Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.387
Filtrar
1.
J Breath Res ; 18(4)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008974

RESUMEN

Cannabinoids can be detected in breath after cannabis use, but different breath matrices need to be explored as studies to date with filter-based devices that collect breath aerosols have not demonstrated that breath-based measurements can reliably identify recent cannabis use. Exhaled breath condensate (EBC) is an unexplored aqueous breath matrix that contains condensed volatile compounds and water vapor in addition to aerosols. EBC was collected from participants both before and at two time points (0.7 ± 0.2 h and 1.7 ± 0.3 h) after observed cannabis use. Eleven different cannabinoids were monitored with liquid chromatography tandem mass spectrometry. Five different cannabinoids, including Δ9-tetrahydrocannabinol (THC), were detected in EBC collected from cannabis users. THC was detected in some EBC samples before cannabis use, despite the requested abstinence period. THC was detected in all EBC samples collected at 0.7 h post use and decreased for all participants at 1.7 h. Non-THC cannabinoids were only detected after cannabis use. THC concentrations in EBC samples collected at 0.7 h showed no trend with sample metrics like mass or number of breaths. EBC sampling devices deserve further investigation with respect to modes of cannabis use (e.g, edibles), post use time points, and optimization of cannabinoid recovery.


Asunto(s)
Pruebas Respiratorias , Cannabinoides , Espiración , Humanos , Pruebas Respiratorias/métodos , Cannabinoides/análisis , Masculino , Adulto , Femenino , Espectrometría de Masas en Tándem/métodos , Adulto Joven , Cromatografía Liquida/métodos , Detección de Abuso de Sustancias/métodos , Fumar Marihuana/efectos adversos , Dronabinol/análisis , Cannabis/química
2.
Artículo en Inglés | MEDLINE | ID: mdl-39029473

RESUMEN

Aim: To evaluate the label accuracy and content of various hemp-derived cannabidiol (CBD) products (cannabinoid products with ≤0.3% Δ9-tetrahydrocannabinol [THC]), as well as evaluate advertised claims on product labels. Methods: Hemp haircare, cosmetics, and food/drink products that were advertised to contain CBD were purchased from retail stores in the Baltimore, Maryland area (purchased in July 2020) and online (purchased in August 2020). Cannabinoid concentrations were measured using gas chromatography-mass spectrometry. Percent deviations between labeled and actual CBD concentrations were determined. Label information such as references to the Food and Drug Administration (FDA), external testing claims, and other claims (i.e., cosmetic or beauty, therapeutic, health halo effect, or "other") were quantified. Results: Ninety-seven products were purchased (35 in-store, 62 online). Of the 71 products with a specific total CBD amount on the label, 35 (49%) were underlabeled (>10% more CBD than advertised), 27 (38%) were overlabeled (>10% less CBD than advertised), and 9 (12.7%) were accurately labeled (within ±10% of labeled CBD). The median (range) percentage deviations were -53% (-100%-76%) for haircare products, +18% (-100%-1076%) for cosmetics, and -1% (-100%-4468%) for food/drinks. CBD label accuracy did not differ significantly between products with external testing claims versus those without (t40 = 0.23, p = 0.82). Overall, 24% of the 97 (total) products made a cosmetic or beauty claim (e.g., "skin looks more youthful"), 40% made a therapeutic claim (e.g., "pain relief"), and 86% made a health halo effect claim (e.g., "paraben-free," "dye-free," etc.). Most products (63%) did not include a disclaimer that claims had not been evaluated by the FDA. Conclusions: Most of the products included in this sample were inaccurately labeled for CBD content, including those claiming to have been tested by third party laboratories. A notable finding was that 10 products did not contain any CBD. Many products made therapeutic claims or used marketing tactics to seemingly convey they were safe/healthy, but only about one-third included disclaimers that these statements had not been evaluated by the FDA. These findings highlight the need for proper regulatory oversight of cannabinoid-containing products to ensure quality assurance and deter misleading or unfounded health claims in product marketing.

