Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1428147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957445

RESUMEN

Background: Amphiregulin (AR) is a growth factor that resembles the epidermal growth factor (EGF) and serves various functions in different cells. However, no systematic studies or reports on the role of AR in human oocytes have currently been performed or reported. This study aimed to explore the role of AR in human immature oocytes during in vitro maturation (IVM) and in vitro fertilization (IVF) in achieving better embryonic development and to provide a basis for the development of a pre-insemination culture medium specific for cumulus oocyte complexes (COCs). Methods: First, we examined the concentration of AR in the follicular fluid (FF) of patients who underwent routine IVF and explored the correlation between AR levels and oocyte maturation and subsequent embryonic development. Second, AR was added to the IVM medium to culture immature oocytes and investigate whether AR could improve the effects of IVM. Finally, we pioneered the use of a fertilization medium supplemented with AR for the pre-insemination culture of COCs to explore whether the involvement of AR can promote the maturation and fertilization of IVF oocytes, as well as subsequent embryonic development. Results: A total of 609 FF samples were examined, and a positive correlation between AR levels and blastocyst formation was observed. In our IVM study, the development potential and IVM rate of immature oocytes, as well as the fertilization rate of IVM oocytes in the AR-added groups, were ameliorated significantly compared to the control group (All P < 0.05). Only the IVM-50 group had a significantly higher blastocyst formation rate than the control group (P < 0.05). In the final IVF study, the maturation, fertilization, high-quality embryo, blastocyst formation, and high-quality blastocyst rates of the AR-added group were significantly higher than those of the control group (All P < 0.05). Conclusion: AR levels in the FF positively correlated with blastocyst formation, and AR involvement in pre-insemination cultures of COCs can effectively improve laboratory outcomes in IVF. Furthermore, AR can directly promote the in vitro maturation and developmental potential of human immature oocytes at an optimal concentration of 50 ng/ml.


Asunto(s)
Anfirregulina , Células del Cúmulo , Fertilización In Vitro , Técnicas de Maduración In Vitro de los Oocitos , Oocitos , Humanos , Anfirregulina/metabolismo , Fertilización In Vitro/métodos , Femenino , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Adulto , Células del Cúmulo/metabolismo , Células del Cúmulo/efectos de los fármacos , Células del Cúmulo/citología , Líquido Folicular/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/fisiología , Embarazo , Medios de Cultivo/química , Técnicas de Cultivo de Embriones/métodos , Blastocisto/metabolismo , Blastocisto/efectos de los fármacos
2.
FEBS J ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973142

RESUMEN

Accumulating evidence shows that inflammation is essential for embryo implantation and decidualization. Histamine, a proinflammatory factor that is present in almost all mammalian tissues, is synthesized through decarboxylating histidine by histidine decarboxylase (HDC). Although histamine is known to be essential for decidualization, the underlying mechanism remains undefined. In the present study, histamine had no obvious direct effects on in vitro decidualization in mice. However, the obvious differences in HDC protein levels between day 4 of pregnancy and day 4 of pseudopregnancy, as well as between delayed and activated implantation, suggested that the blastocyst may be involved in regulating HDC expression. Furthermore, blastocyst-derived tumor necrosis factor α (TNFα) significantly increased HDC levels in the luminal epithelium. Histamine increased the levels of amphiregulin (AREG) and disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) proteins, which was abrogated by treatment with famotidine, a specific histamine type 2 receptor (H2R) inhibitor, or by TPAI-1 (a specific inhibitor of ADAM17). Intraluminal injection of urocanic acid (HDC inhibitor) on day 4 of pregnancy significantly reduced the number of implantation sites on day 5 of pregnancy. TNFα-stimulated increases in HDC, AREG and ADAM17 protein levels was abrogated by urocanic acid, a specific inhibitor of HDC. Additionally, AREG treatment significantly promoted in vitro decidualization. Collectively, our data suggests that blastocyst-derived TNFα induces luminal epithelial histamine secretion, and histamine increases mouse decidualization through ADAM17-mediated AREG release.

3.
Reprod Domest Anim ; 59(6): e14628, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828525

RESUMEN

This study aimed to investigate the impact of the epidermal growth factor receptor ligands amphiregulin (AREG) and epiregulin (EREG) on the fundamental functions of feline ovarian granulosa cells. Granulosa cells isolated from feline ovaries were incubated with AREG and EREG (0, 0.1, 1 or 10 ng/mL). The effects of these growth factors on cell viability, proliferation (assessed through BrdU incorporation), nuclear apoptosis (evaluated through nuclear DNA fragmentation) and the release of progesterone and estradiol were determined using Cell Counting Kit-8 assays, BrdU analysis, TUNEL assays and ELISAs, respectively. Both AREG and EREG increased cell viability, proliferation and steroid hormone release and reduced apoptosis. The present findings suggest that these epidermal growth factor receptor ligands may serve as physiological stimulators of feline ovarian cell functions.


