Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 127
1.
Environ Microbiol ; 25(12): 3604-3622, 2023 Dec.
Article En | MEDLINE | ID: mdl-37822042

Glyphosate (GS) inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase that is required for aromatic amino acid, folate and quinone biosynthesis in Bacillus subtilis and Escherichia coli. The inhibition of the EPSP synthase by GS depletes the cell of these metabolites, resulting in cell death. Here, we show that like the laboratory B. subtilis strains also environmental and undomesticated isolates adapt to GS by reducing herbicide uptake. Although B. subtilis possesses a GS-insensitive EPSP synthase, the enzyme is strongly inhibited by GS in the native environment. Moreover, the B. subtilis EPSP synthase mutant was only viable in rich medium containing menaquinone, indicating that the bacteria require a catalytically efficient EPSP synthase under nutrient-poor conditions. The dependency of B. subtilis on the EPSP synthase probably limits its evolvability. In contrast, E. coli rapidly acquires GS resistance by target modification. However, the evolution of a GS-resistant EPSP synthase under non-selective growth conditions indicates that GS resistance causes fitness costs. Therefore, in both model organisms, the proper function of the EPSP synthase is critical for the cellular viability. This study also revealed that the uptake systems for folate precursors, phenylalanine and tyrosine need to be identified and characterized in B. subtilis.


3-Phosphoshikimate 1-Carboxyvinyltransferase , Bacillus subtilis , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Glycine/metabolism , Shikimic Acid/metabolism , Escherichia coli/metabolism , Glyphosate , Folic Acid/metabolism
2.
Molecules ; 28(11)2023 May 24.
Article En | MEDLINE | ID: mdl-37298765

Various proteins introduced into living modified organism (LMO) crops function in plant defense mechanisms against target insect pests or herbicides. This study analyzed the antifungal effects of an introduced LMO protein, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Agrobacterium sp. strain CP4 (CP4-EPSPS). Pure recombinant CP4-EPSPS protein, expressed in Escherichia coli, inhibited the growth of human and plant fungal pathogens (Candida albicans, C. tropicalis, C. krusei, Colletotrichum gloeosporioides, Fusarium solani, F. graminearum, and Trichoderma virens), at minimum inhibitory concentrations (MICs) that ranged from 62.5 to 250 µg/mL. It inhibited fungal spore germination as well as cell proliferation on C. gloeosporioides. Rhodamine-labeled CP4-EPSPS accumulated on the fungal cell wall and within intracellular cytosol. In addition, the protein induced uptake of SYTOX Green into cells, but not into intracellular mitochondrial reactive oxygen species (ROS), indicating that its antifungal action was due to inducing the permeability of the fungal cell wall. Its antifungal action showed cell surface damage, as observed from fungal cell morphology. This study provided information on the effects of the LMO protein, EPSPS, on fungal growth.


Antifungal Agents , Phosphates , Humans , Antifungal Agents/pharmacology , Plants, Genetically Modified/metabolism , Phosphates/pharmacology , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Fungi/metabolism , Recombinant Proteins/pharmacology , Nitric Oxide Synthase
3.
J Environ Sci (China) ; 125: 258-265, 2023 Mar.
Article En | MEDLINE | ID: mdl-36375911

Glyphosate, the most extensively used herbicide globally, has raised ecotoxicological concerns because it can be transported into the aquatic environment and cause adverse effects on the aquatic system. However, the functional mechanism of glyphosate on cyanobacteria are not completely disentangled. In this study, we selected six common cyanobacteria to evaluate glyphosate effects on cyanobacterial growth in monoculture experiment. Results showed that the growth of five tested cyanobacterial species were promoted under different degrees, and only Pseudanabaena was inhibited by glyphosate. In the phylogenetic tree based on gene sequences of 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS), a target for glyphosate, we found that the position of Pseudanabaena is the closest to plant, which was sensitive to glyphosate, thereby explaining the inhibitory effect of Pseudanabaena following glyphosate exposure. The primary degraded metabolites or analogs did not induce cyanobacterial growth, laterally demonstrating that glyphosate was used as a source of phosphorus to accelerate cyanobacterial growth because phosphorus levels increased in the medium of glyphosate treatment. Overall, this study provides a better understanding of the influence of glyphosate on the composition of aquatic microbiota and explains the mechanism of cyanobacterial response to glyphosate.