3.
Genes (Basel) ; 15(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39062742

RESUMEN

The inclusion of spent hemp biomass (SHB), an extracted byproduct from industrial cannabidiol (CBD) production, in the diets of dairy cows and lambs appears to be safe with minor effects on the metabolism, including a decrease in circulating cholesterol and increase bilirubinemia, both associated with liver metabolism. Those effects could be consequence of the presence of cannabinoids, particularly Δ9-tetrahydrocannabinol (THC) and CBD in the SHB. This study aimed to study the transcriptional profile of the liver of dairy cows and lambs fed SHB. Dairy cows received SHB or alfalfa pellet for four weeks of intervention (IP) and four weeks of withdrawal periods (WP). Finishing lambs were fed a control diet (CON), 10% (LH2), or 20% (HH2) SHB for 2 months or 1 month followed by 1-month SHB withdrawal (LH1 and HH1, respectively). RNA sequencing was performed, and the mRNA was annotated using the latest reference genomes. The RNAseq data were filtered, normalized for library size and composition, and statistically analyzed by DESeq2. The bioinformatic analysis was performed by using DAVID, Gene Set Enrichment Analysis (GSEA), and the Dynamic Impact Approach. Using a 0.2 FDR cut-off, we identified only ≤24 differentially expressed genes (DEG) in the liver by feeding SHB in dairy cows and a larger number of DEGs in lambs (from 71 in HH1 vs. CON to 552 in LH1 vs. CON). The KEGG analysis demonstrated that feeding SHB in dairy cows and lambs had relatively minor to moderate metabolic alterations in dairy cows and lambs mainly associated with amino acids and lipid metabolism whereas cholesterol synthesis was overall activated in lambs. GSEA identified activation of the PPAR signaling pathway only in dairy cows. We found an opposite effect on activation of metabolism of drug and xenobiotics by cytochrome P450 enzymes in dairy cows and lambs receiving less SHB but an inhibition in HH2 lambs. Immune system-related pathways were inhibited by feeding SHB in lambs, but the impact was minor. Cumulatively, inclusion of SHB containing cannabinoids in dairy and lambs demonstrate very little effects on the alteration of transcriptomic profile of the liver.


Asunto(s)
Alimentación Animal , Cannabinoides , Cannabis , Hígado , Transcriptoma , Animales , Hígado/metabolismo , Hígado/efectos de los fármacos , Cannabis/genética , Cannabis/química , Bovinos/genética , Bovinos/metabolismo , Transcriptoma/efectos de los fármacos , Ovinos/genética , Ovinos/metabolismo , Cannabinoides/metabolismo , Alimentación Animal/análisis , Femenino , Biomasa
4.
J Anal Toxicol ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39036864

RESUMEN

The United States (US) Food and Drug Administration's (FDA) regulatory oversight over electronic cigarettes (e-cigs) includes access restriction for persons <21 years of age and flavor restrictions for "cartridge-based" products. Despite the restrictions, consumption by US youth perseveres. Studies on youth e-cig use are limited by the reliability and accuracy of self-reports. As an alternative to self-reports, the current study examined nicotine, cannabinoid, and unlabeled e-cigs and other vaping products confiscated from Virginia public schools to characterize trends among students. Findings highlight a shift from JUUL and pod-based products to single use disposable e-cigs following the FDA flavor restrictions on cartridge-based e-cigs. Chemical analysis of e-liquids by gas chromatography-mass spectrometry identified a wide variety of flavorants and an increase in the prevalence of synthetic coolants. Most confiscated products were nicotine salt formulations, but the prevalence of cannabinoid-based vaping products increased. The popularity of flavored disposable e-cigs highlights the need for further restrictions to reduce youth consumption. The increasing use of synthetic coolants instead of menthol may suggest that manufacturers are employing tactics to bypass regulations. Continued youth access to e-cigs and the abundance of cannabinoid-based products is problematic from health and safety perspectives. Continued research incorporating confiscated product analysis can be used to understand youth access to vaping products and evolutions in manufacturing practices.

5.
J Neurosci Res ; 102(7): e25369, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39037062

RESUMEN

Cannabis consumption has increased from 1.5% to 2.5% in Canada between 2012 and 2019. Clinical studies have indicated effects of prenatal cannabis exposure on birth weight, substance use, and neurodevelopmental disorders, but are confounded by several difficult to control variables. Animal models allow for examination of the mechanism of cannabis-induced changes in neurodevelopment and behavior, while controlling dose and timing. Several animal models of prenatal cannabis exposure exist which provide varying levels of construct validity, control of dose, and exposure to maternal stress. Using a voluntary oral consumption model, mouse dams received 5 mg/kg Δ9-tetrahydrocannabinol (THC) whole cannabis oil in peanut butter daily from gestational day 1 (GD1) to postnatal day 10 (PD10). At GD1, GD18, PD1, PD10, and PD15, maternal plasma was collected; pup brains were collected from GD18 onward. Pup brains had higher levels of THC and cannabidiol at each time point, each of which persisted in maternal plasma and pup brains past the end of treatment (PD15). Male and female adolescent offspring were examined for changes to ventral tegmental area (VTA) dopamine neuron activity and cocaine-seeking behavior. Prenatal and early postnatal (GD1-PD10) cannabis-exposed male, but not female mice had decreased gamma-aminobutyric acid (GABAergic) input, depolarized resting membrane potential, and increased spontaneous firing of VTA dopamine neurons. Cannabis-exposed offspring showed faster decay of N-methyl-D-aspartate (NMDA) currents in both sexes. However, no differences in cocaine-seeking behavior were noted. These data characterize a voluntary prenatal cannabis exposure model and demonstrates VTA dopamine neuronal activity is disinhibited in offspring.


Asunto(s)
Cocaína , Neuronas Dopaminérgicas , Efectos Tardíos de la Exposición Prenatal , Área Tegmental Ventral , Animales , Femenino , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo , Embarazo , Ratones , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Masculino , Cocaína/farmacología , Cocaína/toxicidad , Dronabinol/toxicidad , Dronabinol/farmacología , Ratones Endogámicos C57BL , Cannabis
6.
Pharmacol Biochem Behav ; 243: 173828, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032530

RESUMEN

Cannabinoids, notably cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), have emerged as promising candidates for anxiety disorder treatment, supported by both preclinical and clinical evidence. CBD exhibits notable anxiolytic effects with a favourable safety profile, though concerns regarding mild side effects and drug interactions remain. Conversely, THC, the primary psychoactive compound, presents a range of side effects, underscoring the importance of careful dosage management and individualized treatment strategies. So far there are no FDA approved cannabinoid medications for anxiety. The review highlights challenges in cannabinoid research, including dosage variability, variable preclinical data, and limited long-term data. Despite these limitations, cannabinoids represent a promising avenue for anxiety management, with the potential for further optimization in formulation, dosing protocols, and consideration of interactions with conventional therapies. Addressing these challenges could pave the way for novel and personalized approaches to treating anxiety disorders using cannabinoid-based therapies.

7.
Phys Sportsmed ; : 1-12, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38949963

RESUMEN

and ARP Position Statement: Based on the available body of scientific evidence and with the goals of promoting safety of combat sports athletes and striving for the advancement of clean sport, the Association of Ringside Physicians recommends the following regarding cannabis:• Use of marijuana or synthetic cannabinoids by combat sports athletes is discouraged due to unproven benefits and many known adverse effects. Acute use can impair cognition and complex motor function, which likely leads to reduced performance in combat sports. Chronic use can increase risk for heart and lung disease, several cancers, schizophrenia, and can reduce testosterone in men and impair fertility. Benefits from cannabis in most contexts, including athletic performance, have not been proven.• Use of topical purified CBD is neither encouraged nor discouraged.• Since acute cannabis intoxication can impair complex cognitive and motor function, any athlete suspected of acute intoxication at the time of competition - based on clinical judgment - should be banned from that competition.• Wide-scale regulation of cannabis based on quantitative testing has limited usefulness in combat sports, for the following reasons:∘ Cannabis is not ergogenic and is likely ergolytic.∘ Concentrations in body fluids correlate poorly with clinical effects and timing of use.∘ Access to testing resources varies widely across sporting organizations.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38946676

RESUMEN

Introduction: Studies show that acute cannabis use significantly increases heart rate (HR) and mildly raises blood pressure in the minutes following smoked or inhaled use of cannabis. However, less is known about how the THC concentration of the product or an individual's frequency of use (i.e., tolerance) may affect the magnitude of the change in HR. It is also relatively unexamined how the physical effects of increased HR after acute cannabis use relate to self-reported drug effects or blood THC levels. Aims: To describe the relationship between THC concentration of product used, self-reported subjective intoxication, THC blood levels, and frequency of cannabis use with the change in HR after acute cannabis use. Materials and Methods: Participants (n = 140) were given 15 min to smoke self-supplied cannabis ad libitum, HR was measured at baseline and an average of 2 min post-cannabis smoking. The ARCI-Marijuana scale and Visual Analog Scales (VAS) were administered, and blood samples were taken at both time points. Participants were asked about their frequency of use. Information about the product used was recorded from the package. Linear regression was used to analyze the relationship between changes in HR (post-pre cannabis use) and post-cannabis use HR, blood THC concentration, THC product concentration, frequency of use, and self-reported drug effect. Results: There was a significantly higher HR among those who smoked cannabis compared to the controls (p < 0.001), which did not significantly differ by frequency of use (p = 0.18). Higher concentration THC (extract) products did not produce a significantly different HR than lower concentration (flower) products (p = 0.096). VAS score was associated with an increase in HR (p < 0.05). Overall, blood THC levels were not significantly related to the change in HR (p = 0.69); however, when probed, there was a slight positive association among the occasional use group only. Discussion: Cardiovascular effects of cannabis consumption may not be as subject to tolerance with daily cannabis use and do not directly increase with THC concentration of the product. This is a departure from other effects (i.e., cognitive, subjective drug effects) where tolerance is well established. These findings also suggest that, at least among those with daily use, higher concentration THC products (>60%) do not necessarily produce cardiovascular physiological effects that are significantly more robust than lower concentration (<20%) products.