Asunto(s)
Anfirregulina , Apoptosis , Epirregulina , Células de la Granulosa , Animales , Gatos , Femenino , Anfirregulina/metabolismo , Anfirregulina/genética , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Epirregulina/metabolismo , Epirregulina/genética , Estradiol/metabolismo , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Progesterona/metabolismo
4.
Front Pharmacol ; 15: 1375421, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38831884

RESUMEN

High grade serous ovarian cancer (HGSOC) is a lethal gynecologic malignancy in which chemoresistant recurrence rates remain high. Furthermore, HGSOC patients have demonstrated overall low response rates to clinically available immunotherapies. Amphiregulin (AREG), a low affinity epidermal growth factor receptor ligand is known to be significantly upregulated in HGSOC patient tumors following neoadjuvant chemotherapy exposure. While much is known about AREG's role in oncogenesis and classical immunity, it is function in tumor immunology has been comparatively understudied. Therefore, the objective of this present study was to elucidate how increased AREG exposure impacts the ovarian tumor immune microenvironment (OTIME). Using NanoString IO 360 and protein analysis, it was revealed that treatment with recombinant AREG led to prominent upregulation of genes associated with ovarian pathogenesis and immune evasion (CXCL8, CXCL1, CXCL2) along with increased STAT3 activation in HGSOC cells. In vitro co-culture assays consisting of HGSOC cells and peripheral blood mononuclear cells (PBMCs) stimulated with recombinant AREG (rAREG) led to significantly enhanced tumor cell viability. Moreover, PBMCs stimulated with rAREG exhibited significantly lower levels of IFNy and IL-2. In vivo rAREG treatment promoted significant reductions in circulating levels of IL-2 and IL-5. Intratumoral analysis of rAREG treated mice revealed a significant reduction in CD8+ T cells coupled with an upregulation of PD-L1. Finally, combinatorial treatment with an AREG neutralizing antibody and carboplatin led to a synergistic reduction of cell viability in HGSOC cell lines OVCAR8 and PEA2. Overall, this study demonstrates AREG's ability to modulate cytotoxic responses within the OTIME and highlights its role as a novel HGSOC immune target.

5.
Int J Biol Sci ; 20(8): 3126-3139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904011

RESUMEN

Although many cohort studies have reported that long-term exposure to particulate matter (PM) causes lung cancer, the molecular mechanisms underlying the PM-induced increases in lung cancer progression remain unclear. We applied the lung cancer cell line A549 (Parental; A549.Par) to PM for an extended period to establish a mimic PM-exposed lung cancer cell line, A549.PM. Our results indicate that A549.PM exhibits higher cell growth and proliferation abilities compared to A549.Par cells in vitro and in vivo. The RNA sequencing analysis found amphiregulin (AREG) plays a critical role in PM-induced cell proliferation. We observed that PM increases AREG-dependent lung cancer proliferation through glutamine metabolism. In addition, the EGFR/PI3K/AKT/mTOR signaling pathway is involved in PM-induced solute carrier family A1 member 5 (SLC1A5) expression and glutamine metabolism. Our findings offer important insights into how lung cancer proliferation develops upon exposure to PM.


Asunto(s)
Anfirregulina , Proliferación Celular , Glutamina , Neoplasias Pulmonares , Material Particulado , Anfirregulina/metabolismo , Humanos , Glutamina/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Animales , Material Particulado/efectos adversos , Células A549 , Transducción de Señal , Ratones , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Sistema de Transporte de Aminoácidos ASC/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Antígenos de Histocompatibilidad Menor
6.
Cell Mol Gastroenterol Hepatol ; 18(3): 101365, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38797477

RESUMEN

BACKGROUND & AIMS: Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is an extracellular matrix regulator with anti-fibrotic effects. However, its expression and role in metabolic dysfunction-associated steatohepatitis (MASH) and hepatic fibrosis are poorly understood. METHODS: We generated a novel transgenic mouse model with RECK overexpression specifically in hepatocytes to investigate its role in Western diet (WD)-induced liver disease. Proteomic analysis and in vitro studies were performed to mechanistically link RECK to hepatic inflammation and fibrosis. RESULTS: Our results show that RECK expression is significantly decreased in liver biopsies from human patients diagnosed with MASH and correlated negatively with severity of metabolic dysfunction-associated steatotic liver disease (MASLD) and fibrosis. Similarly, RECK expression is downregulated in WD-induced MASH in wild-type mice. Hepatocyte-specific RECK overexpression significantly reduced hepatic pathology in WD-induced liver injury. Proteomic analysis highlighted changes in extracellular matrix and cell-signaling proteins. In vitro mechanistic studies linked RECK induction to reduced ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) and ADAM17 activity, amphiregulin release, epidermal growth factor receptor activation, and stellate cell activation. CONCLUSION: Our in vivo and mechanistic in vitro studies reveal that RECK is a novel upstream regulator of inflammation and fibrosis in the diseased liver, its induction is hepatoprotective, and thus highlights its potential as a novel therapeutic in MASH.