Cyanobacteria , Herbicides , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Phylogeny , Herbicides/toxicity , Herbicides/metabolism , Phosphorus/metabolism , Glyphosate
4.
Pest Manag Sci ; 79(3): 1062-1068, 2023 Mar.
Article En | MEDLINE | ID: mdl-36327342

BACKGROUND: Glyphosate-resistant Salsola tragus accessions have been identified in the USA and Argentina; however, the mechanisms of glyphosate resistance have not been elucidated. The goal of this study was to determine the mechanism/s of glyphosate resistance involved in two S. tragus populations (R1 and R2) from Argentina. RESULTS: Both glyphosate-resistant populations had a six-fold lower sensitivity to glyphosate than the S population (i.e. resistance index). No evidence of differential absorption, translocation or metabolism of glyphosate was found in the R1 and R2 populations compared to a susceptible population (S). No 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) mutations were detected, but S. tragus R1 and R2 plants had ≈14-fold higher EPSPS gene relative copy number compared to the S counterpart. In R1 and R2, EPSPS duplication entailed a greater constitutive EPSPS transcript abundance by approximately seven-fold and a basal EPSPS activity approximately three-fold higher than the S population. CONCLUSION: The current study reports EPSPS gene duplication for the first time as a mechanism of glyphosate resistance in S. tragus populations. The increase of glyphosate dose needed to kill R1 and R2 plants was linked to the EPSPS transcript abundance and level of EPSPS activity. This evidence supports the convergent evolution of the overexpression of the EPSPS gene in several Chenopodiaceae/Amaranthaceae species adapted to drought environments and the role of gene duplication as an adaptive advantage for plants to withstand stress. © 2022 Society of Chemical Industry.


Herbicides , Salsola , Gene Duplication , Phosphates , Herbicides/pharmacology , Herbicide Resistance/genetics , Poaceae/metabolism , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Glyphosate
5.
Biomolecules ; 12(2)2022 02 17.
Article En | MEDLINE | ID: mdl-35204818

CP4-EPSPS (Agrobacterium sp. strain CP4 5-enolpyruvylshikimate-3-phosphate synthase) protein showed remarkable thermostability and was highly resistant to proteases, such as trypsin. In order to eliminate the pollution of CP4-EPSPS from the accumulated straws to the surrounding environment during the winter, the present study investigated the extracellular proteases of 21 psychrophilic strains isolated from the south polar region. The results indicated that Stenotrophomonas maltophilia 780 was able to degrade CP4-EPSPS at 18 °C efficiently. Further study indicated that it was able to grow in the extract of Roundup Ready soybean at 18 °C, with CP4-EPSPS degraded to an undetectable level within 72 h. The extracellular proteases of Stenotrophomonas maltophilia 780 are thermo-sensitive, with an optimal temperature of 65 °C. The genomic sequencing result indicated that this strain had more than a hundred putative protease and peptidase coding genes, which may explain its high capability in decomposing CP4-EPSPS.


3-Phosphoshikimate 1-Carboxyvinyltransferase , Stenotrophomonas maltophilia , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Agrobacterium/genetics , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Plants, Genetically Modified/metabolism , Glycine max/metabolism , Stenotrophomonas maltophilia/genetics , Stenotrophomonas maltophilia/metabolism
6.
J Vis Exp ; (179)2022 01 10.
Article En | MEDLINE | ID: mdl-35068479

Glyphosate-based products (GBP) are the most common broad-spectrum herbicides worldwide. The target of glyphosate is the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in the shikimate pathway, which is virtually universal in plants. The inhibition of the enzyme stops the production of three essential amino acids: phenylalanine, tyrosine, and tryptophan. EPSPS is also present in fungi and prokaryotes, such as archaea and bacteria; thus, the use of GBP may have an impact on the microbiome composition of soils, plants, herbivores, and secondary consumers. This article aims to present general guidelines to assess the effect of GBP on microbiomes from field experiments to bioinformatics analyses and provide a few testable hypotheses. Two field experiments are presented to test the GBP on non-target organisms. First, plant-associated microbes from 10 replicated control and GBP treatment plots simulating no-till cropping are sampled and analyzed. In the second experiment, samples from experimental plots fertilized by either poultry manure containing glyphosate residues or non-treated control manure were obtained. Bioinformatics analysis of EPSPS protein sequences is utilized to determine the potential sensitivity of microbes to glyphosate. The first step in estimating the effect of GBP on microbiomes is to determine their potential sensitivity to the target enzyme (EPSPS). Microbial sequences can be obtained either from public repositories or by means of PCR amplification. However, in the majority of field studies, microbiome composition has been determined based on universal DNA markers such as the 16S rRNA and the internal transcribed spacer (ITS). In these cases, sensitivity to glyphosate can only be estimated through a probabilistic analysis of EPSPS sequences using closely related species. The quantification of the potential sensitivity of organisms to glyphosate, based on the EPSPS enzyme, provides a robust approach for further experiments to study target and non-target resistant mechanisms.


Herbicides , Microbiota , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Glycine/analogs & derivatives , Glycine/pharmacology , Herbicide Resistance/genetics , Herbicides/pharmacology , RNA, Ribosomal, 16S , Glyphosate
7.
Environ Microbiol Rep ; 14(1): 70-84, 2022 02.
Article En | MEDLINE | ID: mdl-34786867

Roundup® is the brand name for herbicide solutions containing glyphosate, which specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase of the shikimate pathway. The inhibition of the EPSP synthase causes plant death because EPSP is required for biosynthesis of aromatic amino acids. Glyphosate also inhibits the growth of archaea, bacteria, Apicomplexa, algae and fungi possessing an EPSP synthase. Here, we have characterized two glyphosate-resistant bacteria from a Roundup solution. Taxonomic classification revealed that the isolates 1CH1 and 2CH1 are Burkholderia anthina and Burkholderia cenocepacia strains respectively. Both isolates cannot utilize glyphosate as a source of phosphorus and synthesize glyphosate-sensitive EPSP synthase variants. Burkholderia. anthina 1CH1 and B. cenocepacia 2CH1 tolerate high levels of glyphosate because the herbicide is not taken up by the bacteria. Previously, it has been observed that the exposure of soil bacteria to herbicides like glyphosate promotes the development of antibiotic resistances. Antibiotic sensitivity testing revealed that the only the B. cenocepacia 2CH1 isolate showed increased resistance to a variety of antibiotics. Thus, the adaptation of B. anthina 1CH1 and B. cenocepacia 2CH1 to glyphosate did not generally increase the antibiotic resistance of both bacteria. However, our study confirms the genomic adaptability of bacteria belonging to the genus Burkholderia.


3-Phosphoshikimate 1-Carboxyvinyltransferase , Burkholderia cenocepacia , 3-Phosphoshikimate 1-Carboxyvinyltransferase/chemistry , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Burkholderia , Burkholderia cenocepacia/genetics , Burkholderia cenocepacia/metabolism , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/pharmacology , Glyphosate
8.
Pest Manag Sci ; 78(4): 1377-1385, 2022 Apr.
Article En | MEDLINE | ID: mdl-34894201

BACKGROUND: In initial screening, glyphosate was ineffective in controlling five Poa annua populations. These populations were tested for resistance, and studies undertaken to determine resistance mechanisms and inheritance pattern. RESULTS: Dose-response studies conducted at 16/12°C and 27/20°C on the five putative resistant populations showed low-level resistance (1.4- to 2.5-fold) to glyphosate. Shikimic acid accumulation in response to glyphosate confirmed differences among the populations, with greater shikimic acid accumulation in the susceptible population. The EPSPS gene copy number was 0.5- to 5.2-fold greater in one resistant population (HT) than in the susceptible (S) population, but not in the others. EPSPS gene expression was five- to tenfold higher in HT compared with the susceptible population. Target site mutations, differences in glyphosate absorption or translocation or altered expression of aldo-keto reductase (AKR) were not identified in any of the resistant populations. Crosses were successful between one resistant population and the susceptible population (P262-16♂ ✕ S♀) and inheritance of glyphosate resistance appears to be controlled by a single, nuclear dominant gene in this population. CONCLUSION: Our study identified EPSPS gene amplification in a South Australian glyphosate-resistant P. annua population (HT). This mechanism of resistance was not identified in the other four glyphosate-resistant populations, and other common mechanisms were excluded. Although the resistance mechanism in some P. annua populations remains unknown, inheritance studies with one population suggest the involvement of a single dominant gene. © 2021 Society of Chemical Industry.


Herbicides , Poa , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Australia , Glycine/analogs & derivatives , Herbicide Resistance/genetics , Herbicides/pharmacology , Inheritance Patterns , Poa/metabolism , Glyphosate
9.
Microbiol Spectr ; 9(3): e0000921, 2021 12 22.
Article En | MEDLINE | ID: mdl-34937164

The epidemiological importance of mycobacterial species is indisputable, and the necessity to find new molecules that can inhibit their growth is urgent. The shikimate pathway, required for the synthesis of important bacterial metabolites, represents a set of targets for inhibitors of Mycobacterium tuberculosis growth. The aroA-encoded 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme catalyzes the sixth step of the shikimate pathway. In this study, we combined gene disruption, gene knockdown, point mutations (D61W, R134A, E321N), and kinetic analysis to evaluate aroA gene essentiality and vulnerability of its protein product, EPSPS, from Mycolicibacterium (Mycobacterium) smegmatis (MsEPSPS). We demonstrate that aroA-deficient cells are auxotrophic for aromatic amino acids (AroAAs) and that the growth impairment observed for aroA-knockdown cells grown on defined medium can be rescued by AroAA supplementation. We also evaluated the essentiality of selected MsEPSPS residues in bacterial cells grown without AroAA supplementation. We found that the catalytic residues R134 and E321 are essential, while D61, presumably important for protein dynamics and suggested to have an indirect role in catalysis, is not essential under the growth conditions evaluated. We have also determined the catalytic efficiencies (Kcat/Km) of recombinant wild-type (WT) and mutated versions of MsEPSPS (D61W, R134A, E321N). Our results suggest that drug development efforts toward EPSPS inhibition may be ineffective if bacilli have access to external sources of AroAAs in the context of infection, which should be evaluated further. In the absence of AroAA supplementation, aroA from M. smegmatis is essential, its essentiality is dependent on MsEPSPS activity, and MsEPSPS is vulnerable. IMPORTANCE We found that cells from Mycobacterium smegmatis, a model organism safer and easier to study than the disease-causing mycobacterial species, when depleted of an enzyme from the shikimate pathway, are auxotrophic for the three aromatic amino acids (AroAAs) that serve as building blocks of cellular proteins: l-tryptophan, l-phenylalanine, and l-tyrosine. That supplementation with only AroAAs is sufficient to rescue viable cells with the shikimate pathway inactivated was unexpected, since this pathway produces an end product, chorismate, that is the starting compound of essential pathways other than the ones that produce AroAAs. The depleted enzyme, the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), catalyzes the sixth step of shikimate pathway. Depletion of this enzyme inside cells was performed by disrupting or silencing the EPSPS-encoding aroA gene. Finally, we evaluated the essentiality of specific residues from EPSPS that are important for its catalytic activity, determined with experiments of enzyme kinetics using recombinant EPSPS mutants.


3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Amino Acids, Aromatic/metabolism , Bacterial Proteins/metabolism , Mycobacterium smegmatis/enzymology , 3-Phosphoshikimate 1-Carboxyvinyltransferase/chemistry , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Amino Acid Motifs , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Kinetics , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/growth & development , Mycobacterium smegmatis/metabolism , Sequence Alignment
10.
Plant Cell Rep ; 40(10): 1947-1956, 2021 Oct.
Article En | MEDLINE | ID: mdl-34313832

KEY MESSAGE: We have defined the conditions for citrus transformations using glyphosate as selection agent. This protocol results in high transformation rate and low incidence of chimeric shoots. Glyphosate, the most widely used herbicide in the world, specifically inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an essential enzyme of the shikimate pathway. Various laboratory-generated or naturally evolved glyphosate-resistant EPSPS variants have been used to produce glyphosate-tolerant transgenic crops, enabling highly effective weed control in agriculture. In this study, we explored the potential of using a citrus EPSPS variant that mimics the previously reported Eleusine indica glyphosate-resistant TIPS (T102I + P106S) mutant for selection of transgenic citrus plants in the presence of glyphosate. We found that glyphosate did not suppress bud formation on 'Duncan' grapefruit seedling explants, but inhibited non-transgenic bud outgrowth to produce shoots in a concentration-dependent manner. At certain concentrations, glyphosate had dramatic effect on the transformation rate and the percentage of non-chimeric transgenic shoots in this newly developed selection system. Specifically, at 0, 10, 20, and 50 µM of glyphosate, the citrus TIPS EPSPS-based selection resulted in transformation rates of 4.02, 5.04, 14.46, and 40.78%, respectively, and 6.41, 23.96, 42.94, and 40.17% of non-chimeric transgenic shoots, respectively. These results indicate that the citrus TIPS EPSPS-glyphosate selection system is highly efficient and can be used as an alternative to antibiotic-based selection methods in citrus genetic transformation. Furthermore, the selection conditions defined in this study are expected to greatly facilitate the production of genetically modified, market-friendly citrus plants, such as cisgenic and intragenic plants.