9.
Am J Surg ; : 115822, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39003092

RESUMEN

INTRODUCTION: Delta-9-tetraydrocannabinol (THC) usage is associated with venous thromboembolic events (VTE) in trauma patients. We hypothesized that THC â€‹+ â€‹trauma patients would have less platelet inhibition than THC - patients using thromboelastography with platelet mapping (TEG-PM). METHODS: Results from initial TEG- PM assays and patient's UDS were reviewed between 2019 and 2023. Mean levels of arachidonic acid (AA) and adenosine diphosphate (ADP) percent inhibition were compared by THC status. RESULTS: 793 patients had TEG-PM and UDS data. Mean levels of arachidonic acid (AA) percentage inhibition were 32.6 â€‹± â€‹34.2. AA inhibition was lower for THC â€‹+ â€‹vs THC- patients (THC+ 23.9 â€‹± â€‹27.0 vs THC- 34.3 â€‹± â€‹35.3, P â€‹< â€‹0.001). There was no association between THC status and ADP inhibition (THC+ 32.5 â€‹± â€‹27.1 vs THC- 30.8 â€‹± â€‹28.4, P â€‹= â€‹0.536). DISCUSSION: To our knowledge, our data are the first to suggest a clinically measurable increase in platelet reactivity in THC â€‹+ â€‹trauma patients. More work is needed to determine if addition of aspirin to the chemoprophylaxis strategy for THC â€‹+ â€‹patients would mitigate the known association of THC with VTE.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39028280

RESUMEN

Delta-9-tetrahydrocannabinol (THC), the psychoactive component of cannabis, remains a schedule I substance, thus safety data regarding the effects on the cardiovascular and prenatal health are limited. Importantly, there is evidence showing prenatal cannabis exposure can negatively impact fetal organ development, including the cardiovascular system. THC can cross the placenta and bind to cannabinoid receptors expressed in the developing fetus, including on endothelial cells. To understand the impact of prenatal THC exposure on the fetal cardiovascular system, we used our rhesus macaque model of prenatal daily edible THC consumption. Prior to conception, animals were acclimated to THC (2.5mg/7kg/day, equivalent to a heavy medical cannabis dose) and maintained on this dose daily throughout pregnancy. Fetal tissue samples were collected at gestational day 155 (full term is 168 days). Our model showed that in utero THC exposure was associated with a decreased heart to body weight ratio in offspring, warranting further mechanistic investigation. Histological examination of the fetal cardiac and vascular tissues did not reveal any significant effect of THC exposure on the maturity of collagen within the fetal heart or the aorta. Total collagen III expression and elastin production and organization were unchanged. However, bulk RNA-sequencing of vascular cells in the umbilical vein, umbilical artery, and fetal aorta demonstrated that THC alters the fetal vascular transcriptome and is associated with upregulated expression of genes involved in carbohydrate metabolism and inflammation. The long-term consequences of these findings are unknown, but suggest that prenatal THC exposure may affect cardiovascular development in offspring.