7.
J Ovarian Res ; 17(1): 97, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720330

RESUMEN

The epidermal growth factor (EGF)-like factors, comprising amphiregulin (AREG), betacellulin (BTC), and epiregulin (EREG), play a critical role in regulating the ovulatory process. Pentraxin 3 (PTX3), an essential ovulatory protein, is necessary for maintaining extracellular matrix (ECM) stability during cumulus expansion. The aim of this study was to investigate the impact of EGF-like factors, AREG, BTC, and EREG on the expression and production of PTX3 in human granulosa-lutein (hGL) cells and the molecular mechanisms involved. Our results demonstrated that AREG, BTC, and EREG could regulate follicular function by upregulating the expression and increasing the production of PTX3 in both primary (obtained from 20 consenting patients undergoing IVF treatment) and immortalized hGL cells. The upregulation of PTX3 expression was primarily facilitated by the activation of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathway, induced by these EGF-like factors. In addition, we found that the upregulation of PTX3 expression triggered by the EGF-like factors was completely reversed by either pretreatment with the epidermal growth factor receptor (EGFR) inhibitor, AG1478, or knockdown of EGFR, suggesting that EGFR is crucial for activating the ERK1/2 signaling pathway in hGL cells. Overall, our findings indicate that AREG, BTC, and EREG may modulate human cumulus expansion during the periovulatory stage through the upregulation of PTX3.


Asunto(s)
Anfirregulina , Betacelulina , Proteína C-Reactiva , Epirregulina , Células Lúteas , Componente Amiloide P Sérico , Regulación hacia Arriba , Femenino , Humanos , Anfirregulina/metabolismo , Anfirregulina/genética , Betacelulina/metabolismo , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/genética , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Epirregulina/metabolismo , Epirregulina/genética , Receptores ErbB/metabolismo , Células Lúteas/metabolismo , Sistema de Señalización de MAP Quinasas , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética
8.
Cell Mol Immunol ; 21(7): 723-737, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806623

RESUMEN

Type 2 innate lymphoid cells (ILC2s) have emerged as key regulators of the immune response in renal inflammatory diseases such as lupus nephritis. However, the mechanisms underlying ILC2 adhesion and migration in the kidney remain poorly understood. Here, we revealed the critical role of integrin α4ß7 in mediating renal ILC2 adhesion and function. We found that integrin α4ß7 enables the retention of ILC2s in the kidney by binding to VCAM-1, E-cadherin, or fibronectin on structural cells. Moreover, integrin α4ß7 knockdown reduced the production of the reparative cytokine amphiregulin (Areg) by ILC2s. In lupus nephritis, TLR7/9 signaling within the kidney microenvironment downregulates integrin α4ß7 expression, leading to decreased Areg production and promoting the egress of ILC2s. Notably, IL-33 treatment upregulated integrin α4ß7 and Areg expression in ILC2s, thereby enhancing survival and reducing inflammation in lupus nephritis. Together, these findings highlight the potential of targeting ILC2 adhesion as a therapeutic strategy for autoimmune kidney diseases.


Asunto(s)
Anfirregulina , Integrina alfa4 , Cadenas beta de Integrinas , Nefritis Lúpica , Linfocitos , Nefritis Lúpica/inmunología , Anfirregulina/inmunología , Linfocitos/inmunología , Integrina alfa4/genética , Integrina alfa4/inmunología , Humanos , Femenino , Animales , Ratones , Modelos Animales de Enfermedad , Cadenas beta de Integrinas/genética , Cadenas beta de Integrinas/inmunología , Adhesión Celular/inmunología , Movimiento Celular/inmunología , Riñón/efectos de los fármacos , Riñón/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Unión Proteica/inmunología , Interleucina-33/farmacología , Transducción de Señal
9.
J Oral Pathol Med ; 53(6): 366-375, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763759