3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Citrus/drug effects , Citrus/genetics , Glycine/analogs & derivatives , Herbicide Resistance/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Glycine/pharmacology , Herbicides/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/drug effects , Plant Shoots/genetics , Plants, Genetically Modified , Glyphosate
11.
Pest Manag Sci ; 77(10): 4810-4817, 2021 Oct.
Article En | MEDLINE | ID: mdl-34161662

BACKGROUND: Glyphosate has been used for weed control in South China in various situations for four decades, and most Eleusine indica populations are suspected to have evolved resistance to glyphosate. This research investigated underling target-site glyphosate resistance mechanisms in six field-collected, putative glyphosate-resistant (R) E. indica populations. RESULTS: The six R E. indica populations were confirmed to be low (1.8 to 2.6-fold) to moderately (5.6- to 8.4-fold) resistant to glyphosate relative to the susceptible (S) population. Sixty-seven glyphosate-surviving plants from the six R populations were used to examine target-site resistance mechanisms. Target-site 5-enolpyruvylshikimate3-phosphate synthase (EPSPS) overexpression (OE) (plus further induction by glyphosate treatment) and gene copy number variation (CNV) occurred in 94% R plants, and among them, 16% had the P106A mutation and 49% had the heterozygous double TIPS (T102I + P106S) mutation (plus P381L). In addition, a low number of R plants (6%) only had the homologous TIPS (plus P381L) mutation. The (CT)6 insertion mutation in the EPSPS 5†-UTR always associates with EPSPS OE and CNV. Progeny plants possessing EPSPS OE/CNV (and P106A) displayed low level (up to 4.5-fold) glyphosate resistance. In contrast, plants homozygous for the TIPS mutation displayed higher (25-fold) resistance to glyphosate and followed by plants heterozygous for this mutation plus EPSPS OE/CNV (12-fold). CONCLUSIONS: Target-site glyphosate resistance in E. indica populations from South China is common with prevalence of EPSPS OE/induction/CNV conferring low level resistance. Individual plants acquiring both the TIPS mutation and EPSPS OE/CNV are favored due to evolutionary advantages. The role of (CT)6 insertion mutation in EPSPS CNV is worth further investigation. © 2021 Society of Chemical Industry.


Eleusine , Herbicides , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , DNA Copy Number Variations , Eleusine/genetics , Eleusine/metabolism , Gene Expression Regulation, Plant , Glycine/analogs & derivatives , Herbicide Resistance/genetics , Herbicides/pharmacology , Glyphosate
12.
Environ Microbiol Rep ; 13(3): 309-316, 2021 06.
Article En | MEDLINE | ID: mdl-33530134

Glyphosate is the leading herbicide worldwide, but it also affects prokaryotes because it targets the central enzyme (5-enolpyruvylshikimate-3-phosphate, EPSP) of the shikimate pathway in the synthesis of the three essential aromatic amino acids in bacteria, fungi and plants. Our results reveal that bacteria may easily become resistant to glyphosate through changes in the 5-enolpyruvylshikimate-3-phosphate synthase active site. This indicates the importance of examining how glyphosate affects microbe-mediated ecosystem functions and human microbiomes.