11.
Neurobiol Dis ; 199: 106588, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960101

RESUMEN

Clinical and preclinical evidence has demonstrated an increased risk for neuropsychiatric disorders following prenatal cannabinoid exposure. However, given the phytochemical complexity of cannabis, there is a need to understand how specific components of cannabis may contribute to these neurodevelopmental risks later in life. To investigate this, a rat model of prenatal cannabinoid exposure was utilized to examine the impacts of specific cannabis constituents (Δ9-tetrahydrocannabinol [THC]; cannabidiol [CBD]) alone and in combination on future neuropsychiatric liability in male and female offspring. Prenatal THC and CBD exposure were associated with low birth weight. At adolescence, offspring displayed sex-specific behavioural changes in anxiety, temporal order and social cognition, and sensorimotor gating. These phenotypes were associated with sex and treatment-specific neuronal and gene transcriptional alterations in the prefrontal cortex, and ventral hippocampus, regions where the endocannabinoid system is implicated in affective and cognitive development. Electrophysiology and RT-qPCR analysis in these regions implicated dysregulation of the endocannabinoid system and balance of excitatory and inhibitory signalling in the developmental consequences of prenatal cannabinoids. These findings reveal critical insights into how specific cannabinoids can differentially impact the developing fetal brains of males and females to enhance subsequent neuropsychiatric risk.

12.
Front Neurosci ; 18: 1375440, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957186

RESUMEN

Introduction: Alcohol use disorder (AUD) is commonly associated with anxiety disorders and enhanced stress-sensitivity; symptoms that can worsen during withdrawal to perpetuate continued alcohol use. Alcohol increases neuroimmune activity in the brain. Our recent evidence indicates that alcohol directly modulates neuroimmune function in the central amygdala (CeA), a key brain region regulating anxiety and alcohol intake, to alter neurotransmitter signaling. We hypothesized that cannabinoids, such as cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC), which are thought to reduce neuroinflammation and anxiety, may have potential utility to alleviate alcohol withdrawal-induced stress-sensitivity and anxiety-like behaviors via modulation of CeA neuroimmune function. Methods: We tested the effects of CBD and CBD:THC (3:1 ratio) on anxiety-like behaviors and neuroimmune function in the CeA of mice undergoing acute (4-h) and short-term (24-h) withdrawal from chronic intermittent alcohol vapor exposure (CIE). We further examined the impact of CBD and CBD:THC on alcohol withdrawal behaviors in the presence of an additional stressor. Results: We found that CBD and 3:1 CBD:THC increased anxiety-like behaviors at 4-h withdrawal. At 24-h withdrawal, CBD alone reduced anxiety-like behaviors while CBD:THC had mixed effects, showing increased center time indicating reduced anxiety-like behaviors, but increased immobility time that may indicate increased anxiety-like behaviors. These mixed effects may be due to altered metabolism of CBD and THC during alcohol withdrawal. Immunohistochemical analysis showed decreased S100ß and Iba1 cell counts in the CeA at 4-h withdrawal, but not at 24-h withdrawal, with CBD and CBD:THC reversing alcohol withdrawal effects.. Discussion: These results suggest that the use of cannabinoids during alcohol withdrawal may lead to exacerbated anxiety depending on timing of use, which may be related to neuroimmune cell function in the CeA.

13.
J Forensic Sci ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992862

RESUMEN

Cannabis is one of the most consumed illicit drugs and the potency of cannabis products is of note due to health-related concerns. Hand-rubbed hashish is the ancient technique of extracting psychoactive resin from cannabis plants and is practiced in the Indian Himalayas. This study establishes the cannabinoid profile and potency of hand-rubbed hashish collected from 20 regions of the northwest Himalayas. Fifty-eight hashish samples were analyzed using a validated high-performance liquid chromatography-diode array detection (HPLC-DAD) method. Ten cannabinoids were quantified including acidic (THCA & CBDA), and neutral compounds (CBDA, THCV, CBD, CBG, CBN, Δ9-THC, Δ8-THC, and CBC). The mean concentration (w/w%) of Δ9-THC is 26%; THCA is 15% and THCTotal is 40% is observed in the studied hashish samples. The majority (70%) of the hashish samples were categorized in chemotype I with the THC:CBD:CBN ratio of 91:3:4, and the remaining 30% were categorized under chemotype II with the ratio of 76:15:8. Diverse qualities of hashish are produced in the studied regions as per the seed, plant selection, and skills of manual rubbing, which results in potency variations. The average difference between the least and highest potent hand-rubbed hashish of a region is 27 w/w% (THCTotal). The other studied non-psychoactive cannabinoids have a mean w/w% of <5%, followed by 6% of CBDA. It is concluded that the cultivated and wild cannabis fields in the northwest Himalayas belong to the drug-type cannabis subspecies. Hand-rubbed hashish holds traditional significance and impacts the current policies of legislation.