RESUMEN

BACKGROUND: Angiopoietin-like 4 is a molecular hallmark that correlates with the growth and metastasis of head and neck squamous cell carcinoma, one of the most prevalent cancers worldwide. However, the molecular mechanisms by which angiopoietin-like 4 promotes head and neck squamous cell carcinoma tumorigenesis are unclear. METHODS: Using well-characterized cell lines of head and neck squamous cell carcinoma development, including human normal oral keratinocytes, dysplastic oral keratinocytes, oral leukoplakia-derived oral keratinocytes, and head and neck squamous cell carcinoma cell lines, HN13, HN6, HN4, HN12, and CAL27, we investigated the signaling pathways upstream and downstream of angiopoietin-like 4-induced head and neck squamous cell carcinoma tumorigenesis. RESULTS: We found that both epidermal growth factor receptor ligands, epithelial growth factor, and amphiregulin led to angiopoietin-like 4 upregulation in normal oral keratinocytes and dysplastic oral keratinocytes and cooperated with the activation of hypoxia-inducible factor-1 in this effect. Interestingly, amphiregulin and angiopoietin-like 4 were increased in dysplastic oral keratinocytes and head and neck squamous cell carcinoma cell lines, and amphiregulin-induced activation of cell proliferation was dependent on angiopoietin-like 4. Although both p38 mitogen-activated protein kinases (p38 MAPK) and protein kinase B (AKT) were activated by angiopoietin-like 4, only pharmacological inhibition of p38 MAPK was sufficient to prevent head and neck squamous cell carcinoma cell proliferation and migration. We further observed that angiopoietin-like 4 promoted the secretion of interleukin 11 (IL-11), interleukin 12 (IL-12), interleukin-1 alpha (IL-1α), vascular endothelial growth factor, platelet-derived growth factor (PDGF), and tumour necrosis factor alpha (TNF-α), cytokines and chemokines previously implicated in head and neck squamous cell carcinoma pathogenesis. CONCLUSION: Our results demonstrate that angiopoietin-like 4 is a downstream effector of amphiregulin and promotes head and neck squamous cell carcinoma development both through direct activation of p38 kinase as well as paracrine mechanisms.


Asunto(s)
Anfirregulina , Proteína 4 Similar a la Angiopoyetina , Movimiento Celular , Proliferación Celular , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Anfirregulina/farmacología , Anfirregulina/metabolismo , Proliferación Celular/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Movimiento Celular/efectos de los fármacos , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Proteína 4 Similar a la Angiopoyetina/metabolismo , Línea Celular Tumoral , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Transducción de Señal , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Receptores ErbB/metabolismo
10.
Front Immunol ; 15: 1351405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571949

RESUMEN

Introduction: The alarmin IL-33 has been implicated in the pathology of immune-mediated liver diseases. IL-33 activates regulatory T cells (Tregs) and type 2 innate lymphoid cells (ILC2s) expressing the IL-33 receptor ST2. We have previously shown that endogenous IL-33/ST2 signaling activates ILC2s that aggravate liver injury in murine immune-mediated hepatitis. However, treatment of mice with exogenous IL-33 before induction of hepatitis ameliorated disease severity. Since IL-33 induces expression of amphiregulin (AREG) crucial for Treg function, we investigated the immunoregulatory role of the ST2+ Treg/AREG axis in immune-mediated hepatitis. Methods: C57BL/6, ST2-deficient (Il1rl1-/-) and Areg-/- mice received concanavalin A to induce immune-mediated hepatitis. Foxp3Cre+ x ST2fl/fl mice were pre-treated with IL-33 before induction of immune-mediated hepatitis. Treg function was assessed by adoptive transfer experiments and suppression assays. The effects of AREG and IL-33 on ST2+ Tregs and ILC2s were investigated in vitro. Immune cell phenotype was analyzed by flow cytometry. Results and discussion: We identified IL-33-responsive ST2+ Tregs as an effector Treg subset in the murine liver, which was highly activated in immune-mediated hepatitis. Lack of endogenous IL-33 signaling in Il1rl1-/- mice aggravated disease pathology. This was associated with reduced Treg activation. Adoptive transfer of exogenous IL-33-activated ST2+ Tregs before induction of hepatitis suppressed inflammatory T-cell responses and ameliorated disease pathology. We further showed increased expression of AREG by hepatic ST2+ Tregs and ILC2s in immune-mediated hepatitis. Areg-/- mice developed more severe liver injury, which was associated with enhanced ILC2 activation and less ST2+ Tregs in the inflamed liver. Exogenous AREG suppressed ILC2 cytokine expression and enhanced ST2+ Treg activation in vitro. In addition, Tregs from Areg-/- mice were impaired in their capacity to suppress CD4+ T-cell activation in vitro. Moreover, application of exogenous IL-33 before disease induction did not protect Foxp3Cre+ x ST2fl/fl mice lacking ST2+ Tregs from immune-mediated hepatitis. In summary, we describe an immunoregulatory role of the ST2+ Treg/AREG axis in immune-mediated hepatitis, in which AREG suppresses the activation of hepatic ILC2s while maintaining ST2+ Tregs and reinforcing their immunosuppressive capacity in liver inflammation.


Asunto(s)
Hepatitis , Inmunidad Innata , Animales , Ratones , Anfirregulina/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33 , Linfocitos , Ratones Endogámicos C57BL , Linfocitos T Reguladores
11.
Front Med ; 18(3): 516-537, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38491211

RESUMEN

Regulatory T cells (Tregs) suppress immune responses and inflammation. Here, we described the distinct nonimmunological role of Tregs in fracture healing. The recruitment from the circulation pool, peripheral induction, and local expansion rapidly enriched Tregs in the injured bone. The Tregs in the injured bone displayed superiority in direct osteogenesis over Tregs from lymphoid organs. Punctual depletion of Tregs compromised the fracture healing process, which leads to increased bone nonunion. In addition, bone callus Tregs showed unique T-cell receptor repertoires. Amphiregulin was the most overexpressed protein in bone callus Tregs, and it can directly facilitate the proliferation and differentiation of osteogenic precursor cells by activation of phosphatidylinositol 3-kinase/protein kinase B signaling pathways. The results of loss- and gain-function studies further evidenced that amphiregulin can reverse the compromised healing caused by Treg dysfunction. Tregs also enriched in patient bone callus and amphiregulin can promote the osteogenesis of human pre-osteoblastic cells. Our findings indicate the distinct and nonredundant role of Tregs in fracture healing, which will provide a new therapeutic target and strategy in the clinical treatment of fractures.


Asunto(s)
Anfirregulina , Curación de Fractura , Linfocitos T Reguladores , Linfocitos T Reguladores/inmunología , Curación de Fractura/inmunología , Curación de Fractura/fisiología , Animales , Humanos , Anfirregulina/metabolismo , Ratones , Osteogénesis , Callo Óseo/inmunología , Masculino , Diferenciación Celular , Transducción de Señal , Ratones Endogámicos C57BL , Fracturas Óseas/inmunología
12.
Gastroenterology ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492892

RESUMEN

BACKGROUND & AIMS: Isthmic progenitors, tissue-specific stem cells in the stomach corpus, maintain mucosal homeostasis by balancing between proliferation and differentiation to gastric epithelial lineages. The progenitor cells rapidly adopt an active state in response to mucosal injury. However, it remains unclear how the isthmic progenitor cell niche is controlled during the regeneration of damaged epithelium. METHODS: We recapitulated tissue recovery process after acute mucosal injury in the mouse stomach. Bromodeoxyuridine incorporation was used to trace newly generated cells during the injury and recovery phases. To define the epithelial lineage commitment process during recovery, we performed single-cell RNA-sequencing on epithelial cells from the mouse stomachs. We validated the effects of amphiregulin (AREG) on mucosal recovery, using recombinant AREG treatment or AREG-deficient mice. RESULTS: We determined that an epidermal growth factor receptor ligand, AREG, can control progenitor cell lineage commitment. Based on the identification of lineage-committed subpopulations in the corpus epithelium through single-cell RNA-sequencing and bromodeoxyuridine incorporation, we showed that isthmic progenitors mainly transition into short-lived surface cell lineages but are less frequently committed to long-lived parietal cell lineages in homeostasis. However, mucosal regeneration after damage directs the lineage commitment of isthmic progenitors towards parietal cell lineages. During recovery, AREG treatment promoted repopulation with parietal cells, while suppressing surface cell commitment of progenitors. In contrast, transforming growth factor-α did not alter parietal cell regeneration, but did induce expansion of surface cell populations. AREG deficiency impairs parietal cell regeneration but increases surface cell commitment. CONCLUSIONS: These data demonstrate that different epidermal growth factor receptor ligands can distinctly regulate isthmic progenitor-driven mucosal regeneration and lineage commitment.

13.
Clin Exp Nephrol ; 28(5): 421-430, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38402497

RESUMEN

BACKGROUND: Amphiregulin (AREG) is a ligand of epidermal growth factor receptor (EGFR), which plays an important role in injury-induced kidney fibrosis. However, the clinical significance of serum soluble AREG in chronic kidney disease (CKD) is unclear. In this study, we elucidated the clinical significance of serum soluble AREG in CKD by analyzing the association of serum soluble AREG levels with renal function and other clinical parameters in patients with CKD. METHODS: In total, 418 Japanese patients with CKD were enrolled, and serum samples were collected for the determination of soluble AREG and creatinine (Cr) levels, and other clinical parameters. Additionally, these parameters were evaluated after 2 and 3 years. Moreover, immunohistochemical assay was performed ate AREG expression in the kidney tissues of patients with CKD. RESULTS: Soluble AREG levels were positively correlated with serum Cr (p < 0.0001). Notably, initial AREG levels were positively correlated with changes in renal function (ΔCr) after 2 (p < 0.0001) and 3 years (P = 0.048). Additionally, soluble AREG levels were significantly higher (p < 0.05) in patients with diabetic nephropathy or primary hypertension. Moreover, AREG was highly expressed in renal tubular cells in patients with advanced CKD, but only weakly expressed in patients with preserved renal function. CONCLUSION: Serum soluble AREG levels were significantly correlated with renal function, and changes in renal function after 2 and 3 years, indicating that serum soluble AREG levels might serve as a biomarker of renal function and renal prognosis in CKD.


Asunto(s)
Anfirregulina , Creatinina , Insuficiencia Renal Crónica , Humanos , Anfirregulina/sangre , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Creatinina/sangre , Biomarcadores/sangre , Tasa de Filtración Glomerular , Riñón/fisiopatología , Riñón/metabolismo , Riñón/patología , Adulto , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/diagnóstico , Hipertensión , Relevancia Clínica
14.
Brain Dev ; 46(5): 199-206, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38388302

RESUMEN

BACKGROUND: In Duchenne muscular dystrophy (DMD), the immune system cells (ISC) synthesize molecules to regulate inflammation, a process needed to regenerate muscle. The relationship between those molecules and the muscle injury is unknown. Monocytes belonging to ISC are regulated by omega-3 fatty acids (ω-3 LCPUFAs) in DMD, but whether those fatty acids influence other ISC like T-cells is unknown. OBJECTIVE: We analyzed the expression of the muscle regeneration markers (FOXP3 and AREG) in circulating leukocytes of DMD patients with different lower limb muscle functions and whether ω-3 LCPUFAs regulate the expression of those markers, and the populations of circulating T-cells, their intracellular cytokines, and disease progression (CD69 and CD49d) markers. METHODS: This placebo-controlled, double-blind, randomized study was conducted in DMD boys supplemented with ω-3 LCPUFAs (n = 18) or placebo (sunflower oil, n = 13) for six months. FOXP3 and AREG mRNA expression in leukocytes, immunophenotyping of T-cell populations, CD49d and CD69 markers, and intracellular cytokines in blood samples were analyzed at baseline and months 1, 2, 3, and 6 of supplementation. RESULTS: Patients with assisted ambulation expressed higher (P = 0.015) FOXP3 mRNA levels than ambulatory patients. The FOXP3 mRNA expression correlated (Rho = -0.526, P = 0.03) with the Vignos scale score at month six of supplementation with ω-3 LCPUFAs. CD49d + CD8 + T-cells population was lower (P = 0.037) in the ω -3 LCPUFAs group than placebo at month six of supplementation. CONCLUSION: FOXP3 is highly expressed in circulating leukocytes of DMD patients with the worst muscle function. Omega-3 LCPUFAs might modulate the synthesis of the adhesion marker CD49d + CD8 + T-cells, but their plausible impact on FOXP3 needs more research.


Asunto(s)
Distrofia Muscular de Duchenne , Masculino , Humanos , Citocinas , Músculos/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regeneración , ARN Mensajero/metabolismo , Músculo Esquelético/metabolismo
15.
FASEB J ; 38(4): e23488, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38358359

RESUMEN

Myocardial infarction (MI) is defined as sudden ischemic death of myocardial tissue. Amphiregulin (Areg) regulates cell survival and is crucial for the healing of tissues after damage. However, the functions and mechanisms of Areg after MI remain unclear. Here, we aimed to investigate Areg's impact on myocardial remodeling. Mice model of MI was constructed and Areg-/- mice were used. Expression of Areg was analyzed using western blotting, RT-qPCR, flow cytometry, and immunofluorescence staining. Echocardiographic analysis, Masson's trichrome, and triphenyltetrazolium chloride staining were used to assess cardiac function and structure. RNA sequencing was used for unbiased analysis. Apoptosis and autophagy were determined by western blotting, TUNEL staining, electron microscopy, and mRFP-GFP-LC3 lentivirus. Lysosomal acidity was determined by Lysotracker staining. Areg was elevated in the infarct border zone after MI. It was mostly secreted by macrophages. Areg deficiency aggravated adverse ventricular remodeling, as reflected by worsening cardiac function, a lower survival rate, increased scar size, and interstitial fibrosis. RNA sequencing analyses showed that Areg related to the epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase/protein kinase B (PI3K-Akt), mammalian target of rapamycin (mTOR) signaling pathways, V-ATPase and lysosome pathways. Mechanistically, Areg exerts beneficial effects via increasing lysosomal acidity to promote autophagosome clearance, and activating the EGFR/PI3K/Akt/mTOR signaling pathway, subsequently inhibiting excessive autophagosome formation and apoptosis in cardiomyocytes. This study provides a novel evidence for the role of Areg in inhibiting ventricular remodeling after MI by regulating autophagy and apoptosis and identifies Areg as a potential therapeutic target in ventricular remodeling after MI.