3-Phosphoshikimate 1-Carboxyvinyltransferase , Phosphates , 3-Phosphoshikimate 1-Carboxyvinyltransferase/chemistry , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Bacteria/genetics , Bacteria/metabolism , Ecosystem , Glycine/analogs & derivatives , Glyphosate
13.
J Agric Food Chem ; 68(39): 10912-10919, 2020 Sep 30.
Article En | MEDLINE | ID: mdl-32649186

The genetically modified maize carrying an insect-resistant gene and herbicide-tolerant gene has substantial benefits for crop production. The three-generation reproductive toxicity of the maize was studied in this paper. One hundred and eighty Sprague-Dawley (SD) rats were divided into three groups, which were fed with a genetically modified maize (GM) diet, receptor maize (RM) diet, and AIN-93G (AIN) diet (used as control), respectively. The body weight, food consumption, reproductive parameters, hematological parameters, serum chemistry, organ weight, and histopathology for the three generations were examined, respectively. Minor differences were found between the GM group and the RM group or the AIN control group in terms of reproductive data, hematology, blood chemistry parameters, and organ index, but no macroscopic or histological adverse effects were found or considered as treatment-related. In conclusion, the three-generation study of genetically modified maize DBN9936 with Cry1Ab and epsps genes at a high level showed no unintended adverse effects on rats' reproductive system.


Animal Feed/analysis , Plants, Genetically Modified/metabolism , Zea mays/metabolism , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Animals , Bacillus thuringiensis Toxins/genetics , Bacillus thuringiensis Toxins/metabolism , Endotoxins/genetics , Endotoxins/metabolism , Female , Food, Genetically Modified , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Male , Organ Size , Plants, Genetically Modified/genetics , Rats , Rats, Sprague-Dawley , Reproduction , Zea mays/genetics
14.
Nat Chem Biol ; 16(9): 973-978, 2020 09.
Article En | MEDLINE | ID: mdl-32632294

The AROM complex is a multifunctional metabolic machine with ten enzymatic domains catalyzing the five central steps of the shikimate pathway in fungi and protists. We determined its crystal structure and catalytic behavior, and elucidated its conformational space using a combination of experimental and computational approaches. We derived this space in an elementary approach, exploiting an abundance of conformational information from its monofunctional homologs in the Protein Data Bank. It demonstrates how AROM is optimized for spatial compactness while allowing for unrestricted conformational transitions and a decoupled functioning of its individual enzymatic entities. With this architecture, AROM poses a tractable test case for the effects of active site proximity on the efficiency of both natural metabolic systems and biotechnological pathway optimization approaches. We show that a mere colocalization of enzymes is not sufficient to yield a detectable improvement of metabolic throughput.


Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , 3-Phosphoshikimate 1-Carboxyvinyltransferase/chemistry , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Acanthamoeba castellanii/chemistry , Catalytic Domain , Chaetomium/chemistry , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Models, Molecular , Multienzyme Complexes/genetics , Phosphorus-Oxygen Lyases/chemistry , Phosphorus-Oxygen Lyases/genetics , Phosphorus-Oxygen Lyases/metabolism , Protein Conformation , Protein Domains , Scattering, Small Angle , Shikimic Acid/metabolism , Toxoplasma/chemistry , X-Ray Diffraction
15.
BMC Plant Biol ; 19(1): 485, 2019 Nov 09.
Article En | MEDLINE | ID: mdl-31706293

BACKGROUND: Indigo alkaloids, such as indigo, indirubin and its derivatives, have been identified as effective antiviral compounds in Baphicacanthus cusia. Evidence suggests that the biosynthesis of indigo alkaloids in plants occurs via the shikimate pathway. The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is involved in plant metabolism; however, its underlying putative mechanism of regulating the production of indigo alkaloids is currently unknown. RESULTS: One gene encoding EPSPS was isolated from B. cusia. Quantitative real-time PCR analysis revealed that BcEPSPS was expressed at the highest level in the stem and upregulated by methyl jasmonate (MeJA), salicylic acid (SA) and abscisic acid (ABA) treatment. The results of subcellular localization indicated that BcEPSPS is mainly expressed in both the plastids and cytosol, which has not been previously reported. An enzyme assay revealed that the heterogeneously expressed BcEPSPS protein catalysed the generation of 5-enolpyruvyl shikimate-3-phosphate. The overexpression of BcEPSPS in Isatis indigotica hairy roots resulted in the high accumulation of indigo alkaloids, such as indigo, secologanin, indole and isorhamnetin. CONCLUSIONS: The function of BcEPSPS in catalysing the production of EPSP and regulating indigo alkaloid biosynthesis was revealed, which provided a distinct view of plant metabolic engineering. Our findings have practical implications for understanding the effect of BcEPSPS on active compound biosynthesis in B. cusia.


3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Acanthaceae/genetics , Alkaloids/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/chemistry , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Acanthaceae/enzymology , Acanthaceae/metabolism , Amino Acid Sequence , Metabolomics , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Alignment , Up-Regulation
16.
New Phytol ; 223(2): 532-547, 2019 07.
Article En | MEDLINE | ID: mdl-30737790

We reviewed the literature to understand the effects of glyphosate resistance on plant fitness at the molecular, biochemical and physiological levels. A number of correlations between enzyme characteristics and glyphosate resistance imply the existence of a plant fitness cost associated with resistance-conferring mutations in the glyphosate target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). These biochemical changes result in a tradeoff between the glyphosate resistance of the EPSPS enzyme and its catalytic activity. Mutations that endow the highest resistance are more likely to decrease catalytic activity by reducing the affinity of EPSPS for its natural substrate, and/or slowing the velocity of the enzyme reaction, and are thus very likely to endow a substantial plant fitness cost. Prediction of fitness costs associated with EPSPS gene amplification and overexpression can be more problematic. The validity of cost prediction based on the theory of evolution of gene expression and resource allocation has been cast into doubt by contradictory experimental evidence. Further research providing insights into the role of the EPSPS cassette in weed adaptation, and estimations of the energy budget involved in EPSPS amplification and overexpression are required to understand and predict the biochemical and physiological bases of the fitness cost of glyphosate resistance.


Glycine/analogs & derivatives , Herbicide Resistance , Plants/drug effects , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Biological Evolution , Ecosystem , Glycine/toxicity , Glyphosate
17.
J Agric Food Chem ; 67(4): 1052-1060, 2019 Jan 30.
Article En | MEDLINE | ID: mdl-30624921

Amaranthus palmeri S. Watson is probably the worst glyphosate-resistant (GR) weed worldwide. The EPSPS (5-enolpyruvylshikimate-3-phosphate-synthase) gene amplification has been reported as the major target-site-resistance (TSR) mechanism conferring resistance to glyphosate in this species. In this study, TSR and non-target-site-resistance (NTSR) mechanisms to glyphosate were characterized in a putative resistant A. palmeri population (GRP), harvested in a GR soybean crop from Argentina. Glyphosate resistance was confirmed for the GRP population by dose-response assays. No evidence of TSR mechanisms, as well as glyphosate metabolism, was found in this population. Moreover, a susceptible population (GSP) that absorbed about 10% more herbicide than the GRP population was evaluated at different periods after treatment. The GSP population translocated about 20% more glyphosate to the remainder of the shoots and roots at 96 h after treatment than the control, while the GRP population retained 62% of herbicide in the treated leaves. This is the first case of glyphosate resistance in A. palmeri involving exclusively NTSR mechanisms.


Amaranthus/metabolism , Glycine max/drug effects , Glycine/analogs & derivatives , Herbicides/metabolism , Plant Weeds/metabolism , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Amaranthus/drug effects , Argentina , Biological Transport , Glycine/metabolism , Glycine/pharmacology , Herbicide Resistance , Herbicides/pharmacology , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Weeds/drug effects , Glycine max/growth & development , Glyphosate
18.
Environ Microbiol ; 21(4): 1287-1305, 2019 04.
Article En | MEDLINE | ID: mdl-30666812

The soil bacterium Bacillus subtilis can get into contact with growth-inhibiting substances, which may be of anthropogenic origin. Glyphosate is such a substance serving as a nonselective herbicide. Glyphosate specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase, which generates an essential precursor for de novo synthesis of aromatic amino acids in plants, fungi, bacteria and archaea. Inhibition of the EPSP synthase by glyphosate results in depletion of the cellular levels of aromatic amino acids unless the environment provides them. Here, we have assessed the potential of B. subtilis to adapt to glyphosate at the genome level. In contrast to Escherichia coli, which evolves glyphosate resistance by elevating the production and decreasing the glyphosate sensitivity of the EPSP synthase, B. subtilis primarily inactivates the gltT gene encoding the high-affinity glutamate/aspartate symporter GltT. Further adaptation of the gltT mutants to glyphosate led to the inactivation of the gltP gene encoding the glutamate transporter GltP. Metabolome analyses confirmed that GltT is the major entryway of glyphosate into B. subtilis. GltP, the GltT homologue of E. coli also transports glyphosate into B. subtilis. Finally, we found that GltT is involved in uptake of the herbicide glufosinate, which inhibits the glutamine synthetase.