14.
Cureus ; 16(6): e61791, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38975420

RESUMEN

Chemotherapy-induced nausea and vomiting (CINV) is a debilitating side effect of cancer treatment, affecting many patients. Cannabinoid agonists, such as nabilone and Δ9-tetrahydrocannabinol (THC), the main psychoactive component of Cannabis sativa L., have shown efficacy as antiemetics. Here, we report the case of Michael Roberts (MR), who we believe is the first British patient reimbursed by the National Health Service (NHS) England for the cost of medicinal cannabis flowers to manage CINV. Medical data were obtained from NHS records and individual funding request (IFR) forms. Patient-reported outcome measures (PROMs) were collected using validated questionnaires as part of the standard of care at the specialized private clinics where the prescription of medicinal cannabis was initiated. The patient presented with rectosigmoid adenocarcinoma with lung metastases. He received FOLFIRI (folinic acid, fluorouracil, and irinotecan) chemotherapy and underwent an emergency Hartmann's procedure with subsequent second-line FOLFOX (folinic acid, fluorouracil, and oxaliplatin) chemotherapy and lung ablation. MR reported severe nausea and vomiting associated with the initial FOLFIRI treatment. Antiemetics metoclopramide and aprepitant demonstrated moderated efficacy. Antiemetics ondansetron, levomepromazine, and nabilone were associated with intolerable side effects. Inhalation of THC-predominant cannabis flowers in association with standard medication improved CINV, anxiety, sleep quality, appetite, overall mood, and quality of life. Our results add to the available evidence suggesting that medicinal cannabis flowers may offer valuable support in cancer palliative care integrated with standard-of-care oncology treatment. The successful individual funding request in this case demonstrates a pathway for other patients to gain access to these treatments, advocating for broader awareness and integration of cannabis-based medicinal products in national healthcare services.

15.
Cannabis ; 7(2): 123-134, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975597

RESUMEN

Objective: Recent scientific attention has focused on the therapeutic effectiveness of cannabis use on a variety of physical and mental ailments. The present study uses smartphone technology to assess self-reported experiences of Florida cannabis users to understand how cannabis may impact anxiety and depression symptomatology. Method: Several hundred Releaf App™ users from the state of Florida provided anonymous, real-time reports of their symptoms of anxiety and/or depression immediately before and after cannabis use sessions. Linear mixed-effects modeling was used to analyze the data at the symptom and user level. Results: Results showed that for the majority of users, cannabis use was associated with a significant decrease in depression and anxiety symptomatology. While symptom type, doses per session, consumption method, and CBD levels were significant predictors of relief change, their effect sizes were small and should be interpreted with caution. At the user level, those who had positive relief outcomes in anxiety reported more doses and sessions, and those in the depression group reported more sessions. Conclusions: Our results generally support the therapeutic effectiveness of cannabis against depression/anxiety symptomatology. Future work should include standardized statistics and effect size estimates for a better understanding of each variable's practical contribution to this area of study.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38995871

RESUMEN

Tetrahydrocannabivarin (THCV) is a phytocannabinoid that is becoming popular across the North American cannabis market. THCV has been reported to reduce blood sugar and act as an appetite suppressant in several independent pre-clinical studies, which has earned it the popular nickname of "diet weed," despite few human studies of these effects. Additionally, THCV is usually and incorrectly categorized as an intoxicating analogue of tetrahydrocannabinol (THC), which causes confusion among both consumers and regulators. In this article, we examine what is known pre-clinically and clinically about THCV, as well as highlight mechanisms of action, in order to clarify the scientific differences between THCV and THC. THCV, although structurally similar to THC, has distinct pharmacological activity and physiological effects at the doses currently reported in the literature. We highlight areas of opportunity for further THCV research in order to determine the full and appropriate potential for unique health, wellness, and therapeutic applications of this compound.