Asunto(s)
Infarto del Miocardio , Fosfatidilinositol 3-Quinasas , Animales , Ratones , Anfirregulina/genética , Apoptosis , Autofagia , Receptores ErbB , Mamíferos , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Remodelación Ventricular
16.
Antioxidants (Basel) ; 13(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38247502

RESUMEN

Interrupted lung angiogenesis is a hallmark of bronchopulmonary dysplasia (BPD); however, druggable targets that can rescue this phenotype remain elusive. Thus, our investigation focused on amphiregulin (Areg), a growth factor that mediates cellular proliferation, differentiation, migration, survival, and repair. While Areg promotes lung branching morphogenesis, its effect on endothelial cell (EC) homeostasis in developing lungs is understudied. Therefore, we hypothesized that Areg promotes the proangiogenic ability of the ECs in developing murine lungs exposed to hyperoxia. Lung tissues were harvested from neonatal mice exposed to normoxia or hyperoxia to determine Areg expression. Next, we performed genetic loss-of-function and pharmacological gain-of-function studies in normoxia- and hyperoxia-exposed fetal murine lung ECs. Hyperoxia increased Areg mRNA levels and Areg+ cells in whole lungs. While Areg expression was increased in lung ECs exposed to hyperoxia, the expression of its signaling receptor, epidermal growth factor receptor, was decreased, indicating that hyperoxia reduces Areg signaling in lung ECs. Areg deficiency potentiated hyperoxia-mediated anti-angiogenic effects. In contrast, Areg treatment increased extracellular signal-regulated kinase activation and exerted proangiogenic effects. In conclusion, Areg promotes EC tubule formation in developing murine lungs exposed to hyperoxia.

17.
Rheumatology (Oxford) ; 63(3): 837-845, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37310903

RESUMEN

OBJECTIVE: Multiple observations indicate a role for lymphocytes in driving autoimmunity in SSc. While T and NK cells have been studied in SSc whole blood and bronchoalveolar lavage fluid, their role remains unclear, partly because no studies have analysed these cell types in SSc-interstitial lung disease (ILD) lung tissue. This research aimed to identify and analyse the lymphoid subpopulations in SSc-ILD lung explants. METHODS: Lymphoid populations from 13 SSc-ILD and 6 healthy control (HC) lung explants were analysed using Seurat following single-cell RNA sequencing. Lymphoid clusters were identified by their differential gene expression. Absolute cell numbers and cell proportions in each cluster were compared between cohorts. Additional analyses were performed using pathway analysis, pseudotime and cell ligand-receptor interactions. RESULTS: Activated CD16+ NK cells, CD8+ tissue resident memory T cells and Treg cells were proportionately higher in SSc-ILD compared with HC lungs. Activated CD16+ NK cells in SSc-ILD showed upregulated granzyme B, IFN-γ and CD226. Amphiregulin, highly upregulated by NK cells, was predicted to interact with epidermal growth factor receptor on several bronchial epithelial cell populations. Shifts in CD8+ T cell populations indicated a transition from resting to effector to tissue resident phenotypes in SSc-ILD. CONCLUSIONS: SSc-ILD lungs show activated lymphoid populations. Activated cytotoxic NK cells suggest they may kill alveolar epithelial cells, while their expression of amphiregulin suggests they may also induce bronchial epithelial cell hyperplasia. CD8+ T cells in SSc-ILD appear to transition from resting to the tissue resident memory phenotype.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Esclerodermia Sistémica , Linfocitos T Reguladores , Humanos , Anfirregulina , Linfocitos T CD8-positivos , Células Asesinas Naturales , Pulmón , Enfermedades Pulmonares Intersticiales/inmunología , Células T de Memoria , Esclerodermia Sistémica/inmunología
18.
J Allergy Clin Immunol ; 153(4): 1095-1112, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38092138

RESUMEN

BACKGROUND: IgG4-related disease (IgG4-RD), an example of a type I immune disease, is an immune-mediated fibrotic disorder characterized by dysregulated resolution of severe inflammation and wound healing. However, truly dominant or pathognomonic autoantibodies related to IgG4-RD are not identified. OBJECTIVE: We sought to perform single-cell RNA sequencing and T-cell receptor and B-cell receptor sequencing to obtain a comprehensive, unbiased view of tissue-infiltrating T and B cells. METHODS: We performed unbiased single-cell RNA-sequencing analysis for the transcriptome and T-cell receptor sequencing and B-cell receptor sequencing on sorted CD3+ T or CD19+ B cells from affected tissues of patients with IgG4-RD. We also conducted quantitative analyses of CD3+ T-cell and CD19+ B-cell subsets in 68 patients with IgG4-RD and 30 patients with Sjögren syndrome. RESULTS: Almost all clonally expanded T cells in these lesions were either Granzyme K (GZMK)-expressing CD4+ cytotoxic T cells or GZMK+CD8+ T cells. These GZMK-expressing cytotoxic T cells also expressed amphiregulin and TGF-ß but did not express immune checkpoints, and the tissue-infiltrating CD8+ T cells were phenotypically heterogeneous. MKI67+ B cells and IgD-CD27-CD11c-CXCR5- double-negative 3 B cells were clonally expanded and infiltrated affected tissue lesions. GZMK+CD4+ cytotoxic T cells colocalized with MKI67+ B cells in the extrafollicular area from affected tissue sites. CONCLUSIONS: The above-mentioned cells likely participate in T-B collaborative events, suggesting possible avenues for targeted therapies. Our findings were validated using orthogonal approaches, including multicolor immunofluorescence and the use of comparator disease groups, to support the central role of cytotoxic CD4+ and CD8+ T cells expressing GZMK, amphiregulin, and TGF-ß in the pathogenesis of inflammatory fibrotic disorders.


Asunto(s)
Enfermedades del Sistema Inmune , Enfermedad Relacionada con Inmunoglobulina G4 , Humanos , Anfirregulina/genética , Linfocitos T CD8-positivos , Granzimas , Receptores de Antígenos de Linfocitos B , Receptores de Antígenos de Linfocitos T , Linfocitos T Citotóxicos , Factor de Crecimiento Transformador beta
19.
Cancer Cell ; 42(1): 101-118.e11, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38157863

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. Cancer-associated fibroblasts (CAFs) are recognized potential therapeutic targets, but poor understanding of these heterogeneous cell populations has limited the development of effective treatment strategies. We previously identified transforming growth factor beta (TGF-ß) as a main driver of myofibroblastic CAFs (myCAFs). Here, we show that epidermal growth factor receptor/Erb-B2 receptor (EGFR/ERBB2) signaling is induced by TGF-ß in myCAFs through an autocrine process mediated by amphiregulin. Inhibition of this EGFR/ERBB2-signaling network in PDAC organoid-derived cultures and mouse models differentially impacts distinct CAF subtypes, providing insights into mechanisms underpinning their heterogeneity. Remarkably, EGFR-activated myCAFs promote PDAC metastasis in mice, unmasking functional significance in myCAF heterogeneity. Finally, analyses of other cancer datasets suggest that these processes might operate in other malignancies. These data provide functional relevance to myCAF heterogeneity and identify a candidate target for preventing tumor invasion in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Miofibroblastos/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Transducción de Señal , Factor de Crecimiento Transformador beta , Microambiente Tumoral
20.
Int J Biol Sci ; 19(16): 5174-5186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928274

RESUMEN

Chondrosarcoma is the second most common type of bone cancer. At present, the most effective clinical course of action is surgical resection. Cisplatin is the chemotherapeutic medication most widely used for the treatment of chondrosarcoma; however, its effectiveness is severely hampered by drug resistance. In the current study, we compared cisplatin-resistant chondrosarcoma SW1353 cells with their parental cells via RNA sequencing. Our analysis revealed that glutamine metabolism is highly activated in resistant cells but glucose metabolism is not. Amphiregulin (AR), a ligand of the epidermal growth factor receptor, enhances glutamine metabolism and supports cisplatin resistance in human chondrosarcoma by promoting NADPH production and inhibiting reactive oxygen species (ROS) accumulation. The MEK, ERK, and NrF2 signaling pathways were shown to regulate AR-mediated alanine-serine-cysteine transporter 2 (ASCT2; also called SLC1A5) and glutaminase (GLS) expression as well as glutamine metabolism in cisplatin-resistant chondrosarcoma. The knockdown of AR expression in cisplatin-resistant chondrosarcoma cells was shown to reduce the expression of SLC1A5 and GLS in vivo. These results indicate that AR and glutamine metabolism are worth pursuing as therapeutic targets in dealing with cisplatin-resistant human chondrosarcoma.


Asunto(s)
Neoplasias Óseas , Condrosarcoma , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Anfirregulina/genética , Glutamina , Resistencia a Antineoplásicos/genética , Condrosarcoma/tratamiento farmacológico , Condrosarcoma/genética , Línea Celular Tumoral , Antígenos de Histocompatibilidad Menor , Sistema de Transporte de Aminoácidos ASC
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...