3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Adaptation, Physiological/genetics , Genome, Bacterial/genetics , Glycine/analogs & derivatives , Amino Acid Transport Systems, Acidic/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Enzyme Activation/drug effects , Escherichia coli/drug effects , Escherichia coli/genetics , Glycine/metabolism , Glycine/toxicity , Herbicides/metabolism , Herbicides/toxicity , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Glyphosate
19.
J Biol Chem ; 294(2): 716-725, 2019 01 11.
Article En | MEDLINE | ID: mdl-30425098

5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the transfer of a carboxyvinyl group from phosphoenolpyruvate (PEP) to shikimate-3-phosphate and in plants is the target of the herbicide glyphosate. EPSPSs with high catalytic efficiency and insensitivity to glyphosate are of microbial origin, including the enzyme from Agrobacterium strain CP4, in which insensitivity is conferred by an active site alanine. In the sequence context of plant EPSPSs, alanine in place of glycine at the equivalent position interferes with the binding of both glyphosate and PEP. We show here that iterative optimization of maize EPSPS containing the G101A substitution yielded variants on par with CP4 in terms of catalytic activity in the presence of glyphosate. The improvement relative to G101A alone was entirely due to reduction in Km for PEP from 333 to 18 µm, versus 9.5 µm for native maize EPSPS. A large portion of the reduction in Km was conferred by two down-sizing substitutions (L97C and V332A) within 8 Å of glyphosate, which together reduced Km for PEP to 43 µm Although the original optimization was conducted with maize EPSPS, contextually homologous substitutions conferred similar properties to the EPSPSs of other crops. We also discovered a variant having the known glyphosate-desensitizing substitution P106L plus three additional ones that reduced the Km for PEP from 47 µm, observed with P106L alone, to 10.3 µm The improvements obtained with both Ala101 and Leu106 have implications regarding glyphosate-tolerant crops and weeds.


3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Amino Acid Substitution , Glycine/analogs & derivatives , Herbicides/metabolism , Zea mays/enzymology , Zea mays/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/chemistry , Agrobacterium/enzymology , Alanine/chemistry , Alanine/genetics , Alanine/metabolism , Amino Acid Sequence , Catalytic Domain , Glycine/chemistry , Glycine/genetics , Glycine/metabolism , Mutagenesis , Zea mays/drug effects , Zea mays/metabolism , Glyphosate
20.
Eur J Mass Spectrom (Chichester) ; 25(1): 50-57, 2019 Feb.
Article En | MEDLINE | ID: mdl-30253653

A simple label-free method was developed for the quantification of the herbicide-resistant gene-related protein 5-enolpyruvylshikimate-3-phosphate synthase using multiple reaction monitoring liquid chromatography-mass spectrometry. Sample pretreatment procedures including ion exchange chromatography and CaCl2 precipitation were used to purify the 5-enolpyruvylshikimate-3-phosphate synthase protein. Quantification of various percentages of genetically modified soya (0.5-100%) was performed by selecting suitable endogenous soybean peptides as internal standards. Results indicated that Gly P (QGDVFVVPR) and Lec P (LQLNK) are useful internal standards for the quantification of low and high percentages of genetically modified soya, respectively. Linear regression analysis of both calibration curves yielded good linearity with R2 of 0.99. This approach is a convenient and accurate quantification method for genetically modified soya at a level as low as 0.5% (less than the current EU threshold for labeling genetically modified soya).


Chromatography, High Pressure Liquid/methods , Glycine max/chemistry , Mass Spectrometry/methods , Peptides/chemistry , 3-Phosphoshikimate 1-Carboxyvinyltransferase/chemistry , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Chromatography, High Pressure Liquid/standards , Mass Spectrometry/standards , Peptide Mapping , Reference Standards , Soybean Proteins/chemistry , Soybean Proteins/genetics , Soybean Proteins/metabolism , Glycine max/enzymology , Glycine max/genetics
...