17.
BMC Pharmacol Toxicol ; 25(1): 42, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010179

RESUMEN

BACKGROUND: A global increase in cannabis use has led to questions about its effects on fertility. The rise in consumption amongst women of reproductive age is a growing concern, as this group is vulnerable in terms of reproductive health. Ample evidence suggests that the psychoactive component of cannabis, Δ9-Tetrahydrocannabinol (THC), interacts with the endocannabinoid system (ECS), that helps regulate mammalian reproduction. This study aimed to research the epigenetic effects of THC in bovine granulosa cells (GCs) by (1) investigating global DNA methylation via measuring 5-mC and 5-hmC levels; (2) measuring key methylation regulators, including the methylating enzymes DNMT1, DNMT3a, DNMT3b and the demethylases TDG and TET1/2/3; and (3) assessing fertility-associated miRNAs key in developmental competency, including miR-21, -155, -33b, -324 and -346. METHODS: Bovine GCs were used as a translational model for reproductive toxicity in humans. To determine THC effects, GCs were isolated from Cumulus-Oocyte-Complexes (COCs) from bovine ovaries, cultured in vitro for 7 days, or until confluent, and cryopreserved at passage 1 (P1). For experimentation, cells were thawed, cultured until passage 2 (P2), serum restricted for 24-h and treated for 24-h in one of five groups: control, vehicle (1:1:18 ethanol: tween: saline) and three clinically relevant THC doses (0.032, 0.32 and 3.2 µM). Global methylation was assessed by measuring 5-mC and 5-hmC levels with flow cytometry. To assess mRNA and protein expression of methylation regulators and miRNA profiles, qPCR and Western Blotting were utilized. Shapiro-Wilk test was used to determine normality within datasets. One-way ANOVA was applied to determine statistical significance using GraphPad Prism 6.0.0. RESULTS: Results indicate a significant decrease (p = 0.0435) in 5-mC levels following low THC exposure, while no changes were observed in 5-hmC levels. A significant increase in DNMT1 following high THC exposure at the RNA level (p < 0.05) and a significant increase following low THC exposure at the protein level (p = 0.0048) were also observed. No significant differences were observed in DNMT3a/3b, TDG, TET1/2/3 mRNAs or in any of the miRNAs analyzed. CONCLUSIONS: This research suggests that THC mainly affects DNA methylation, but not miRNA profiles, ultimately altering gene expression and likely impairing oocyte competence, maturation, and fertilization potential.


Asunto(s)
Metilación de ADN , Dronabinol , Células de la Granulosa , MicroARNs , Animales , Femenino , Bovinos , MicroARNs/genética , Dronabinol/farmacología , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Metilación de ADN/efectos de los fármacos , Células Cultivadas
18.
Front Pharmacol ; 15: 1282831, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38868665

RESUMEN

Background: The recent exponential increase in legalized medical and recreational cannabis, development of medical cannabis programs, and production of unregulated over-the-counter products (e.g., cannabidiol (CBD) oil, and delta-8-tetrahydrocannabinol (delta-8-THC)), has the potential to create unintended health consequences. The major cannabinoids (delta-9-tetrahydrocannabinol and cannabidiol) are metabolized by the same cytochrome P450 (CYP) enzymes that metabolize most prescription medications and xenobiotics (CYP3A4, CYP2C9, CYP2C19). As a result, we predict that there will be instances of drug-drug interactions and the potential for adverse outcomes, especially for prescription medications with a narrow therapeutic index. Methods: We conducted a systematic review of all years to 2023 to identify real world reports of documented cannabinoid interactions with prescription medications. We limited our search to a set list of medications with predicted narrow therapeutic indices that may produce unintended adverse drug reactions (ADRs). Our team screened 4,600 reports and selected 151 full-text articles to assess for inclusion and exclusion criteria. Results: Our investigation revealed 31 reports for which cannabinoids altered pharmacokinetics and/or produced adverse events. These reports involved 16 different Narrow Therapeutic Index (NTI) medications, under six drug classes, 889 individual subjects and 603 cannabis/cannabinoid users. Interactions between cannabis/cannabinoids and warfarin, valproate, tacrolimus, and sirolimus were the most widely reported and may pose the greatest risk to patients. Common ADRs included bleeding risk, altered mental status, difficulty inducing anesthesia, and gastrointestinal distress. Additionally, we identified 18 instances (58%) in which clinicians uncovered an unexpected serum level of the prescribed drug. The quality of pharmacokinetic evidence for each report was assessed using an internally developed ten-point scale. Conclusion: Drug-drug interactions with cannabinoids are likely amongst prescription medications that use common CYP450 systems. Our findings highlight the need for healthcare providers and patients/care-givers to openly communicate about cannabis/cannabinoid use to prevent unintended adverse events. To that end, we have developed a free online tool (www.CANN-DIR.psu.edu) to help identify potential cannabinoid drug-drug interactions with prescription medications.

