Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.340
Filtrar
1.
World J Microbiol Biotechnol ; 40(10): 296, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39122994

RESUMEN

Steroid hormones exhibit potent endocrine disrupting activity and have been shown to disrupt the equilibrium of aquatic ecosystems and pose a threat to public health through their persistent and carcinogenic effects. Pontibacillus chungwhensis HN14, a moderately halophilic bacterium with the capacity to effectively degrade various polycyclic aromatic hydrocarbons and other organic pollutants, was previously isolated. Additionally, the strain HN14 showed strong environmental adaptability under various environmental stress conditions. In this study, the steroid degradation by strain HN14 was studied for the first time. We demonstrated that strain HN14 could degrade estradiol (E2) to maintain the growth of the strain and could convert E2 to estrone. Additionally, the efficient substrate degradation efficiency of P. chungwhensis HN14 under high salinity and high substrate concentration conditions was demonstrated. Furthermore, a 17ß-hydroxysteroid dehydrogenase, 17ß-HSD(HN14), was identified in strain HN14. Comparative analysis reveals that 17ß-HSD(HN14) shares approximately 38% sequence identity with 17ß-HSDx from Rhodococcus sp. P14. In addition, 100 µg of purified 17ß-HSD(HN14) could effectively convert about 40% of 0.25 mM of E2 within 1 h period, with an enzyme activity of 17.5 U/mg, and catalyze the dehydrogenation of E2 and testosterone at the C-17 position. The characterization of purified enzyme properties reveals that 17ß-HSD(HN14) exhibits exceptional structural robustness and enzymatic efficacy even under high salinity conditions of up to 20%. Overall, this study enhances our comprehension of steroid biodegradation in strain HN14 and contributes novel ideas and theoretical underpinnings for advancing bioremediation technologies targeting steroid pollution in high-saline environments.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Biodegradación Ambiental , Salinidad , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/genética , Bacillaceae/enzimología , Bacillaceae/genética , Bacillaceae/metabolismo , Estradiol/metabolismo , Estrona/metabolismo , Filogenia , Disruptores Endocrinos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Esteroides/metabolismo
2.
J Cell Mol Med ; 28(15): e18584, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39135338

RESUMEN

Breast cancer (BC) is still one of the major issues in world health, especially for women, which necessitates innovative therapeutic strategies. In this study, we investigated the efficacy of retinoic acid derivatives as inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), which plays a crucial role in the biosynthesis and metabolism of oestrogen and thereby influences the progression of BC and, the main objective of this investigation is to identify the possible drug candidate against BC through computational drug design approach including PASS prediction, molecular docking, ADMET profiling, molecular dynamics simulations (MD) and density functional theory (DFT) calculations. The result has reported that total eight derivatives with high binding affinity and promising pharmacokinetic properties among 115 derivatives. In particular, ligands 04 and 07 exhibited a higher binding affinity with values of -9.9 kcal/mol and -9.1 kcal/mol, respectively, than the standard drug epirubicin hydrochloride, which had a binding affinity of -8.2 kcal/mol. The stability of the ligand-protein complexes was further confirmed by MD simulations over a 100-ns trajectory, which included assessments of hydrogen bonds, root mean square deviation (RMSD), root mean square Fluctuation (RMSF), dynamic cross-correlation matric (DCCM) and principal component analysis. The study emphasizes the need for experimental validation to confirm the therapeutic utility of these compounds. This study enhances the computational search for new BC drugs and establishes a solid foundation for subsequent experimental and clinical research.


Asunto(s)
Neoplasias de la Mama , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Femenino , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ligandos , Simulación por Computador , Unión Proteica , Tretinoina/metabolismo , Diseño de Fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , 17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/química , Enlace de Hidrógeno
3.
Toxicology ; 506: 153873, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986729

RESUMEN

Parabens are commonly used preservatives in cosmetics, food, and pharmaceutical products. The objective of this study was to examine the effect of nine parabens on human and rat 17ß-hydroxysteroid dehydrogenase 1 (17ß-HSD1) in human placental and rat ovarian cytosols, as well as on estradiol synthesis in BeWo cells. The results showed that the IC50 values for these compounds varied from methylparaben with the weakest inhibition (106.42 µM) to hexylparaben with the strongest inhibition (2.05 µM) on human 17ß-HSD1. Mode action analysis revealed that these compounds acted as mixed inhibitors. For rats, the IC50 values ranged from the weakest inhibition for methylparaben (no inhibition at 100 µM) to the most potent inhibition for hexylparaben (0.87 µM), and they functioned as mixed inhibitors. Docking analysis indicated that parabens bind to the region bridging the NADPH and steroid binding sites of human 17ß-HSD1 and the NADPH binding site of rat 17ß-HSD1. Bivariate correlation analysis demonstrated negative correlations between LogP, molecular weight, heavy atoms, and apolar desolvation energy, and the IC50 values of these compounds. In conclusion, this study identified the inhibitory effects of parabens and their binding mechanisms on human and rat 17ß-HSD1, as well as their impact on hormone synthesis.


Asunto(s)
Estradiol , Simulación del Acoplamiento Molecular , Parabenos , Placenta , Parabenos/toxicidad , Animales , Humanos , Ratas , Femenino , Placenta/efectos de los fármacos , Placenta/metabolismo , Placenta/enzimología , 17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Embarazo , Conservadores Farmacéuticos , Ovario/efectos de los fármacos , Ovario/metabolismo , Ovario/enzimología , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Sitios de Unión , Estradiol Deshidrogenasas/antagonistas & inhibidores , Estradiol Deshidrogenasas/metabolismo
4.
Aliment Pharmacol Ther ; 60(3): 369-377, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38825972

RESUMEN

BACKGROUND: Genetic factors contribute to the risk and severity of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the utility of genetic testing in risk stratification remains poorly characterised. AIMS: To examine the influence of genetic risk on advanced fibrosis and cirrhosis in patients with type 2 diabetes mellitus (T2DM) and the utility of a polygenic risk score (PRS) in screening guidelines. METHODS: We prospectively enrolled adults aged ≥50 years with T2DM recruited from clinics. PRS was the sum of risk alleles in PNPLA3, TM6SF2 and SERPINA1 minus the protective variant in HSD17B13. We performed magnetic resonance elastography and vibration-controlled transient elastography to assess for advanced fibrosis and cirrhosis. RESULTS: Of 382 included patients, the mean age and BMI were 64.8 (±8.4) years and 31.7 (±6.2) kg/m2 respectively. The prevalence of advanced fibrosis and cirrhosis were 12.3% and 5.2% respectively; higher PRS was associated with increased risk of cirrhosis (2.7% vs. 7.5%, p = 0.037). High PRS was associated with increased risk of advanced fibrosis among those with fibrosis-4 index (FIB-4) index <1.3 (9.6% vs. 2.3%, p = 0.036) but was not significantly different in other FIB-4 categories. Incorporating PRS determination into the American Gastroenterological Association and American Association for the Study of Liver Diseases screening guidelines prevented approximately 20% of all participants with advanced fibrosis from being inappropriately classified as low risk. CONCLUSIONS: Utilising a well-phenotyped, prospective cohort of adults with T2DM, we found that adding an assessment of genetic risk to recommendations to screen at-risk populations may improve risk prediction.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diagnóstico por Imagen de Elasticidad , Cirrosis Hepática , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Persona de Mediana Edad , Masculino , Femenino , Cirrosis Hepática/genética , Cirrosis Hepática/epidemiología , Anciano , Estudios Prospectivos , Prevalencia , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Factores de Riesgo , Lipasa/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Medición de Riesgo/métodos , Aciltransferasas , alfa 1-Antitripsina , 17-Hidroxiesteroide Deshidrogenasas , Fosfolipasas A2 Calcio-Independiente
5.
J Gastrointestin Liver Dis ; 33(2): 203-211, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38944871

RESUMEN

BACKGROUND AND AIMS: Progression to hepatocellular carcinoma (HCC) is restricted by viral suppression in chronic hepatitis B (CHB); however, some patients still progress despite antiviral therapy. Presence of single nucleotide polymorphisms (SNPs) such as PNPLA3 rs738409 and TM6SF2 rs58542926 are associated with the development and progression of steatotic liver disease to HCC, whereas a splice variant in HSD17B13 rs72613567:TA has been shown to be protective. We investigated the role of these SNPs in the development or prognosis of HCC in pure CHB etiology, in the absence of hepatic steatosis, remains unknown. MATERIALS: We analysed PNPLA3 rs738409, TM6SF2 rs58542926, and HSD17B13 rs72613567 SNPs in a prospectively recruited cohort (n=323) consisting of healthy controls, CHB and CHB-HCC patients without hepatic steatosis. SNPs were determined by PCR analysis and associations for the alleles and genotypes were investigated using adjusted-logistic regression analyses. The overall survival (OS) data were collected from CHB-HCC patients for survival analysis. RESULTS: The genotype and allelic distribution of PNPLA3 rs738409, TM6SF2 rs58542926, and HSD17B13 rs72613567 were similar between healthy controls, CHB, and CHB-HCC groups. No genotype, allele or haplotype analysis was found to be associated with increased risk for CHB-HCC. Survival analysis revealed no genotype or allele to be associated with OS in patients with CHB-HCC. CONCLUSIONS: We could not demonstrate any association of PNPLA3 rs738409, TM6SF2 rs58542926, and HSD17B13 rs72613567 with the development or prognosis of CHB-HCC, supporting the initial hypothesis that they should be considered specific hotspots for liver diseases characterized with hepatic steatosis.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Carcinoma Hepatocelular , Predisposición Genética a la Enfermedad , Hepatitis B Crónica , Lipasa , Neoplasias Hepáticas , Proteínas de la Membrana , Polimorfismo de Nucleótido Simple , Humanos , Proteínas de la Membrana/genética , Lipasa/genética , Femenino , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , 17-Hidroxiesteroide Deshidrogenasas/genética , Estudios de Casos y Controles , Hepatitis B Crónica/genética , Hepatitis B Crónica/complicaciones , Pronóstico , Adulto , Turquía/epidemiología , Factores de Riesgo , Estudios Prospectivos , Fenotipo , Estudios de Asociación Genética , Aciltransferasas , Fosfolipasas A2 Calcio-Independiente
6.
Nutrients ; 16(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38931155

RESUMEN

Gut microbiota might affect the severity and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). We aimed to characterize gut dysbiosis and clinical parameters regarding fibrosis stages assessed by magnetic resonance elastography. This study included 156 patients with MASLD, stratified into no/mild fibrosis (F0-F1) and moderate/severe fibrosis (F2-F4). Fecal specimens were sequenced targeting the V4 region of the 16S rRNA gene and analyzed using bioinformatics. The genotyping of PNPLA3, TM6SF2, and HSD17B13 was assessed by allelic discrimination assays. Our data showed that gut microbial profiles between groups significantly differed in beta-diversity but not in alpha-diversity indices. Enriched Fusobacterium and Escherichia_Shigella, and depleted Lachnospira were found in the F2-F4 group versus the F0-F1 group. Compared to F0-F1, the F2-F4 group had elevated plasma surrogate markers of gut epithelial permeability and bacterial translocation. The bacterial genera, PNPLA3 polymorphisms, old age, and diabetes were independently associated with advanced fibrosis in multivariable analyses. Using the Random Forest classifier, the gut microbial signature of three genera could differentiate the groups with high diagnostic accuracy (AUC of 0.93). These results indicated that the imbalance of enriched pathogenic genera and decreased beneficial bacteria, in association with several clinical and genetic factors, were potential contributors to the pathogenesis and progression of MASLD.


Asunto(s)
Microbioma Gastrointestinal , Cirrosis Hepática , Proteínas de la Membrana , Índice de Severidad de la Enfermedad , Humanos , Microbioma Gastrointestinal/genética , Cirrosis Hepática/microbiología , Cirrosis Hepática/genética , Femenino , Masculino , Persona de Mediana Edad , Proteínas de la Membrana/genética , Lipasa/genética , Anciano , ARN Ribosómico 16S/genética , Disbiosis , Hígado Graso/microbiología , Hígado Graso/genética , Heces/microbiología , Adulto , Variación Genética , Diagnóstico por Imagen de Elasticidad , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Aciltransferasas , 17-Hidroxiesteroide Deshidrogenasas , Fosfolipasas A2 Calcio-Independiente
7.
Clin Res Hepatol Gastroenterol ; 48(7): 102389, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830575

RESUMEN

BACKGROUND: Genetic testing can be used to evaluate disease risk. We evaluated if the use of three Single Nucleotide Polymorphisms (SNPs), alone or combined into a genetic risk score (GRS), can aid identify significant fibrosis in subjects with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS: We assessed three known risk variants: PNPLA3 rs738409, TM6SF2 rs58542926, and HSD17B13 rs72613567. The study included 414 adult individuals invited from the Danish population, who were defined as at-risk of MASLD due to elevated ALT and body mass index (BMI) >25 kg/m2. Participants were assessed clinically and by the Fibrosis-4 (FIB-4) index and Fibroscan. RESULTS: In total, 17 participants (4.1 %) had alcohol-related liver disease, 79 (19.1 %) had no evidence of liver disease, and four (1.0 %) were diagnosed with other liver diseases, including malignant disease. The remaining 314 participants (75.8 %) were diagnosed with MASLD. Of the 27 who underwent a liver biopsy for suspected fibrosis, 15 had significant fibrosis (≥F2) and 12 had no/mild fibrosis (F0/F1). The GRS was not associated with significant fibrosis (p = 0.09) but PNPLA3 was with an odds ratio of 6.75 (95 % CI 1.29 - 50.7; p = 0.039) risk allele CG/GG versus CC. The diagnostic accuracy of PNPLA3 combined with an increased Fib-4 (>1.3) was excellent for detecting significant fibrosis with a sensitivity of 1.00 (95 % CI 0.72-1.00), but the specificity was no better than for FIB-4 alone. CONCLUSIONS: This study found no evidence to support the use of GRS for diagnosing significant fibrosis in MASLD. However, the combination of PNPLA3 and Fib-4 increased sensitivity considerably. In addition, ALT remains a useful tool for screening diagnosing other liver diseases than MASLD.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Lipasa , Cirrosis Hepática , Proteínas de la Membrana , Polimorfismo de Nucleótido Simple , Humanos , Lipasa/genética , Proteínas de la Membrana/genética , Masculino , Femenino , Persona de Mediana Edad , 17-Hidroxiesteroide Deshidrogenasas/genética , Cirrosis Hepática/genética , Adulto , Hígado Graso/genética , Hígado Graso/diagnóstico , Anciano , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Aciltransferasas , Fosfolipasas A2 Calcio-Independiente
8.
Acta Chim Slov ; 71(2): 256-263, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38919102

RESUMEN

Breast cancer cell growth is often dependent on the presence of steroidal hormones. The 17ß-hydroxysteroid dehydrogenase type 1 isoform (17ßHSD1) catalyzes NADPH-dependent conversion of estrone to estradiol, a more potent estrogen, and represents potential drug target for breast cancer treatment.  To provide active enzyme for inhibitor screening, 17ßHSD1 is usually expressed in insect or mammalian cells, or isolated from human placenta. In the present study we describe a simple protocol for expression and purification of active human 17ßHSD1 from BL21(DE3) Escherichia coli cells. Soluble human 17ßHSD1 was expressed using a pET28a(+)-based plasmid, which encodes a hexahistidine tag fused to the N-terminus of the protein, and purified by nickel affinity chromatography. The enzyme activity of purified 17ßHSD1 was verified by three methods: thin-layer chromatography, an alkali assay and a spectroscopic assay. These non-radioactive enzyme assays require only standard laboratory equipment, and can be used for screening compounds that modulate 17ßHSD1 activity.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/aislamiento & purificación , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/genética , 17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 17-Hidroxiesteroide Deshidrogenasas/química , Cromatografía de Afinidad , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis
9.
Endocrinology ; 165(6)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38785348

RESUMEN

Hydroxysteroid (17ß) dehydrogenase (HSD17B) enzymes convert 17-ketosteroids to 17beta-hydroxysteroids, an essential step in testosterone biosynthesis. Human XY individuals with inactivating HSD17B3 mutations are born with female-appearing external genitalia due to testosterone deficiency. However, at puberty their testosterone production reactivates, indicating HSD17B3-independent testosterone synthesis. We have recently shown that Hsd17b3 knockout (3-KO) male mice display a similar endocrine imbalance, with high serum androstenedione and testosterone in adulthood, but milder undermasculinization than humans. Here, we studied whether HSD17B1 is responsible for the remaining HSD17B activity in the 3-KO male mice by generating a Ser134Ala point mutation that disrupted the enzymatic activity of HSD17B1 (1-KO) followed by breeding Hsd17b1/Hsd17b3 double-KO (DKO) mice. In contrast to 3-KO, inactivation of both HSD17B3 and HSD17B1 in mice results in a dramatic drop in testosterone synthesis during the fetal period. This resulted in a female-like anogenital distance at birth, and adult DKO males displayed more severe undermasculinization than 3-KO, including more strongly reduced weight of seminal vesicles, levator ani, epididymis, and testis. However, qualitatively normal spermatogenesis was detected in adult DKO males. Furthermore, similar to 3-KO mice, high serum testosterone was still detected in adult DKO mice, accompanied by upregulation of various steroidogenic enzymes. The data show that HSD17B1 compensates for HSD17B3 deficiency in fetal mouse testis but is not the enzyme responsible for testosterone synthesis in adult mice with inactivated HSD17B3. Therefore, other enzymes are able to convert androstenedione to testosterone in the adult mouse testis and presumably also in the human testis.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Ratones Noqueados , Testículo , Testosterona , Animales , Masculino , Testículo/metabolismo , Testículo/embriología , Ratones , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/genética , 17-Hidroxiesteroide Deshidrogenasas/deficiencia , Femenino , Testosterona/sangre , Testosterona/metabolismo , Feto/metabolismo , Estradiol Deshidrogenasas/metabolismo , Estradiol Deshidrogenasas/genética
10.
Hepatol Commun ; 8(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38780253

RESUMEN

BACKGROUND: The PNPLA3-rs738409-G, TM6SF2-rs58542926-T, and HSD17B13-rs6834314-A polymorphisms have been associated with cirrhosis, hepatic decompensation, and HCC. However, whether they remain associated with HCC and decompensation in people who already have cirrhosis remains unclear, which limits the clinical utility of genetics in risk stratification as HCC is uncommon in the absence of cirrhosis. We aimed to characterize the effects of PNPLA3, TM6SF2, and HSD17B13 genotype on hepatic decompensation, HCC, and liver-related mortality or liver transplant in patients with baseline compensated cirrhosis. METHODS: We conducted a single-center retrospective study of patients in the Michigan Genomics Initiative who underwent genotyping. The primary predictors were PNPLA3, TM6SF2, and HSD17B13 genotypes. Primary outcomes were either hepatic decompensation, HCC, or liver-related mortality/transplant. We conducted competing risk Fine-Gray analyses on our cohort. RESULTS: We identified 732 patients with baseline compensated cirrhosis. During follow-up, 50% of patients developed decompensation, 13% developed HCC, 24% underwent liver transplant, and 27% died. PNPLA3-rs738409-G genotype was associated with risk of incident HCC: adjusted subhazard hazard ratio 2.42 (1.40-4.17), p=0.0015 for PNPLA3-rs738409-GG vs. PNPLA3-rs738409-CC genotype. The 5-year cumulative incidence of HCC was higher in PNPLA3-rs738409-GG carriers than PNPLA3-rs738409-CC/-CG carriers: 15.6% (9.0%-24.0%) vs. 7.4% (5.2%-10.0%), p<0.001. PNPLA3 genotype was not associated with decompensation or the combined outcome of liver-related mortality or liver transplant. TM6SF2 and HSD17B13 genotypes were not associated with decompensation or HCC. CONCLUSIONS: The PNPLA3-rs738409-G allele is associated with an increased risk of HCC among patients with baseline compensated cirrhosis. People with cirrhosis and PNPLA3-rs738409-GG genotype may warrant more intensive HCC surveillance.


Asunto(s)
Alelos , Carcinoma Hepatocelular , Lipasa , Cirrosis Hepática , Neoplasias Hepáticas , Proteínas de la Membrana , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Masculino , Lipasa/genética , Femenino , Cirrosis Hepática/genética , Cirrosis Hepática/complicaciones , Cirrosis Hepática/mortalidad , Proteínas de la Membrana/genética , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , 17-Hidroxiesteroide Deshidrogenasas/genética , Genotipo , Trasplante de Hígado , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Factores de Riesgo , Aciltransferasas , Fosfolipasas A2 Calcio-Independiente
11.
Am J Biol Anthropol ; 184(4): e24979, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38778456

RESUMEN

OBJECTIVES: Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease globally, with an estimated prevalence exceeding 25%. Variants in the PNPLA3 and HSD17B13 genes have been a focus of investigations surrounding the etiology and progression of NAFLD and are believed to contribute to a greater burden of disease experienced by Hispanic Americans. However, little is known about socioeconomic factors influencing NAFLD progression or its increased prevalence among Hispanics. MATERIALS AND METHODS: We cross-sectionally analyzed 264 patients to assess the role of genetic and socioeconomic variables in the development of advanced liver fibrosis in individuals at risk for NAFLD. RESULTS: Adjusting for age, sex, body mass index, and PNPLA3 genotype, lacking a college degree was associated with 3.3 times higher odds of advanced fibrosis (95% confidence interval [CI]: 1.21-8.76, p = 0.019), an effect comparable to that of possessing the major PNPLA3 risk variant. Notably, the effect of PNPLA3 genotype on advanced fibrosis was attenuated to nonsignificance following adjustment for education and other socioeconomic markers. The effect of the protective HSD17B13 variant, moreover, diminished after adjustment for education (odds ratio [OR]: 0.39 [95% CI: 0.13-1.16, p = 0.092]), while lower education continued to predict advanced fibrosis following multivariable adjustment with an OR of 8.0 (95% CI: 1.91-33.86, p = 0.005). DISCUSSION: Adjusting for education attenuated the effects of genotype and Hispanic ethnicity on liver fibrosis, suggesting that social factors-rather than genes or ethnicity-may be driving disease severity within some populations. Findings reveal the importance of including socioenvironmental controls when considering the role of genetics or ethnicity in complex disease.


Asunto(s)
Lipasa , Proteínas de la Membrana , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/etnología , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Lipasa/genética , Adulto , Proteínas de la Membrana/genética , Estudios Transversales , Hispánicos o Latinos/genética , Hispánicos o Latinos/estadística & datos numéricos , Factores Socioeconómicos , 17-Hidroxiesteroide Deshidrogenasas/genética , Progresión de la Enfermedad , Anciano , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Cirrosis Hepática/etnología , Cirrosis Hepática/epidemiología , Aciltransferasas , Fosfolipasas A2 Calcio-Independiente
12.
Am J Physiol Renal Physiol ; 327(1): F146-F157, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38779753

RESUMEN

17ß-Hydroxysteroid dehydrogenase-13 (HSD17B13), a newly identified lipid droplet-associated protein, plays an important role in the development of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Emerging evidence demonstrates that NASH is an independent risk factor for chronic kidney disease, which is frequently accompanied by renal lipid accumulation. In addition, the HSD17B13 rs72613567 variant is associated with lower levels of albuminuria in patients with biopsy-proven NAFLD. At present, the role of HSD17B13 in lipid accumulation in the kidney is unclear. This study utilized bioinformatic and immunostaining approaches to examine the expression and localization of HSD17B13 along the mouse urinary tract. We found that HSD17B13 is constitutively expressed in the kidney, ureter, and urinary bladder. Our findings reveal for the first time, to our knowledge, the precise localization of HSD17B13 in the mouse urinary system, providing a basis for further studying the pathogenesis of HSD17B13 in various renal and urological diseases.NEW & NOTEWORTHY HSD17B13, a lipid droplet-associated protein, is crucial in nonalcoholic fatty liver disease (NAFLD) development. NAFLD also independently raises chronic kidney disease (CKD) risk, often with renal lipid buildup. However, HSD17B13's role in CKD-related lipid accumulation is unclear. This study makes the first effort to examine HSD17B13 expression and localization along the urinary system, providing a basis for exploring its physiological and pathophysiological roles in the kidney and urinary tract.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Ratones Endogámicos C57BL , Animales , Masculino , Ratones , 17-Hidroxiesteroide Deshidrogenasas/genética , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Riñón/metabolismo , Riñón/patología , Sistema Urinario/metabolismo , Sistema Urinario/patología
13.
SAR QSAR Environ Res ; 35(6): 433-456, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38785078

RESUMEN

Curcumin, an extensively utilized natural pigment in the food industry, has attracted considerable attention due to its potential therapeutic effects, such as anti-tumorigenic and anti-inflammatory activities. The enzyme 17ß-Hydroxysteroid dehydrogenase 1 (17ß-HSD1) holds a crucial position in oestradiol production and exhibits significant involvement in oestrogen-responsive breast cancers and endometriosis. This study investigated the inhibitory effects of curcuminoids, metabolites, and analogues on 17ß-HSD1, a key enzyme in oestradiol synthesis. Screening 10 compounds, including demethoxycurcumin (IC50, 3.97 µM) and dihydrocurcumin (IC50, 5.84 µM), against human and rat 17ß-HSD1 revealed varying inhibitory potencies. These compounds suppressed oestradiol secretion in human BeWo cells at ≥ 5-10 µM. 3D-Quantitative structure-activity relationship (3D-QSAR) and molecular docking analyses elucidated the interaction mechanisms. Docking studies and Gromacs simulations suggested competitive or mixed binding to the steroid or NADPH/steroid binding sites of 17ß-HSD1. Predictive 3D-QSAR models highlighted the importance of hydrophobic regions and hydrogen bonding in inhibiting 17ß-HSD1 activity. In conclusion, this study provides valuable insights into the inhibitory effects and mode of action of curcuminoids, metabolites, and analogues on 17ß-HSD1, which may have implications in the field of hormone-related disorders.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Curcumina , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa , Humanos , Ratas , Animales , Curcumina/análogos & derivados , Curcumina/farmacología , Curcumina/química , 17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Estradiol/análogos & derivados , Estradiol/química , Estradiol/farmacología , Estradiol/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
14.
J Steroid Biochem Mol Biol ; 242: 106544, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38754521

RESUMEN

Sex steroid hormones such as estrogen estradiol (E2) and androgen dihydrotestosterone (DHT) are involved in the development of hormone-dependent cancers. Blockade of 17ß-hydroxysteroid dehydrogenase type 7 (17ß-HSD7), a member of the short chain dehydrogenase/reductase superfamily, is thought to decrease E2 levels while increasing those of DHT. Therefore, its unique double action makes this enzyme as an interesting drug target for treatment of breast cancer. The chemical synthesis, molecular characterization, and preliminary biological evaluation as 17ß-HSD7 inhibitors of novel carbamate derivatives 3 and 4 are described. Like previous 17ß-HSD7 inhibitors 1 and 2, compounds 3 and 4 bear a hydrophobic nonyl side chain at the C-17ß position of a 4-aza-5α-androstane nucleus, but compound 3 has an oxygen atom replacing the CH2 in the steroid A-ring C-2 position, while compound 4 has a C17-spiranic E-ring containing a carbamate function. They both inhibited the in vitro transformation of estrone (E1) into E2 by 17ß-HSD7, but the introduction of a (17 R)-spirocarbamate is preferable to replacing C-2 methylene with an oxygen atom since compound 4 (IC50 = 63 nM) is an inhibitor 14 times more powerful than compound 3 (IC50 = 900 nM). Furthermore, when compared to the reference inhibitor 1 (IC50 = 111 nM), the use of a C17-spiranic E-ring made it possible to introduce differently the hydrophobic nonyl side chain, without reducing the inhibitory activity.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Inhibidores Enzimáticos , 17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Humanos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Estradiol/química , Estradiol/metabolismo , Estradiol/farmacología , Carbamatos/química , Carbamatos/farmacología , Carbamatos/síntesis química , Estrona/química , Estrona/farmacología , Estrona/síntesis química
15.
Sci Rep ; 14(1): 12280, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811827

RESUMEN

Loss of the tumor suppressor PTEN homolog daf-18 in Caenorhabditis elegans (C. elegans) triggers diapause cell division during L1 arrest. While prior studies have delved into established pathways, our investigation takes an innovative route. Through forward genetic screening in C. elegans, we pinpoint a new player, F12E12.11, regulated by daf-18, impacting cell proliferation independently of PTEN's typical phosphatase activity. F12E12.11 is an ortholog of human estradiol 17-beta-dehydrogenase 8 (HSD17B8), which converts estradiol to estrone through its NAD-dependent 17-beta-hydroxysteroid dehydrogenase activity. We found that PTEN engages in a physical interplay with HSD17B8, introducing a distinctive suppression mechanism. The reduction in estrone levels and accumulation of estradiol may arrest tumor cells in the G2/M phase of the cell cycle through MAPK/ERK. Our study illuminates an unconventional protein interplay, providing insights into how PTEN modulates tumor suppression by restraining cell division through intricate molecular interactions.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proliferación Celular , Fosfohidrolasa PTEN , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Humanos , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/genética , Estradiol/metabolismo , Estrona/metabolismo
16.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732138

RESUMEN

D-bifunctional protein deficiency (D-BPD) is a rare, autosomal recessive peroxisomal disorder that affects the breakdown of long-chain fatty acids. Patients with D-BPD typically present during the neonatal period with hypotonia, seizures, and facial dysmorphism, followed by severe developmental delay and early mortality. While some patients have survived past two years of age, the detectable enzyme activity in these rare cases was likely a contributing factor. We report a D-BPD case and comment on challenges faced in diagnosis based on a narrative literature review. An overview of Romania's first patient diagnosed with D-BPD is provided, including clinical presentation, imaging, biochemical, molecular data, and clinical course. Establishing a diagnosis can be challenging, as the clinical picture is often incomplete or similar to many other conditions. Our patient was diagnosed with type I D-BPD based on whole-exome sequencing (WES) results revealing a pathogenic frameshift variant of the HSD17B4 gene, c788del, p(Pro263GInfs*2), previously identified in another D-BPD patient. WES also identified a variant of the SUOX gene with unclear significance. We advocate for using molecular diagnosis in critically ill newborns and infants to improve care, reduce healthcare costs, and allow for familial counseling.


Asunto(s)
Proteína Trifuncional Mitocondrial/deficiencia , Proteína-2 Multifuncional Peroxisomal , Humanos , Proteína-2 Multifuncional Peroxisomal/deficiencia , Proteína-2 Multifuncional Peroxisomal/genética , Errores Innatos del Metabolismo Lipídico/diagnóstico , Errores Innatos del Metabolismo Lipídico/genética , Recién Nacido , Lactante , Masculino , Femenino , Secuenciación del Exoma , Mutación del Sistema de Lectura , 17-Hidroxiesteroide Deshidrogenasas/deficiencia , 17-Hidroxiesteroide Deshidrogenasas/genética , Configuración de Recursos Limitados , Miopatías Mitocondriales , Cardiomiopatías , Enfermedades del Sistema Nervioso , Rabdomiólisis
17.
Chemosphere ; 358: 142086, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670510

RESUMEN

Furan is generated in a wide array of heat-treated foods through thermal degradation, leading to severe impairments in the male reproductive system. The main objective of this study was to investigate the potential of pomegranate peel extract (PGPE) in mitigating testicular dysfunctions induced by furan. Male rats were categorized into four groups: control/untreated, PGPE, furan, and PGPE + furan group. The study results revealed that furan-treated rats exhibited significantly elevated aminotransferase and phosphatase activity, and also generated increased oxidative stress, and reduced antioxidative stress protein activity. Additionally, protein content levels (ALT, AST, ALP, and ACP) and activities of steroidogenic Leydig cell hydroxysteroid dehydrogenase (3ß-HSD and 17ß-HSD) enzymes were significantly decreased. Significant variations in testicular parameters, apoptotic genes (Bcl-2, P53, and Caspase3), inflammatory and anti-inflammatory cytokines (IL1ß, IL10), male sex hormones follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, and sperm quality were also observed. Furthermore, testicular histological abnormalities were confirmed by biochemical and molecular modifications. Notably, PGPE pre-treated furan-intoxicated animals exhibited significant improvements in most of the assessed parameters compared to furan-treated groups. In conclusion, PGPE presents essential preventive measures and a novel pharmacological potential therapy against furan-induced testicular injury.


Asunto(s)
Apoptosis , Furanos , Estrés Oxidativo , Extractos Vegetales , Granada (Fruta) , Testículo , Masculino , Animales , Estrés Oxidativo/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Ratas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Apoptosis/efectos de los fármacos , Granada (Fruta)/química , Furanos/farmacología , Testosterona/metabolismo , Hormona Luteinizante , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Hormona Folículo Estimulante , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Antioxidantes/metabolismo
18.
Clin Gastroenterol Hepatol ; 22(7): 1436-1443.e4, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604296

RESUMEN

BACKGROUND & AIMS: PNPLA3 rs738409, TM6SF2 rs58542926, and HSD17B13 rs72613567 have been associated with an increased risk of liver-related events (LREs) in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, we investigated the combined effects of these variants on LREs. METHODS: The longitudinal multicenter cohort study enrolled 1178 patients with biopsy-proven MASLD. We calculated the genetic risk of hepatic fibrosis and LRE according to the impact of these variants. RESULTS: Patients with genetic fibrosis scores of 2, 3, and 4 or 5 were at greater risk than patients with scores of 0 or 1, with odds ratios of 2.45 (95% CI, 1.27-4.74), 2.14 (95% CI, 1.17-3.94), and 2.54 (95% CI, 1.35-4.77), respectively. Multivariate analysis revealed that PNPLA3 and TM6SF2, but not HSD17B13, were associated significantly with LRE development. The hazard ratio of the genetic high-risk group for LRE was 1.91 (95% CI, 1.20-3.04). The higher risk of LRE development in the genetic high-risk group also was seen in patients with F ≥ 3 or Fibrosis-4 index > 2.67. The hazard ratios of the genetic high-risk group for LRE were greater in patients without obesity, without diabetes, and of younger age compared with patients with obesity, with diabetes, or of older age, respectively. CONCLUSIONS: This combination of MASLD-related genetic variants is useful for predicting LREs in Japanese patients with MASLD. The genetic risk according to these variants is useful for LRE risk assessment, especially in patients without metabolic risk factors or in younger patients in Japan.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Lipasa , Proteínas de la Membrana , Humanos , Masculino , Femenino , Persona de Mediana Edad , Proteínas de la Membrana/genética , Lipasa/genética , Adulto , Estudios Longitudinales , 17-Hidroxiesteroide Deshidrogenasas/genética , Anciano , Predisposición Genética a la Enfermedad , Comorbilidad , Japón/epidemiología , Polimorfismo de Nucleótido Simple , Hígado Graso/genética , Hígado Graso/complicaciones , Cirrosis Hepática/genética , Cirrosis Hepática/complicaciones , Aciltransferasas , Fosfolipasas A2 Calcio-Independiente
19.
Genes (Basel) ; 15(4)2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38674389

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is a frequent clinical condition globally. Single nucleotide polymorphisms (SNPs) associated with NAFLD have been proposed in the literature and based on bioinformatic screening. The association between NAFLD and genetic variants in Egyptians is still unclear. Hence, we sought to investigate the association of some genetic variants with NAFLD in Egyptians. Egyptians have been categorized into either the MASLD group (n = 205) or the healthy control group (n = 187). The severity of hepatic steatosis and liver fibrosis was assessed by a Fibroscan device. TaqMan-based genotyping assays were employed to explore the association of selected SNPs with MASLD. PNPLA3 rs738409 C>G variant is associated with the presence of MASLD with liver fibrosis, the severity of both hepatic steatosis and liver fibrosis, increased systolic and diastolic blood pressure and increased alanine aminotransferase (all p < 0.05), while the TM6SF2 rs58542926 C>T, HSD17B13 rs9992651 G>A, and GCKR rs1260326 T>C variants were not (all p > 0.05). The TM6SF2 rs58542926 T allele is associated with increased fasting blood glucose and a decreased waist circumference. The GCKR rs1260326 C allele is associated with decreased aspartate transaminase and diastolic blood pressure (all p < 0.05). Only after adjusting for the risk factors (age, sex, BMI, WC, HDL, TG, diabetes mellitus, and hypertension) F2 liver fibrosis score is negatively correlated with the HSD17B13 rs9992651 GA genotype. This study offers evidence for the association of the PNPLA3 rs738409 C>G variant with MASLD among Egyptians and for the association of the PNPLA3 rs738409 G allele, the TM6SF2 rs58542926 T allele, and the GCKR rs1260326 C allele with some parameters of cardiometabolic criteria.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales , Lipasa , Proteínas de la Membrana , Enfermedad del Hígado Graso no Alcohólico , Fosfolipasas A2 Calcio-Independiente , Polimorfismo de Nucleótido Simple , Humanos , Proteínas de la Membrana/genética , Lipasa/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Egipto , Masculino , Femenino , Persona de Mediana Edad , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , 17-Hidroxiesteroide Deshidrogenasas/genética , Predisposición Genética a la Enfermedad , Índice de Severidad de la Enfermedad , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Estudios de Casos y Controles , Genotipo
20.
Toxicol Lett ; 395: 40-49, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555059

RESUMEN

Pentachlorophenol (PCP) is a widely used pesticide. However, whether PCP and its metabolite chloranil have endocrine-disrupting effects by inhibiting placental 3ß-hydroxysteroid dehydrogenase 1 (3ß-HSD1) remains unclear. The study used in vitro assays with human and rat placental microsomes to measure 3ß-HSD activity as well as human JAr cells to evaluate progesterone production. The results showed that PCP exhibited moderate inhibition of human 3ß-HSD1, with an IC50 value of 29.83 µM and displayed mixed inhibition in terms of mode of action. Conversely, chloranil proved to be a potent inhibitor, demonstrating an IC50 value of 147 nM, and displaying a mixed mode of action. PCP significantly decreased progesterone production by JAr cells at 50 µM, while chloranil markedly reduced progesterone production at ≥1 µM. Interestingly, PCP and chloranil moderately inhibited rat placental homolog 3ß-HSD4, with IC50 values of 27.94 and 23.42 µM, respectively. Dithiothreitol (DTT) alone significantly increased human 3ß-HSD1 activity. Chloranil not PCP mediated inhibition of human 3ß-HSD1 activity was completely reversed by DTT and that of rat 3ß-HSD4 was partially reversed by DTT. Docking analysis revealed that both PCP and chloranil can bind to the catalytic domain of 3ß-HSDs. The difference in the amino acid residue Cys83 in human 3ß-HSD1 may explain why chloranil is a potent inhibitor through its interaction with the cysteine residue of human 3ß-HSD1. In conclusion, PCP is metabolically activated to chloranil as a potent inhibitor of human 3ß-HSD1.


Asunto(s)
Pentaclorofenol , Placenta , Humanos , Femenino , Ratas , Embarazo , Animales , Placenta/metabolismo , Pentaclorofenol/toxicidad , Pentaclorofenol/metabolismo , Cloranilo/metabolismo , Progesterona/metabolismo , Activación Metabólica , Modelos Moleculares , Hidroxiesteroide Deshidrogenasas/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , 17-Hidroxiesteroide Deshidrogenasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA