Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 303
1.
J Steroid Biochem Mol Biol ; 242: 106544, 2024 Sep.
Article En | MEDLINE | ID: mdl-38754521

Sex steroid hormones such as estrogen estradiol (E2) and androgen dihydrotestosterone (DHT) are involved in the development of hormone-dependent cancers. Blockade of 17ß-hydroxysteroid dehydrogenase type 7 (17ß-HSD7), a member of the short chain dehydrogenase/reductase superfamily, is thought to decrease E2 levels while increasing those of DHT. Therefore, its unique double action makes this enzyme as an interesting drug target for treatment of breast cancer. The chemical synthesis, molecular characterization, and preliminary biological evaluation as 17ß-HSD7 inhibitors of novel carbamate derivatives 3 and 4 are described. Like previous 17ß-HSD7 inhibitors 1 and 2, compounds 3 and 4 bear a hydrophobic nonyl side chain at the C-17ß position of a 4-aza-5α-androstane nucleus, but compound 3 has an oxygen atom replacing the CH2 in the steroid A-ring C-2 position, while compound 4 has a C17-spiranic E-ring containing a carbamate function. They both inhibited the in vitro transformation of estrone (E1) into E2 by 17ß-HSD7, but the introduction of a (17 R)-spirocarbamate is preferable to replacing C-2 methylene with an oxygen atom since compound 4 (IC50 = 63 nM) is an inhibitor 14 times more powerful than compound 3 (IC50 = 900 nM). Furthermore, when compared to the reference inhibitor 1 (IC50 = 111 nM), the use of a C17-spiranic E-ring made it possible to introduce differently the hydrophobic nonyl side chain, without reducing the inhibitory activity.


17-Hydroxysteroid Dehydrogenases , Enzyme Inhibitors , 17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/metabolism , Humans , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Estradiol/chemistry , Estradiol/metabolism , Estradiol/pharmacology , Carbamates/chemistry , Carbamates/pharmacology , Carbamates/chemical synthesis , Estrone/chemistry , Estrone/pharmacology , Estrone/chemical synthesis
2.
J Steroid Biochem Mol Biol ; 240: 106510, 2024 Jun.
Article En | MEDLINE | ID: mdl-38508472

The objective of this study was to examine the effect of 11 organochlorine pesticides on human and rat 17ß-Hydroxysteroid dehydrogenase 1 (17ß-HSD1) in human placental and rat ovarian microsome and on estradiol production in BeWo cells. The results showed that the IC50 values for endosulfan, fenhexamid, chlordecone, and rhothane on human 17ß-HSD1 were 21.37, 73.25, 92.80, and 117.69 µM. Kinetic analysis revealed that endosulfan acts as a competitive inhibitor, fenhexamid as a mixed/competitive inhibitor, chlordecone and rhothane as a mixed/uncompetitive inhibitor. In BeWo cells, all insecticides except endosulfan significantly decreased estradiol production at 100 µM. For rats, the IC50 values for dimethomorph, fenhexamid, and chlordecone were 11.98, 36.92, and 109.14 µM. Dimethomorph acts as a mixed inhibitor, while fenhexamid acts as a mixed/competitive inhibitor. Docking analysis revealed that endosulfan and fenhexamid bind to the steroid-binding site of human 17ß-HSD1. On the other hand, chlordecone and rhothane binds to a different site other than the steroid and NADPH-binding site. Dimethomorph binds to the steroid/NADPH binding site, and fenhexamid binds to the steroid binding site of rat 17ß-HSD1. Bivariate correlation analysis showed a positive correlation between IC50 values and LogP for human 17ß-HSD1, while a slight negative correlation was observed between IC50 values and the number of HBA. ADMET analysis provided insights into the toxicokinetics and toxicity of organochlorine pesticides. In conclusion, this study identified the inhibitory effects of 3-4 organochlorine pesticides and binding mechanisms on human and rat 17ß-HSD1, as well as their impact on hormone production.


Hydrocarbons, Chlorinated , Molecular Docking Simulation , Pesticides , Animals , Humans , Rats , Hydrocarbons, Chlorinated/chemistry , Hydrocarbons, Chlorinated/pharmacology , Structure-Activity Relationship , Female , Pesticides/chemistry , Pesticides/metabolism , 17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/metabolism , 17-Hydroxysteroid Dehydrogenases/chemistry , Pregnancy , Placenta/metabolism , Estradiol/metabolism , Estradiol/chemistry , Insecticides/chemistry , Insecticides/pharmacology
3.
Molecules ; 28(2)2023 Jan 07.
Article En | MEDLINE | ID: mdl-36677690

Estradiol (E2) plays an important role in the progression of diseases such as breast cancer and endometriosis. Inhibition of 17ß-hydroxysteroid dehydrogenase type 1 (17ß-HSD1), the enzyme that catalyzes the last step in the biosynthesis of the estrogenic hormone E2, therefore constitutes an interesting approach for the treatment of these two estrogen-dependent diseases. In order to obtain new inhibitors of 17ß-HSD1, the impact of a m-carbamoylphenyloxy group at position three of an estrane nucleus was evaluated by preparing three derivatives of estrone (E1) and E2 using a microwave-assisted synthesis of diaryl ethers. Their inhibitory activity was addressed on two cell lines (T-47D and Z-12) representative of breast cancer and endometriosis, respectively, but unlike T-47D cells, Z-12 cells were not found suitable for testing potential 17ß-HSD1 inhibitors. Thus, the addition of the m-carbamoylphenyl group at C3 of E1 (compound 5) did not increase the inhibition of E1 to E2 transformation by 17ß-HSD1 present in T-47D cells (IC50 = 0.31 and 0.21 µM for 5 and E1, respectively), and this negative effect was more obvious for E2 derivatives 6 and 10 (IC50 = 1.2 and 1.3 µM, respectively). Molecular docking allowed us to identify key interactions with 17ß-HSD1 and to highlight these new inhibitors' actions through an opposite orientation than natural enzyme substrate E1's classical one. Furthermore, molecular modeling experiments explain the better inhibitory activity of E1-ether derivative 5, as opposed to the E2-ether derivatives 6 and 10. Finally, when tested on T-47D and Z-12 cells, compounds 5, 6 and 10 did not stimulate the proliferation of these two estrogen-dependent cell lines. In fact, they reduced it.


17-Hydroxysteroid Dehydrogenases , Breast Neoplasms , Endometriosis , Enzyme Inhibitors , Female , Humans , 17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Cell Line, Tumor , Enzyme Inhibitors/chemistry , Estradiol , Estrogens , Estrone/pharmacology , Molecular Docking Simulation
4.
Molecules ; 26(23)2021 Nov 26.
Article En | MEDLINE | ID: mdl-34885749

17ß-Hydroxysteroid dehydrogenase type 3 (17ß-HSD3) is expressed at high levels in testes and seminal vesicles; it is also present in prostate tissue and involved in gonadal and non-gonadal testosterone biosynthesis. The enzyme is membrane-bound, and a crystal structure is not yet available. Selective aryl benzylamine-based inhibitors were designed and synthesised as potential agents for prostate cancer therapeutics through structure-based design, using a previously built homology model with docking studies. Potent, selective, low nanomolar IC50 17ß-HSD3 inhibitors were discovered using N-(2-([2-(4-chlorophenoxy)phenylamino]methyl)phenyl)acetamide (1). The most potent compounds have IC50 values of approximately 75 nM. Compound 29, N-[2-(1-Acetylpiperidin-4-ylamino)benzyl]-N-[2-(4-chlorophenoxy)phenyl]acetamide, has an IC50 of 76 nM, while compound 30, N-(2-(1-[2-(4-chlorophenoxy)-phenylamino]ethyl)phenyl)acetamide, has an IC50 of 74 nM. Racemic C-allyl derivative 26 (IC50 of 520 nM) was easily formed from 1 in good yield and, to determine binding directionality, its enantiomers were separated by chiral chromatography. Absolute configuration was determined using single crystal X-ray crystallography. Only the S-(+)-enantiomer (32) was active with an IC50 of 370 nM. Binding directionality was predictable through our in silico docking studies, giving confidence to our model. Importantly, all novel inhibitors are selective over the type 2 isozyme of 17ß-HSD2 and show <20% inhibition when tested at 10 µM. Lead compounds from this series are worthy of further optimisation and development as inhibitors of testosterone production by 17ß-HSD3 and as inhibitors of prostate cancer cell growth.


17-Hydroxysteroid Dehydrogenases/chemistry , Benzylamines/chemistry , Prostatic Neoplasms/drug therapy , 17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/ultrastructure , Benzylamines/chemical synthesis , Benzylamines/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Male , Molecular Docking Simulation , Prostate/drug effects , Prostate/metabolism , Prostatic Neoplasms/pathology , Structure-Activity Relationship , Testosterone/biosynthesis
5.
Mol Biol Rep ; 48(11): 7067-7075, 2021 Nov.
Article En | MEDLINE | ID: mdl-34677711

BACKGROUND: 3,17ß-hydroxysteroid dehydrogenase (3,17ß-HSD) is a key enzyme in the metabolic pathway for steroid compounds catabolism in Comamonas testosteroni. Tetracycline repressor (TetR) family, repressors existing in most microorganisms, may play key roles in regulating the expression of 3,17ß-HSD. Previous reports showed that three tetR genes are located in the contig58 of C. testosteroni ATCC 11996 (GenBank: AHIL01000049.1), among which the first tetR gene encoded a potential repressor of 3,17ß-HSD by sensing environmental signals. However, whether the other proposed tetR genes act as repressors of 3,17ß-HSD are still unknown. METHODS AND RESULTS: In the present study, we cloned the second tetR gene and analyzed the regulatory mechanism of the protein on 3,17ß-HSD using electrophoretic mobility shift assay (EMSA), gold nanoparticles (AuNPs)-based assay, and loss-of-function analysis. The results showed that the second tetR gene was 660-bp, encoding a 26 kD protein, which could regulate the expression of 3,17ß-HSD gene via binding to the conserved consensus sequences located 1100-bp upstream of the 3,17ß-HSD gene. Furthermore, the mutant strain of C. testosteroni with the second tetR gene knocked-out mutant expresses good biological genetic stability, and the expression of 3,17ß-HSD in the mutant strain is slightly higher than that in the wild type under testosterone induction. CONCLUSIONS: The second tetR gene acts as a negative regulator in 3,17ß-HSD expression, and the mutant has potential application in bioremediation of steroids contaminated environment.


17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Bacterial Proteins , Cloning, Molecular , Comamonas testosteroni , Enzyme Inhibitors , Trans-Activators , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Comamonas testosteroni/chemistry , Comamonas testosteroni/genetics , Comamonas testosteroni/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Trans-Activators/biosynthesis , Trans-Activators/chemistry , Trans-Activators/genetics
6.
Steroids ; 172: 108856, 2021 08.
Article En | MEDLINE | ID: mdl-33945801

17ß-Hydroxysteroid dehydrogenase type 1 (17ß-HSD1) and steroid sulfatase (STS) are involved in the synthesis of the most potent estrogen in the human body, estradiol (E2). These enzymes are known to play a pivotal role in the progression of estrogen-dependent diseases, such as breast cancer and endometriosis. Therefore, the inhibition of 17ß-HSD1 and/or STS represents a promising avenue to modulate the growth of estrogen-dependent tumors or lesions. We recently established the key role of a bromoethyl side chain added at the C3-position of a 16ß-carbamoyl-benzyl-E2 nucleus to covalently inhibit 17ß-HSD1. To extend the structure-activity relationship study to the C16ß-position of this new selective irreversible inhibitor (PBRM), we synthesized a series of analog compounds by changing the nature of the C16ß-side chain but keeping the 2-bromoethyl group at position C3. We determined their 17ß-HSD1 inhibitions in T-47D cells (transformation of E1 into E2), but we did not obtain a stronger 17ß-HSD1 inhibitor than PBRM. Compounds 16 and 17 were found to be more likely to bind to the catalytic site and showed a promising but moderate inhibitory activity with estimated IC50 values of 0.5 and 0.7 µM, respectively (about 10 times higher than PBRM). Interestingly, adding one or two sulfamate groups in the D-ring's surroundings did not significantly decrease compounds' potential to inhibit 17ß-HSD1, but clearly improved their potential to inhibit STS. These results open the door to the development of a new family of steroid derivatives with dual (17ß-HSD1 and STS) inhibiting actions.


17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Breast Neoplasms/drug therapy , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Steryl-Sulfatase/antagonists & inhibitors , Trientine/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Proliferation , Female , Humans , Structure-Activity Relationship , Tumor Cells, Cultured
7.
J Steroid Biochem Mol Biol ; 210: 105846, 2021 06.
Article En | MEDLINE | ID: mdl-33609690

A new androsterone derivative bearing a 16ß-picolyl group (compound 5; FCO-586-119) was synthetized in four steps from the lead compound 1 (RM-532-105). We measured its inhibitory activity on 17ß-HSD3 using microsomal fraction of rat testes as well as transfected LNCaP[17ß-HSD3] cells. We then assessed its metabolic stability as well as its cytotoxic effect against a panel of cancer cell lines. The addition of a picolyl moiety at C-16 of RM-532-105 steroid core improves the 17ß-HSD3 inhibitory activity in the microsomal fraction of rat testes, but not in whole LNCaP[17ß-HSD3] cells. Interestingly, this structural modification enhances 3-fold the metabolic stability in conjunction with a significant cytotoxic effect against pancreatic, ovarian, breast, lung, and prostate cancer cells. Because the inhibitory activity data against 17ß-HSD3 suggested that both steroid derivatives are non-competitive inhibitors, we performed docking and molecular dynamics simulations using a homology model of this membrane-associated enzyme. The results of these simulations revealed that both RM-532-105 (1) and FCO-586-119 (5) can compete for the cofactor-binding site displaying better binding energy than NADP+.


17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Androsterone/chemistry , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , 17-Hydroxysteroid Dehydrogenases/chemistry , 17-Hydroxysteroid Dehydrogenases/metabolism , Androstanes/chemistry , Androsterone/analogs & derivatives , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Stability , Enzyme Inhibitors/chemical synthesis , Humans , Magnetic Resonance Spectroscopy , Male , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Rats, Sprague-Dawley , Sulfonamides/chemistry
8.
Toxicol Lett ; 339: 12-19, 2021 Mar 15.
Article En | MEDLINE | ID: mdl-33359020

Mitochondrial enzymes are targets of newly synthesized drugs being tested for the treatment of neurodegenerative disorders, such as Alzheimer's disease (AD). The enzyme 17ß-hydroxysteroid dehydrogenase type 10 (HSD10) is a multifunctional mitochondrial protein that is thought to play a role in the pathophysiology of AD and is one of the targets of new potential AD drugs. The in vitro effects of frentizole, riluzole, AG18051, and 42 novel modulators of HSD10 (potential AD drugs) on citrate synthase (CS) activity, monoamine oxidase (MAO) activity, complex I- or complex II-linked mitochondrial respiratory rate, and complex I activity were measured in isolated pig brain mitochondria. Based on their minimal inhibitory effects on the respiratory rate of mitochondria and CS and complex I activity, six novel compounds were selected for further testing. Assuming that inhibition of MAO-B could be a desirable effect of AD drugs, only AG18051 and one new compound met the criteria for MAO-B inhibition with minimal drug-induced effects on mitochondrial respiration. In conclusion, our in vitro screening of mitochondrial effect of novel potential AD drugs has enabled the selection of the most promising molecules for further testing that are relatively safe in terms of drug-induced mitochondrial toxicity.


17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/toxicity , Cell Respiration/drug effects , Enzyme Inhibitors/toxicity , Enzyme Inhibitors/therapeutic use , Mitochondria/drug effects , Neurodegenerative Diseases/drug therapy , Animals , Humans , Models, Animal , Swine
9.
Chem Pharm Bull (Tokyo) ; 69(1): 52-58, 2021 Jan 01.
Article En | MEDLINE | ID: mdl-33087639

17ß Hydroxysteroid dehydrogenase type 3 (17ß-HSD3) is the key enzyme in the biosynthesis of testosterone, which is an attractive therapeutic target for prostate cancer (PCa). H10, a novel curcumin analogue, was identified as a potential 17ß-HSD3 inhibitor. The pharmacokinetic study of H10 in rats were performed by intraperitoneal (i.p.), intravenous (i.v.) and oral (p.o.) administration. In addition, the inhibitory effects of H10 against liver CYP3A4 were investigated in vitro using human liver microsomes (HLMs). The acute and chronic toxicological characteristics were characterized using single-dose and 30 d administration. All the mice were alive after i.p. H10 with dose of no more than 100 mg/kg which are nearly the maximum solubility in acute toxicity test. The pharmacokinetic characteristics of H10 fitted with linear dynamics model after single dose. Furthermore, H10 could bioaccumulate in testis, which was the target organ of 17ß-HSD3 inhibitor. H10 distributed highest in spleen, and then in liver both after single and multiple i.p. administration. Moreover, H10 showed weak inhibition towards liver CYP3A4, and did not cause significant changes in aspartate transaminase (AST) and alanine transaminase (ALT) levels after treated with H10 for continuously 30 d. Taken together, these preclinical characteristics laid the foundation for further clinical studies of H10.


17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Curcumin/pharmacology , Cytochrome P-450 CYP3A/metabolism , Enzyme Inhibitors/pharmacology , 17-Hydroxysteroid Dehydrogenases/metabolism , Animals , Curcumin/administration & dosage , Curcumin/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Humans , Male , Mice , Mice, Inbred Strains , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Rats , Rats, Sprague-Dawley , Tissue Distribution
10.
Eur J Med Chem ; 209: 112909, 2021 Jan 01.
Article En | MEDLINE | ID: mdl-33081987

17beta-Hydroxysteroid dehydrogenase type 10 (17ß-HSD10) is the only mitochondrial member of 17ß-HSD family. This enzyme can oxidize estradiol (E2) into estrone (E1), thus reducing concentration of this neuroprotective steroid. Since 17ß-HSD10 possesses properties that suggest a possible role in Alzheimer's disease, its inhibition appears to be a therapeutic strategy. After we identified the androsterone (ADT) derivative 1 as a first steroidal inhibitor of 17ß-HSD10, new analogs were synthesized to increase the metabolic stability, to improve the selectivity of inhibition over 17ß-HSD3 and to optimize the inhibitory potency. From six D-ring derivatives of 1 (17-CO), two compounds (17ß-H/17α-OH and 17ß-OH/17α-CCH) were more metabolically stable and did not inhibit the 17ß-HSD3. Moreover, solid phase synthesis was used to extend the molecular diversity on the 3ß-piperazinylmethyl group of the steroid base core. Eight over 120 new derivatives were more potent inhibitors than 1 for the transformation of E2 to E1, with the 4-(4-trifluoromethyl-3-methoxybenzyl)piperazin-1-ylmethyl-ADT (D-3,7) being 16 times more potent (IC50 = 0.14 µM). Finally, D-ring modification of D-3,7 provided 17ß-OH/17α-CCH derivative 25 and 17ß-H/17α-OH derivative 26, which were more potent inhibitor than 1 (1.8 and 2.4 times, respectively).


17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Alzheimer Disease/drug therapy , Enzyme Inhibitors/chemical synthesis , Small Molecule Libraries/chemistry , Steroids/chemical synthesis , Biocatalysis , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Estradiol/chemistry , Estrone/chemistry , HEK293 Cells , Humans , Piperazine/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Solid-Phase Synthesis Techniques , Steroids/metabolism , Steroids/pharmacology , Structure-Activity Relationship
11.
ChemMedChem ; 16(1): 259-291, 2021 01 08.
Article En | MEDLINE | ID: mdl-33151004

17ß-Hydroxysteroid dehydrogenases catalyse interconversion at the C17 position between oxidized and reduced forms of steroidal nuclear receptor ligands. The type 1 enzyme, expressed in malignant cells, catalyses reduction of the less-active estrone to estradiol, and inhibitors have therapeutic potential in estrogen-dependent diseases such as breast and ovarian cancers and in endometriosis. Synthetic decoration of the nonsteroidal N-phenyl-1,2,3,4-tetrahydroisoquinoline (THIQ) template was pursued by using Pomeranz-Fritsch-Bobbitt, Pictet-Spengler and Bischler-Napieralski approaches to explore the viability of this scaffold as a steroid mimic. Derivatives were evaluated biologically in vitro as type 1 enzyme inhibitors in a bacterial cell homogenate as source of recombinant protein. Structure-activity relationships are discussed. THIQs possessing a 6-hydroxy group, lipophilic substitutions at the 1- or 4-positions in combination with N-4'-chlorophenyl substitution were most favourable for activity. Of these, one compound had an IC50 of ca. 350 nM as a racemate, testifying to the applicability of this novel approach.


17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Drug Design , Tetrahydroisoquinolines/chemistry , 17-Hydroxysteroid Dehydrogenases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/metabolism , Humans , Inhibitory Concentration 50 , Molecular Conformation , Structure-Activity Relationship , Tetrahydroisoquinolines/metabolism
12.
J Lipid Res ; 61(11): 1400-1409, 2020 11.
Article En | MEDLINE | ID: mdl-32973038

Human genetic studies recently identified an association of SNPs in the 17-ß hydroxysteroid dehydrogenase 13 (HSD17B13) gene with alcoholic and nonalcoholic fatty liver disease development. Mutant HSD17B13 variants devoid of enzymatic function have been demonstrated to be protective from cirrhosis and liver cancer, supporting the development of HSD17B13 as a promising therapeutic target. Previous studies have demonstrated that HSD17B13 is a lipid droplet (LD)-associated protein. However, the critical domains that drive LD targeting or determine the enzymatic activity have yet to be defined. Here we used mutagenesis to generate multiple truncated and point-mutated proteins and were able to demonstrate in vitro that the N-terminal hydrophobic domain, PAT-like domain, and a putative α-helix/ß-sheet/α-helix domain in HSD17B13 are all critical for LD targeting. Similarly, we characterized the predicted catalytic, substrate-binding, and homodimer interaction sites and found them to be essential for the enzymatic activity of HSD17B13, in addition to our previous identification of amino acid P260 and cofactor binding site. In conclusion, we identified critical domains and amino acid sites that are essential for the LD localization and protein function of HSD17B13, which may facilitate understanding of its function and targeting of this protein to treat chronic liver diseases.


17-Hydroxysteroid Dehydrogenases/metabolism , Liver Diseases/drug therapy , 17-Hydroxysteroid Dehydrogenases/analysis , 17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Cells, Cultured , Chronic Disease , Humans , Liver Diseases/metabolism , Liver Diseases/pathology , Small Molecule Libraries/pharmacology
13.
FASEB J ; 34(4): 5332-5347, 2020 04.
Article En | MEDLINE | ID: mdl-32067268

Transcriptional coactivator with PDZ-binding motif (TAZ) plays crucial role in maintaining testicular structure and function via regulation of senescence of spermatogenic cells. However, it remains unclear whether TAZ is involved in testosterone biosynthesis in testicular Leydig cells. We found that TAZ deficiency caused aberrant Leydig cell expansion and increased lipid droplet formation, which was significantly associated with increased lipogenic enzyme expression. Additionally, the expression of key steroidogenic enzymes, including steroidogenic acute regulatory protein, cytochrome P450 (CYP) 11A1, CYP17A1, and 3ß-hydroxysteroid dehydrogenase, was greatly increased in TAZ-deficient testes and primary Leydig cells. Interestingly, the transcriptional activity of nuclear receptor 4 A1 (NR4A1) was dramatically suppressed by TAZ; however, the protein expression and the subcellular localization of NR4A1 were not affected by TAZ. TAZ directly associated with the N-terminal region of NR4A1 and substantially suppressed its DNA-binding and transcriptional activities. Stable expression of TAZ in the mouse Leydig TM3 cell line decreased the expression of key steroidogenic enzymes, whereas knockdown of endogenous TAZ in TM3 cells increased transcripts of steroidogenic genes induced by NR4A1. Consistently, testosterone production was enhanced within TAZ-deficient Leydig cells. However, TAZ deficiency resulted in decreased testosterone secretion caused by dysfunctional mitochondria and lysosomes. Therefore, TAZ plays essential role in NR4A1-induced steroidogenic enzyme expression and testosterone production in Leydig cells.


17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Leydig Cells/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Phosphoproteins/antagonists & inhibitors , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Testosterone/metabolism , Trans-Activators/physiology , 17-Hydroxysteroid Dehydrogenases/genetics , 17-Hydroxysteroid Dehydrogenases/metabolism , Adaptor Proteins, Signal Transducing , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , Steroid 17-alpha-Hydroxylase/genetics , Steroid 17-alpha-Hydroxylase/metabolism
14.
J Comput Chem ; 41(11): 1091-1104, 2020 04 30.
Article En | MEDLINE | ID: mdl-32058616

To understand the structure-activity correlation of a group of tetrahydrodibenzazocines as inhibitors of 17ß-hydroxysteroid dehydrogenase type 3, we have performed a combined genetic algorithm (GA) and four-dimensional quantitative structure-activity relationship (4D-QSAR) modeling study. The computed electronic and geometry structure descriptors were regulated as a matrix and named as electron-conformational matrix of contiguity (ECMC). A chemical property-based pharmacophore model was developed for series of tetrahydrodibenzazocines by EMRE software package. GA was employed to choose an optimal combination of parameters. A model has been developed for estimating anticancer activity quantitatively. All QSAR models were established with 40 compounds (training set), then they were considered for selective capability with additional nine compounds (test set). A statistically valid 4D-QSAR ( Rtraining2=0.856 , Rtest2=0.851 and q2 = 0.650) with good external set prediction was obtained.


17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Antineoplastic Agents/chemistry , Azocines/chemistry , Enzyme Inhibitors/chemistry , Algorithms , Drug Screening Assays, Antitumor , Electrons , Models, Molecular , Molecular Conformation , Quantitative Structure-Activity Relationship
15.
Biol Trace Elem Res ; 195(1): 125-134, 2020 May.
Article En | MEDLINE | ID: mdl-31313246

Exposure to arsenic (AS) causes abnormalities in the reproductive system; however, the precise cellular pathway of AS toxicity on steroidogenesis in developing F1-male mice has not been clearly defined. In this study, paternal mice were treated with arsenic trioxide (As2O3; 0, 0.2, 2, and 20 ppm in drinking water) from 5 weeks before mating until weaning and continued for male offspring from weaning until maturity (in vivo). Additionally, Leydig cells (LCs) were isolated from the testes of sacrificed F1-intact mature male mice and incubated with As2O3 (0, 1, 10, and 100 µM) for 48 h (in vitro). Biomarkers of mitochondrial impairment, oxidative stress, and several steroidogenic genes, including the steroidogenic acute regulatory (StAR) protein, cytochrome P450 side-chain cleaving enzyme (P450scc; Cyp11a), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), and 17ß-hydroxysteroid dehydrogenase (17ß-HSD), were evaluated. High doses of As2O3 interrupted testosterone (T) biosynthesis and T-related gene expression in these experimental models. Altogether, overconsumption of As2O3 can cause testicular and LC toxicity through mitochondrial-related pathways and oxidative stress indices as well as downregulation of androgenic-related genes in mice and isolated LCs. These results could lead to the development of preventive/therapeutic procedures against As2O3-induced reproductive toxicity. Graphical Abstract Mohammad Mehdi Ommati and Reza Heidari contributed equally to this study.


17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Arsenic Trioxide/pharmacology , Cholesterol Side-Chain Cleavage Enzyme/antagonists & inhibitors , Down-Regulation/drug effects , Mitochondria/drug effects , Testosterone/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/genetics , 17-Hydroxysteroid Dehydrogenases/metabolism , Administration, Oral , Animals , Arsenic Trioxide/administration & dosage , Cell Survival/drug effects , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Leydig Cells/drug effects , Leydig Cells/metabolism , Male , Mice , Mice, Inbred BALB C , Mitochondria/metabolism , Oxidative Stress/drug effects , Testosterone/metabolism
16.
BMB Rep ; 53(1): 47-55, 2020 Jan.
Article En | MEDLINE | ID: mdl-31818365

Alzheimer's disease (AD) is a multifactorial neurodegenerative disease and has become a major socioeconomic issue in many developed countries. Currently available therapeutic agents for AD provide only symptomatic treatments, mainly because the complete mechanism of the AD pathogenesis is still unclear. Although several different hypotheses have been proposed, mitochondrial dysfunction has gathered interest because of its profound effect on brain bioenergetics and neuronal survival in the pathophysiology of AD. Various therapeutic agents targeting the mitochondrial pathways associated with AD have been developed over the past decade. Although most of these agents are still early in the clinical development process, they are used to restore mitochondrial function, which provides an alternative therapeutic strategy that is likely to slow the progression of the disease. In this mini review, we will survey the AD-related mitochondrial pathways and their small-molecule modulators that have therapeutic potential. We will focus on recently reported examples, and also overview the current challenges and future perspectives of ongoing research. [BMB Reports 2020; 53(1): 47-55].


Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Brain/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , 17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/metabolism , 3-Hydroxyacyl CoA Dehydrogenases/antagonists & inhibitors , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Animals , Disease Progression , Dynamins/metabolism , Humans , Mitochondria/drug effects , Mitochondria/enzymology , Mitochondrial Membrane Transport Proteins/antagonists & inhibitors , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Neurosteroids/chemistry , Neurosteroids/metabolism , Neurosteroids/pharmacology , Oxidative Stress/genetics , Oxidative Stress/physiology , Protein Kinases/chemistry , Protein Kinases/metabolism , Receptors, GABA/metabolism
17.
Molecules ; 24(15)2019 Jul 29.
Article En | MEDLINE | ID: mdl-31362457

: It has long been established that mitochondrial dysfunction in Alzheimer's disease (AD) patients can trigger pathological changes in cell metabolism by altering metabolic enzymes such as the mitochondrial 17ß-hydroxysteroid dehydrogenase type 10 (17ß-HSD10), also known as amyloid-binding alcohol dehydrogenase (ABAD). We and others have shown that frentizole and riluzole derivatives can inhibit 17ß-HSD10 and that this inhibition is beneficial and holds therapeutic merit for the treatment of AD. Here we evaluate several novel series based on benzothiazolylurea scaffold evaluating key structural and activity relationships required for the inhibition of 17ß-HSD10. Results show that the most promising of these compounds have markedly increased potency on our previously published inhibitors, with the most promising exhibiting advantageous features like low cytotoxicity and target engagement in living cells.


17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/chemistry , Benzothiazoles/chemistry , Urea/chemistry , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Cell Line , Dose-Response Relationship, Drug , Drug Design , Humans , Mitochondria/metabolism , Molecular Structure , Structure-Activity Relationship
18.
J Med Chem ; 62(15): 7070-7088, 2019 08 08.
Article En | MEDLINE | ID: mdl-31268309

Decreasing the intratumoral androgen biosynthesis by using an inhibitor of 17ß-hydroxysteroid dehydrogenase type 3 (17ß-HSD3) is a strategy to treat prostate cancer. The androsterone (ADT) derivative 1 (RM-532-105) has shown strong inhibitory activity on 17ß-HSD3, but needs to be improved. Herein, we describe the chemical synthesis and characterization of two series of analogues to address the impact of A- and D-ring modifications on 17ß-HSD3 inhibitory activity, androgenic effect, and metabolic stability. Structure-activity relationships were generated by adding different groups at C16/C17 (D-ring diversification) or replacing the ADT backbone by a nor-androstane or an estrane backbone (A-ring diversification). D-ring derivatives were less potent inhibitors than lead compound 1, whereas steroidal backbone (A-ring) change led to identifying promising novel estrane derivatives. This culminated with potent 17ß-HSD3 inhibitors 23, 27, 31, and 33 (IC50 = 0.10, 0.02, 0.13, and 0.17 µM, respectively), which did not stimulate LAPC-4 cell proliferation and displayed higher plasma concentration in mice than lead compound 1.


17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/chemistry , Androsterone/analogs & derivatives , Androsterone/pharmacology , Androsterone/therapeutic use , Animals , Cell Line, Tumor , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Humans , Male , Mice , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/enzymology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
19.
J Enzyme Inhib Med Chem ; 34(1): 1271-1286, 2019 Dec.
Article En | MEDLINE | ID: mdl-31307240

17ß-Hydroxysteroid dehydrogenase type 1 (17ß-HSD1) is a key enzyme in the biosynthesis of 17ß-estradiol. Novel estrone-based compounds bearing various 15ß-oxa-linked substituents and hydroxy, methoxy, benzyloxy, and sulfamate groups in position C3 as potential 17ß-HSD1 inhibitors have been synthesized. In addition, in vitro inhibitory potentials measured in the presence of excess amount of NADPH or NADH were investigated. We observed substantial inhibitory potentials for several derivatives (IC50 < 1 µM) and increased binding affinities compared to unsubstituted core molecules. Binding and inhibition were found to be cofactor-dependent for some of the compounds and we propose structural explanations for this phenomenon. Our results may contribute to the development of new 17ß-HSD1 inhibitors, potential drug candidates for antiestrogen therapy of hormone-dependent gynecological cancers.


17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Estrone/pharmacology , 17-Hydroxysteroid Dehydrogenases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Estrone/chemical synthesis , Estrone/chemistry , Humans , Molecular Conformation , Structure-Activity Relationship
20.
J Steroid Biochem Mol Biol ; 193: 105411, 2019 10.
Article En | MEDLINE | ID: mdl-31207361

Reductive 17ß-hydroxysteroid dehydrogenases (17ß-HSDs) and 11ß-hydroxysteroid dehydrogenase 2 (11ß-HSD2) play crucial roles in respectively regulating steroids and glucocorticoids for the progression of hormone-dependent breast cancer. Most studies focused on the function and individual regulation of these enzymes. However, mutual regulation of these enzymes and the induced modulation on the estrogen and androgen receptors for breast cancer promotion are not yet clear. In this study, MCF-7 and T47D cells were treated with inhibitors of 17ß-HSD1, 17ß-HSD7, aromatase or steroid sulfatase (STS), then mRNA levels of 17ß-HSD7, STS, 11ß-HSD 2, estrogen receptors α (ERα) and androgen receptor (AR) were determined by Q-PCR. ER negative cell line MDA-MB-231 was used as a negative control. Our results demonstrate that 17ß-HSD7, STS and 11ß-HSD2 are all regulated by the same estrogen estradiol via ERα. When the gene of ERα (ESR1) was knocked down, there was no longer significant mutual regulation of these enzymes. Our results demonstrate that important steroidogenic enzymes transcriptionally regulated by ERα, can be mutually closely correlated. Inhibition of one of them can reduce the expression of another, thereby amplifying the role of the inhibition. Furthermore, inhibition of 17ß-HSD7 increases the expression of AR gene which is considered as a marker for better prognosis in ER + breast cancer, while maintaining ERα level. Thus, our mechanistic finding provides a base for further improving the endocrine therapy of ER + breast cancer, e.g., for selecting the target steroid enzymes, and for the combined targeting of human 17ß-HSD7 and ERα.


17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Breast Neoplasms/genetics , Estrogen Receptor alpha/genetics , Receptors, Androgen/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 2/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/genetics , Aromatase Inhibitors/pharmacology , Breast Neoplasms/metabolism , Cell Line, Tumor , Dihydrotestosterone/metabolism , Estradiol/metabolism , Female , Humans , Steryl-Sulfatase/antagonists & inhibitors , Steryl-Sulfatase/genetics , Steryl-Sulfatase/metabolism
...