19.
J Anal Toxicol ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836589

RESUMEN

BACKGROUND: In recent years, potential therapeutic applications of several different cannabinoids, such as Δ9-tetrahydrocannabinol (Δ9-THC), its isomer Δ8-THC and Δ9-tetrahydrocannabivarin (Δ9-THCV), have been investigated. Nevertheless, to establish dose-effect relationship and to gain knowledge of their pharmacokinetics and metabolism, sensitive and specific analytical assays are needed to measure these compounds in patients. For this reason, we developed and validated an online extraction high-performance liquid chromatography- tandem mass spectrometry (LC/LC-MS/MS) method for the simultaneous quantification of 13 cannabinoids and metabolites including the Δ8 and Δ9 isomers of THC, THCV and those of their major metabolites in human plasma. METHODS: Plasma was fortified with cannabinoids at varying concentrations within the working range of the respective compound and 200 µL were extracted using a simple one-step protein precipitation procedure. The extracts were analyzed using online trapping LC/LC-atmospheric pressure chemical ionization (APCI)-MS/MS running in the positive multiple reaction monitoring (MRM) mode. RESULTS: The lower limit of quantification ranged from 0.5 to 2.5 ng/mL and the upper limit of quantification was 400 ng/mL for all analytes. Inter-day analytical accuracy and imprecision ranged from 82.9 to 109% and 4.3 to 20.3% (coefficient of variance), respectively. Of 534 plasma samples following controlled oral administration of Δ8-THCV, 236 were positive for Δ8-THCV (median; interquartile ranges: 3.5 ng/mL; 1.8 - 11.9 ng/mL), 383 for the major metabolite (-)-11-nor-9-carboxy-Δ8-tetrahydrocannabivarin (Δ8-THCV-COOH) (95.4 ng/mL; 20.7 - 328 ng/mL), 260 for (-)-11-nor-9-carboxy-Δ9-tetrahydrocannabivarin (Δ9-THCV-COOH) (5.8 ng/mL; 2.5 - 16.1 ng/mL), 157 for (-)-11-hydroxy-Δ8-tetrahydrocannabivarin (11-OH-Δ8-THCV) (1.7 ng/mL; 1.0 - 3.7 ng/mL), 49 for Δ8-THC-COOH (1.7 ng/mL; 1.4 - 2.3 ng/mL) and 42 for Δ9-THCV (1.3 ng/mL; 0.8 - 1.6 ng/mL). CONCLUSIONS: We developed and validated the first LC/LC-MS/MS assay for the specific quantification of Δ8-THC, Δ9-THC and THCV isomers and their respective metabolites in human plasma. Δ8-THCV-COOH, 11-hydroxy-Δ8-THCV and Δ9-THCV-COOH were the major Δ8-THCV metabolites in human plasma after oral administration of 98.6% pure Δ8-THCV.

20.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826339

RESUMEN

Rationale: Adolescent cannabis use is linked to later-life changes in cognition, learning, and memory. Rodent experimental studies suggest Δ9-tetrahydrocannabinol (THC) influences development of circuits underlying these processes, especially in the prefrontal cortex, which matures during adolescence. Objective: We determined how 14 daily THC injections (5mg/kg) during adolescence persistently impacts medial prefrontal cortex (mPFC) dopamine-dependent cognition. Methods: In adult Long Evans rats treated as adolescents with THC (AdoTHC), we quantify performance on two mPFC dopamine-dependent reward-based tasks-strategy set shifting and probabilistic discounting. We also determined how acute dopamine augmentation with amphetamine (0, 0.25, 0.5 mg/kg), or specific chemogenetic stimulation of ventral tegmental area (VTA) dopamine neurons and their projections to mPFC impacts probabilistic discounting. Results: AdoTHC sex-dependently impacts acquisition of cue-guided instrumental reward seeking, but has minimal effects on set-shifting or probabilistic discounting in either sex. When we challenged dopamine circuits acutely with amphetamine during probabilistic discounting, we found reduced discounting of improbable reward options, with AdoTHC rats being more sensitive to these effects than controls. In contrast, neither acute chemogenetic stimulation of VTA dopamine neurons nor pathway-specific chemogenetic stimulation of their projection to mPFC impacted probabilistic discounting in control rats, although stimulation of this cortical dopamine projection slightly disrupted choices in AdoTHC rats. Conclusions: These studies confirm a marked specificity in the cognitive processes impacted by AdoTHC exposure. They also suggest that some persistent AdoTHC effects may alter amphetamine-induced cognitive changes in a manner independent of VTA dopamine projections to mPFC, or via alterations of non-VTA dopamine neurons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA