standard way of evaluating the size of parasitoids of the genus Trichogramma (Hymenoptera: Trichogrammatidae) is by measuring the tibia, but using only one body part to estimate the size of organisms can lead to miscalculations. In this paper, commercial Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae) and Trichogramma galloi Zucchi, 1988 (Hymenoptera: Trichogrammatidae) were mounted on slides for microscopy and photographed, and the photographs were used to measure their antennae, scutellum, ovipositor, tibia, and wing. Principal component analysis (PCA) and linear discriminant analysis (LDA) were performed to select the body part that best represents their size. PCA showed that all body parts represented size in a similar way, and LDA showed that the ovipositor was the most representative. We conclude that the best body parts for representing the size of the Trichogramma species studied are the wing and ovipositor, and at least two body parts are needed to detect two size groups.

3.
Zookeys ; 1205: 115-167, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947168

RESUMEN

The Old World braconine wasp genus Trigastrotheca Cameron is revised. The genus is recorded from the island of Madagascar for the first time based on two new species, T.christianhenrichi Quicke & Butcher, sp. nov. and T.formosa Quicke & Friedman, sp. nov. Trigastrothecagriffini Quicke, sp. nov. is described from Australia; T.aethiopica Quicke & Friedman, sp. nov. is described from Ethiopia; T.braeti Quicke & Butcher, sp. nov. is described from Congo; T.simba van Noort, sp. nov. is described from Tanzania; T.freidbergi Quicke & Friedman, sp. nov., T.carinata Ranjith, sp. nov., T.flava Ranjith, sp. nov. and T.similidentata Ranjith, sp. nov. are described from India; T.khaoyaiensis Quicke & Butcher, sp. nov., T.naniensis Quicke & Butcher, sp. nov., and T.sublobata Quicke & Butcher, sp. nov. are described from Thailand. Trigastrothecatridentata is recorded from Thailand for the first time. A putative female of T.sureeratae is described for the first time. Acroceriliatricolor Quicke & Ingram, 1993 is transferred into Trigastrotheca, as T.acroceropsis nom. nov. A key is provided for the identification of species.

4.
J Econ Entomol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941232

RESUMEN

The box tree moth (BTM), Cydalima perspectalis Walker, is a pest that infests various plants within the Buxus genus. Although a specific parasitoid wasp species associated with the BTM has been observed in the Republic of Korea, no research on this species has been published. Here, we describe the fundamental morphological and biological characteristics of this parasitoid. We have identified the wasp as belonging to the genus Eriborus (Hymenoptera: Ichneumonidae: Campopleginae). Eriborus sp. parasitizes within the living host body, with 1 wasp emerging from each host. The parasitism rate observed in collected BTM populations was 33.1%. The emergence rate was 87.1%, with all emerging adults being females, resulting in a sex ratio of 0. The pupal period avg 9.5 days, and the adult lifespan avg 10.5 days. Eriborus sp. parasitized BTM larvae from the first to the fourth instar and reproduced by thelytokous parthenogenesis. Eriborus sp. exhibited morphological differences compared with previously reported Eriborus species in Korea, particularly in the length of the ovipositor sheath. Additionally, the proportion of the highest similarity in nucleotide sequences of mitochondrial cytochrome oxidase I DNA was only 94.53%, rendering species identification using GenBank's mt cytochrome c oxidase 1 DNA sequences unfeasible. These data suggest that Eriborus sp. could be used as a biological control agent for managing BTM infestations.

5.
Environ Entomol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38912619

RESUMEN

Emerald ash borer (EAB) (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae) is the most destructive insect to invade North American forests. Identifying habitat features that support EAB natural enemies is necessary to enhance EAB biological control. In many forest ecosystems, tree species diversity has been linked with reduced pest abundance and increases in natural enemy abundance. We assessed the influence of tree species richness, ash density, and proportion of total ash basal area on ash canopy condition, EAB larval densities, and biocontrol by woodpeckers and parasitoids in pairs of healthy and declining overstory (DBH > 10 cm) and recruit-sized ash (DBH 2-10 cm) in 4 post-invasion forests in Michigan, USA. Tree species richness and ash density were not significantly associated with EAB larval densities, ash canopy dieback and transparency, and woodpecker predation of EAB larvae. In declining and healthy overstory ash, woodpeckers killed 38.5 ±â€…3.9% and 13.2 ±â€…3.7% of larvae, respectively, while the native parasitoid Phasgonophora sulcata Westwood killed 15.8 ±â€…3.8% and 8.3 ±â€…3.0% and the introduced parasitoid Spathius galinae Belokobylskij & Strazanac killed 10.8 ±â€…2.5% and 5.0 ±â€…2.6% of EAB larvae. Parasitism by P. sulcata was inversely related to ash density while parasitism by S. galinae was positively associated with ash density. Ash density, but not tree diversity, appears to differentially influence biological control of EAB by parasitoids, but this effect is not associated with reduced EAB densities or improved canopy condition.

6.
Elife ; 132024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904661

RESUMEN

The success of an organism depends on the molecular and ecological adaptations that promote its beneficial fitness. Parasitoids are valuable biocontrol agents for successfully managing agricultural pests, and they have evolved diversified strategies to adapt to both the physiological condition of hosts and the competition of other parasitoids. Here, we deconstructed the parasitic strategies in a highly successful parasitoid, Trichopria drosophilae, which parasitizes a broad range of Drosophila hosts, including the globally invasive species D. suzukii. We found that T. drosophilae had developed specialized venom proteins that arrest host development to obtain more nutrients via secreting tissue inhibitors of metalloproteinases (TIMPs), as well as a unique type of cell-teratocytes-that digest host tissues for feeding by releasing trypsin proteins. In addition to the molecular adaptations that optimize nutritional uptake, this pupal parasitoid has evolved ecologically adaptive strategies including the conditional tolerance of intraspecific competition to enhance parasitic success in older hosts and the obligate avoidance of interspecific competition with larval parasitoids. Our study not only demystifies how parasitoids weaponize themselves to colonize formidable hosts but also provided empirical evidence of the intricate coordination between the molecular and ecological adaptations that drive evolutionary success.


Asunto(s)
Adaptación Fisiológica , Drosophila , Interacciones Huésped-Parásitos , Avispas , Animales , Avispas/fisiología , Drosophila/parasitología , Pupa/parasitología , Larva/parasitología , Larva/metabolismo
7.
Environ Entomol ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853372

RESUMEN

The All Taxa Biodiversity Inventory (ATBI) in Great Smoky Mountains National Park (GSMNP) seeks to document every species of living thing in the park. The ATBI is decades in progress, yet some taxa remain virtually untouched by taxonomists. Such "high priority" taxa include the hyper-diverse parasitoid wasp family Ichneumonidae. Despite the positive and multifaceted effects ichneumonids have on their environment, only a small percentage of those collected in the park have been identified as species, mostly to their complex morphology and overwhelming diversity. Recently, DNA barcoding has transformed biodiversity inventories, streamlining the process to be more rapid and efficient. To test the effectiveness of barcoding 20 + year-old specimens of Ichneumonidae and catalog new records for GSMNP, COI was amplified from 95 ichneumonid morphospecies collected from Andrew's Bald, NC. Species identifications were confirmed morphologically. Eighty-one ichneumonids generated sequence data, representing 16 subfamilies and 44 genera. The subfamily Oxytorinae is newly recorded from GSMNP, along with 10 newly recorded genera and 23 newly recorded species across Ichneumonidae. These results contribute significantly to the ATBI by adding new park records for a high-priority taxon and demonstrate the effectiveness of applying DNA barcoding to samples in long-term storage or those lacking immediate taxonomic expertise.

8.
Insects ; 15(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38921130

RESUMEN

Ichneumonidae, or Chilean Darwin wasps, are an important component of South American hymenopteran diversity, but the taxonomic and distributional knowledge on this insect is still deficient. Taking advantage of recently updated taxonomic knowledge, we assessed biogeographic relationships at the genus level and biodiversity spatial patterns along the latitudinal gradient. The results show the presence of 264 species in Chile, arranged in 102 genera and 22 subfamilies. Biogeographic relationships are based on six elements (cosmopolitan (n = 50; 36%), endemic (n = 29; 21%), Neotropical (n = 22; 16%), Holarctic-Oriental (n = 19; 14%), south-temperate (n = 16; 11%) and Australasian) and composed of just three genera: Anacis, Labena, and Meringops. Species and genera show a bimodal distribution along the latitudinal gradient: around 34° and 38° S. From an ecoregional perspective, richness is concentrated in the Valdivian temperate forests, but when assessed at a 0.5 × 0.5 cell scale, several outstanding cells are in the contact zone between the temperate forests and the Chilean Matorral. On the other hand, the Atacama Desert shows little or no presence of Darwin wasps. The results agree with Charles Porter, who identified a northern province composed of Neotropical and cosmopolitan genera with their own representatives in the far north (11 genera), a distributional gap in the core of the Atacama Desert, and around 128 genera in Porter's Neantarctic realm, covering all of Chile from 25° S to Cape Horn, including the Juan Fernandez islands. These results reinforce knowledge gaps and the need for more sampling and studies of available collections. Due to sampling gaps at this stage, identifying a continued increase or decrease in richness towards higher latitudes is not possible. More taxonomic and distributional information is also needed to assess potential threats to endemic genera and species.

9.
Insects ; 15(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38921141

RESUMEN

The ectoparasitoid Habrobracon hebetor (Hymenoptera: Braconidae) exhibits a broad parasitic capability towards various lepidopteran pests, with venom serving as a crucial virulent factor ensuring successful parasitization and subsequent host mortality. Analyzing the constituents of its venom is essential for elucidating the mechanisms underlying efficient host killing by this parasitoid and for exploring potentially functional venom proteins. Through a transcriptomic analysis, a total of 34 venom proteins were identified within the venom of H. hebetor, encompassing known components such as serine protease, metalloproteinase, esterase, and serine protease inhibitors commonly present in parasitoid venoms. Unique components like paralytic protein and ion transport peptide-like were identified, possibly specific to certain parasitoids, along with novel proteins with uncharacterized functions. Spatial gene expression profiling of the identified venom proteins using transcriptomic data, corroborated by quantitative PCR validation for 13 randomly selected proteins, revealed abundant expression levels in the venom apparatus, affirming them as genuine venom components. Notably, the paralytic protein exhibited prominent expression, with the highest FPKM (fragments per kilobase of transcript per million fragments mapped) value of 24,704.87 in the venom apparatus, indicative of its significant role in successful parasitism by H. hebetor. The identification of these venom proteins establishes a foundation for the further exploration of bioactive agents for pest management strategies.

10.
J Theor Biol ; 590: 111855, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38789077

RESUMEN

Insect outbreaks can cause large scale defoliation of forest trees or destruction of crops, leading to ecosystem degradation and economic losses. Some outbreaks occur simultaneously across large geographic scales and some outbreaks occur periodically every few years across space. Parasitoids are a natural enemy of these defoliators and could help mitigate these pest outbreaks. A holistic understanding of the host-parasitoid interactions in a spatial context would thus enhance our ability to understand, predict and prevent these outbreaks. We use a discrete time deterministic model of the host parasitoid system with populations migrating between 2 patches to elucidate features of spatial host outbreaks. We show that whenever populations persist indefinitely, host outbreaks in both patches can occur alternatively (out of phase) at low migration between patches whereas host outbreaks always occur simultaneously (in phase) in both patches at high migration between patches. We show that our results are robust across a large range of parameters across different modelling approaches used typically to model intraspecific competition among hosts and parasitism, in the host-parasitoid literature. We give an analytical expression for the period of oscillations when the migration is low i.e., when host outbreaks in both patches are out of phase, show it is in agreement with numerical results. We end our paper by showing that we get the same results whether we include the biologically rooted formulations from May et al. (1981) or a general cellular automata model with qualitative rules.


Asunto(s)
Migración Animal , Interacciones Huésped-Parásitos , Modelos Biológicos , Interacciones Huésped-Parásitos/fisiología , Animales , Migración Animal/fisiología , Insectos/parasitología , Dinámica Poblacional , Ecosistema
11.
J Econ Entomol ; 117(3): 673-682, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38700485

RESUMEN

Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and Spodoptera litura (Fabricius) are the main pests on corn (Poaceae: Gramineae). The performance of the larval wasp, Microplitis pallidipes Szépligeti (Hymenoptera: Braconidae), was reported on S. frugiperda and S. litura. In this study, we evaluated host selectivity, constructed an age-stage, 2-sex life table, and assessed the pest control potential of M. pallidipes against these 2 pests under laboratory conditions. In a 2-choice host preference experiment, M. pallidipes exhibited a stronger preference for S. frugiperda over S. litura and a distinct preference for second instars. We also investigated the parasitism of females that were either unfed or fed with 10% honey-water solution under different host densities and found that the highest parasitism rate was observed when M. pallidipes were fed with honey-water solution on the first day after mating and a presented female wasp:host ratio of 1:90. In a nonselective assay, M. pallidipes successfully completed a full generation on both hosts. However, the parasitoids exhibited higher fitness and population growth potential when reared on S. frugiperda, with a net reproductive rate (R0) of 24.24, an intrinsic rate of increase (r) of 0.20 per day, a finite rate of increase (λ) of 1.23 per day, and a mean generation time (T) of 15.69 days. This study elucidates the performance of M. pallidipes on 2 Spodoptera host species and offers insights into its biological control potential on lepidopteran pests.


Asunto(s)
Interacciones Huésped-Parásitos , Larva , Control Biológico de Vectores , Spodoptera , Avispas , Animales , Spodoptera/parasitología , Spodoptera/crecimiento & desarrollo , Spodoptera/fisiología , Avispas/fisiología , Larva/crecimiento & desarrollo , Larva/fisiología , Larva/parasitología , Femenino , Masculino
12.
G3 (Bethesda) ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718200

RESUMEN

During the last decade, the spotted-wing drosophila, Drosophila suzukii, has spread from eastern Asia to the Americas, Europe, and Africa. This fly attacks many species of cultivated and wild fruits with soft, thin skins, where its serrated ovipositor allows it to lay eggs in undamaged fruit. Parasitoids from the native range of D. suzukii may provide sustainable management of this polyphagous pest. Among these parasitoids, host-specificity testing has revealed a lineage of Ganaspis near brasiliensis, referred to in this paper as G1, that appears to be a cryptic species more host-specific to D. suzukii than other parasitoids. Differentiation among cryptic species is critical for introduction and subsequent evaluation of their impact on D. suzukii. Here we present results on divergence in genomic sequences and architecture and reproductive isolation between lineages of Ganaspis near brasiliensis that appear to be cryptic species. We studied five populations, two from China, two from Japan, and one from Canada, identified as the G1 versus G3 lineages based on differences in cytochrome oxidase l sequences. We assembled and annotated the genomes of these populations and analyzed divergences in sequence and genome architecture between them. We also report results from crosses to test reproductive compatibility between the G3 lineage from China and the G1 lineage from Japan. The combined results on sequence divergence, differences in genome architectures, ortholog divergence, reproductive incompatibility, differences in host ranges and microhabitat preferences, and differences in morphology show that these lineages are different species. Thus, the decision to evaluate the lineages separately and only import and introduce the more host-specific lineage to North America and Europe was appropriate.

13.
Biology (Basel) ; 13(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38785797

RESUMEN

Serbia has recently begun facing a serious problem with the Brown Marmorated Stink Bug, Halyomorpha halys (Stål), which was first recorded in October 2015. This species belongs to the Pentomidae family and is notorious for causing extensive damage to plants. During the winter, it tends to gather in urban areas, such as houses and different man-made facilities, which has raised concerns among producers and citizens. The population of this species has rapidly increased, causing significant economic damage to cultivated plants. However, despite the alarming situation no natural enemies have yet been identified in Serbia. Therefore, research in 2022 was focused on collecting stink bug eggs to investigate the presence of egg parasitoids. The study identified two foreign Hymenoptera species for the European region, Trissolcus japonicus (Ashmead) and Tr. mitsukurii (Ashmead) (Scelionidae), recorded for the first time in Serbia. Additionally, the list of egg parasitoid species belonging to the Hymenoptera order includes seven local species: Anastatus bifasciatus (Geoffroy), from the Eupelmidae family; Ooencyrtus sp., from the Encyrtidae family; and Telenomus turesis (Walker), Tr. basalis (Wollaston), Tr. belenus (Walker), Tr. colemani (Crawford), and Tr. semistriatus (Nees von Esenbeck), from the Scelionidae family. In total, nine egg parasitoid species were, for the first time, reported as parasitizing H. halys and related species in Serbia.

14.
Zookeys ; 1201: 233-253, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779585

RESUMEN

Heterospilussicanus (Marshall, 1888) is redescribed and illustrated based on the holotype of Dendrosotersicanus Marshall, 1888 and on recently collected material from its type locality (Sicily, Italy). Previous host records for this species are unreliable. Here, the host of H.sicanus, the rare ptinid beetle Gastralluspubens Fairmaire, 1875, is recorded for the first time, having been reared in a historic library in Palermo, Italy. Heterospilussicanus is compared with the similar species Telebolus (= Heterospilus) corsicus Marshall, 1888, which was described in the same monograph from Corsica (France), and it is also redescribed and illustrated. Atoreuteusceballosi Docavo Alberti, 1960, syn. nov. is synonymised under Heterospilussicanus (Marshall, 1888), and Hormiopterus (= Rhaconotus) ollivieri Giraud var. flava Fahringer, 1931, syn. nov. is a junior synonym of Heterospiluscephi Rohwer, 1925. A key for determination of the Western Palaearctic Heterospilus species with a striate vertex is provided and the distributions of H.sicanus and H.corsicus are discussed.

15.
Insects ; 15(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38786871

RESUMEN

In biological control, joint releases of predators and parasitoids are standard. However, intraguild predation (IGP) can occur when a predator attacks a parasitoid, potentially affecting pest control dynamics. In addition to the focal prey (FP), Trialeurodes vaporariorum, the intraguild predator (IG-predator) Geocoris punctipes can consume the parasitoid Eretmocerus eremicus (IG-prey). In this IGP context with multiple prey, an alternative prey (AP), like the aphid Myzus persicae, may influence interactions. Theory predicts that, in simple interactions, a predator's functional response (FR) to the FP changes with the presence of an AP. However, whether this holds in an IGP context is unknown. In this study, we empirically tested that prediction. Our results show that without IGP, G. punctipes exhibits a generalized FR with and without AP. Nevertheless, with IGP, the predator exhibited a Type II FR at low and high AP densities, increasing pressure on the FP and potentially favoring short-term biological control strategies. However, when 25 AP were offered, the predator's response shifted, underscoring the importance of monitoring AP densities to prevent potential disruptions in FP control. In both contexts, the increase in AP produced a handling time increase and a decrease in consumption rate. These results indicate that the theoretical prediction of the effect of AP on the FR is met only under specific conditions, and the complexity of multitrophic interactions must be considered.

16.
Insects ; 15(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786908

RESUMEN

Parasitoids commonly manipulate their host's metabolism and immunity to facilitate their offspring survival, but the mechanisms remain poorly understood. Here, we deconstructed the manipulation strategy of a newly discovered parasitoid wasp, L. myrica, which parasitizes D. melanogaster. Using RNA-seq, we analyzed transcriptomes of L. myrica-parasitized and non-parasitized Drosophila host larvae. A total of 22.29 Gb and 23.85 Gb of clean reads were obtained from the two samples, respectively, and differential expression analysis identified 445 DEGs. Of them, 304 genes were upregulated and 141 genes were downregulated in parasitized hosts compared with non-parasitized larvae. Based on the functional annotations in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, we found that the genes involved in host nutrition metabolism were significantly upregulated, particularly in carbohydrate, amino acid, and lipid metabolism. We also identified 30 other metabolism-related DEGs, including hexokinase, fatty acid synthase, and UDP-glycosyltransferase (Ugt) genes. We observed that five Bomanin genes (Boms) and six antimicrobial peptides (AMPs) were upregulated. Moreover, a qRT-PCR analysis of 12 randomly selected DEGs confirmed the reproducibility and accuracy of the RNA-seq data. Our results provide a comprehensive transcriptomic analysis of how L. myrica manipulates its host, laying a solid foundation for studies on the regulatory mechanisms employed by parasitoid wasps in their hosts.

17.
Insects ; 15(5)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38786903

RESUMEN

Few studies have considered whether hidden (asymptomatic) plant pathogen infection alters ecological interactions at the higher trophic levels, even though such infection still affects plant physiology. We explored this question in two field experiments, where two varieties of lettuce (Little Gem, Tom Thumb) infected with Botrytis cinerea were either (1) naturally colonised by aphids or (2) placed in the field with an established aphid colony. We then recorded plant traits and the numbers and species of aphids, their predators, parasitoids and hyperparasitoids. Infection significantly affected plant quality. In the first experiment, symptomatically infected plants had the fewest aphids and natural enemies of aphids. The diversity and abundance of aphids did not differ between asymptomatically infected and uninfected Little Gem plants, but infection affected the aphid assemblage for Tom Thumb plants. Aphids on asymptomatically infected plants were less attractive to predators and parasitoids than those on uninfected plants, while hyperparasitoids were not affected. In the second experiment, when we excluded natural enemies, aphid numbers were lower on asymptomatically and symptomatically infected plants, but when aphid natural enemies were present, this difference was removed, most likely because aphids on uninfected plants attracted more insect natural enemies. This suggests that hidden pathogen infection may have important consequences for multitrophic interactions.

18.
Insects ; 15(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786911

RESUMEN

Inter-row management in vineyards can influence the abundance of grapevine pests and their natural enemies. In 2013-2015, in a vineyard in northeastern Italy, the influence of two vineyard inter-row management strategies (i.e., alternate mowing, AM, and periodical tillage, PT) on the population dynamics of grapevine leafhoppers Hebata vitis and Zygina rhamni and their natural enemies, the mymarid Anagrus atomus and spiders (Araneae), and other hymenopteran parasitoids, were studied with different survey approaches. The infestations of both leafhoppers were lower in AM than PT due to the reduced leafhopper oviposition and higher nymph mortality in AM. This occurred although leafhopper egg parasitization by A. atomus was greater in PT than AM according to a density-dependent relationship with the leafhopper egg amount. Hymenopteran parasitoids other than A. atomus were the most abundant in AM, probably due to the higher availability of nectar and pollen than in PM. The significantly higher population densities of hunting spiders in AM than PT can be associated with the higher predation of leafhopper nymphs. Therefore, the study demonstrated that the alternate mowing of vineyard inter-rows enhances the abundance of natural enemies, such as spiders and hymenopteran parasitoids, and can contribute to grapevine leafhopper pest control.

19.
Neotrop Entomol ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814506

RESUMEN

The history of the taxonomy of Trichogramma parasitoid wasps can be divided into two phases. In the first phase, species identifications were based on external morphological characters; however, these identifications proved to be confusing and inaccurate. In the second phase, starting in the 1970s, taxa were identified based on charcteristics of the male genital capsule , leading to a major advance in Trichogramma taxonomy. The history of Trichogramma taxonomy in Brazil is recent and mainly related to species that parasitize agricultural pests. In Brazil, the first phase of Trichogramma taxonomy occurred in the 1960s, while the second phase occurred from the 1980s onward. In this second phase, Trichogramma taxonomy progressed significantly and knowledge of Trichogramma diversity as well as associations with lepidopteran pests improved markedly in Brazil as well as worldwide. The last five decades have seen significant progress in studies in Brazil, with taxonomy evolving from identifications based exclusively on morphological characters to integrative taxonomy, encompassing biology (crosses) and morphometry. This historical outline presents the phases of Trichogramma taxonomy in Brazil, addressing the hurdles encountered in the first descriptions, erroneous records of the species, and species descriptions since the 1980s. We highlight the importance of accurately identifying Trichogramma taxa for their use in biological control, as well as species diversity and associations with lepidopteran hosts.

20.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38809687

RESUMEN

Huanglongbing (HLB), a devastating citrus disease caused by Candidatus Liberibacter asiaticus, is efficiently vectored by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Tamarixia radiata (Waterston) plays a crucial role as an ectoparasitoid, preying on D. citri nymphs. By collecting and identifying headspace volatiles from fifth instar nymphs of D. citri using a gas chromatograph-mass spectrometer (GC-MS), we obtained a collection of 9 volatile compounds. These compounds were subsequently chosen to investigate the electrophysiological and behavioral responses of female T. radiata. At a concentration of 10 µg/µl, 9 compounds were compared with cis-3-hexen-1-ol (control), resulting in trans-2-nonenal inducing the highest relative electroantennogram (EAG) value, followed by hexanal, heptanal, n-heptadecane, tetradecanal, n-tetradecane, n-pentadecane, 1-tetradecanol, and 1-dodecanol. The top 5 EAG responses of female T. radiata to these compounds were further investigated through EAG dose-response experiments. The results showed positive dose-responses as concentrations increased from 0.01 to 10 µg/µl. In Y-tube olfactometer bioassays, female T. radiata exhibited a preference for specific compounds. They were significantly attracted to tetradecanal at a concentration of 10 µg/µl and trans-2-nonenal at 0.01 µg/µl, while no significant attraction was observed toward hexanal, heptanal, or n-heptadecane. Our report is the first to demonstrate that volatiles produced by D. citri nymphs attract T. radiata, which suggests that this parasitoid may utilize nymph volatiles to locate its host.


Asunto(s)
Hemípteros , Ninfa , Compuestos Orgánicos Volátiles , Animales , Ninfa/crecimiento & desarrollo , Ninfa/fisiología , Hemípteros/fisiología , Femenino , Avispas/fisiología , Fenómenos Electrofisiológicos , Conducta Animal/efectos de los fármacos , Antenas de Artrópodos/fisiología , Antenas de Artrópodos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...