Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Planta ; 260(5): 109, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340535

RESUMEN

MAIN CONCLUSION: MiR171d and SCL6 are induced by the plant hormone auxin. MiR171d negatively regulates the expression of SCL6, thereby regulating the growth and development of plant adventitious roots. Under natural conditions, it is difficult to induce rooting in the process of propagating Acer rubrum L. via branches, which seriously limits its wide application in landscaping construction. In this study, the expression of Ar-miR171d was downregulated and the expression of ArSCL6 was upregulated after 300 mg/L indole-3-butyric acid (IBA) treatment. The transient interaction of Ar-miR171d and ArSCL6 in tobacco cells further confirmed their cleavage activity. Transgenic function verification confirmed that OE-Ar-miR171d inhibited adventitious root (AR) development, while OE-ArSCL6 promoted AR development. Tissue-specific expression verification of the ArSCL6 promoter demonstrated that it was specifically expressed in the plant root and leaf organs. Subcellular localization and transcriptional activation assays revealed that both ArSCL6 and ArbHLH089 were located in the nucleus and exhibited transcriptional activation activity. The interaction between the two was verified by bimolecular fluorescence complementarity (BIFC) experiments. These results help elucidate the regulatory mechanisms of the Ar-miR171d-ArSCL6 module during the propagation of A. rubrum and provide a molecular basis for the rooting of branches.


Asunto(s)
Acer , Regulación de la Expresión Génica de las Plantas , MicroARNs , Raíces de Plantas , MicroARNs/genética , MicroARNs/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Acer/genética , Acer/crecimiento & desarrollo , Acer/metabolismo , Plantas Modificadas Genéticamente , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Ácidos Indolacéticos/metabolismo , Indoles/metabolismo , Indoles/farmacología
2.
BMC Genomics ; 25(1): 605, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886635

RESUMEN

BACKGROUND: Acer truncatum Bunge is an economic, ecological, oil, and medicinal tree, and its kernel oil is rich in nervonic acid. It is crucial to explore the transcriptional expression patterns of genes affecting fatty acid synthesis to improve the quality of Acer truncatum oil. RESULTS: This study used the seeds from high fatty acid strain YQC and those from low fatty acid strain Y38 as the test materials. Specifically, we performed a comparative transcriptome analysis of Y38 seeds and YQC to identify differentially expressed genes (DEGs) at two time points (seeds 30 days after the blooming period and 90 days after the blooming period). Compared with YQC_1 (YQC seeds at 30 days after the blooming period), a total of 3,618 DEGs were identified, including 2,333 up-regulated and 1,285 downregulated DEGs in Y38_1 (Y38 seeds at 30 days after blooming period). In the Y38_2 (Y38 seeds at 90 days after the blooming period) versus YQC_2 (YQC seeds at 90 days after the blooming period) comparison group, 9,340 genes were differentially expressed, including 5,422 up-regulated and 3,918 down-regulated genes. The number of DEGs in Y38 compared to YQC was significantly higher in the late stages of seed development. Gene functional enrichment analyses showed that the DEGs were mainly involved in the fatty acid biosynthesis pathway. And two fatty acid synthesis-related genes and seven nervonic acid synthesis-related genes were validated by qRT-PCR. CONCLUSIONS: This study provides a basis for further research on biosynthesizing fatty acids and nervonic acidnervonic acids in A. truncatum seeds.


Asunto(s)
Acer , Ácidos Grasos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Semillas , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Acer/genética , Acer/metabolismo , Acer/crecimiento & desarrollo , Ácidos Grasos/metabolismo , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Ácidos Grasos Monoinsaturados
3.
Plant Physiol ; 196(1): 153-163, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38757896

RESUMEN

Microcomputed tomography (µCT) is a nondestructive X-ray imaging method used in plant physiology to visualize in situ plant tissues that enables assessments of embolized xylem vessels. Whereas evidence for X-ray-induced cellular damage has been reported, the impact on plant physiological processes such as carbon (C) uptake, transport, and use is unknown. Yet, these damages could be particularly relevant for studies that track embolism and C fluxes over time. We examined the physiological consequences of µCT scanning for xylem embolism over 3 mo by monitoring net photosynthesis (Anet), diameter growth, chlorophyll (Chl) concentration, and foliar nonstructural carbohydrate (NSC) content in 4 deciduous tree species: hedge maple (Acer campestre), ash (Fraxinus excelsior), European hornbeam (Carpinus betulus), and sessile oak (Quercus petraea). C transport from the canopy to the roots was also assessed through 13C labeling. Our results show that monthly X-ray application did not impact foliar Anet, Chl, NSC content, and C transport. Although X-ray effects did not vary between species, the most pronounced impact was observed in sessile oak, marked by stopped growth and stem deformations around the irradiated area. The absence of adverse impacts on plant physiology for all the tested treatments indicates that laboratory-based µCT systems can be used with different beam energy levels and doses without threatening the integrity of plant physiology within the range of tested parameters. However, the impacts of repetitive µCT on the stem radial growth at the irradiated zone leading to deformations in sessile oak might have lasting implications for studies tracking plant embolism in the longer-term.


Asunto(s)
Acer , Hojas de la Planta , Tallos de la Planta , Quercus , Microtomografía por Rayos X , Microtomografía por Rayos X/métodos , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Quercus/crecimiento & desarrollo , Quercus/fisiología , Acer/crecimiento & desarrollo , Acer/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Fotosíntesis , Xilema/crecimiento & desarrollo , Xilema/fisiología , Xilema/metabolismo , Carbono/metabolismo , Clorofila/metabolismo , Fraxinus/crecimiento & desarrollo , Fraxinus/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Árboles/fisiología , Transporte Biológico , Betulaceae/crecimiento & desarrollo
4.
Ecol Appl ; 34(4): e2970, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602711

RESUMEN

Tree growth is a key mechanism driving carbon sequestration in forest ecosystems. Environmental conditions are important regulators of tree growth that can vary considerably between nearby urban and rural forests. For example, trees growing in cities often experience hotter and drier conditions than their rural counterparts while also being exposed to higher levels of light, pollution, and nutrient inputs. However, the extent to which these intrinsic differences in the growing conditions of trees in urban versus rural forests influence tree growth response to climate is not well known. In this study, we tested for differences in the climate sensitivity of tree growth between urban and rural forests along a latitudinal transect in the eastern United States that included Boston, Massachusetts, New York City, New York, and Baltimore, Maryland. Using dendrochronology analyses of tree cores from 55 white oak trees (Quercus alba), 55 red maple trees (Acer rubrum), and 41 red oak trees (Quercus rubra) we investigated the impacts of heat stress and water stress on the radial growth of individual trees. Across our three-city study, we found that tree growth was more closely correlated with climate stress in the cooler climate cities of Boston and New York than in Baltimore. Furthermore, heat stress was a significant hindrance to tree growth in higher latitudes while the impacts of water stress appeared to be more evenly distributed across latitudes. We also found that the growth of oak trees, but not red maple trees, in the urban sites of Boston and New York City was more adversely impacted by heat stress than their rural counterparts, but we did not see these urban-rural differences in Maryland. Trees provide a wide range of important ecosystem services and increasing tree canopy cover was typically an important component of urban sustainability strategies. In light of our findings that urbanization can influence how tree growth responds to a warming climate, we suggest that municipalities consider these interactions when developing their tree-planting palettes and when estimating the capacity of urban forests to contribute to broader sustainability goals in the future.


Asunto(s)
Cambio Climático , Árboles , Urbanización , Árboles/crecimiento & desarrollo , Acer/crecimiento & desarrollo , Acer/fisiología , Quercus/crecimiento & desarrollo , Quercus/fisiología , Bosques , Ciudades
5.
Sci Total Environ ; 927: 172166, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575023

RESUMEN

Previous favorable climate conditions stimulate tree growth making some forests more vulnerable to hotter droughts. This so-called structural overshoot may contribute to forest dieback, but there is little evidence on its relative importance depending on site conditions and tree species because of limited field data. Here, we analyzed remote sensing (NDVI) and tree-ring width data to evaluate the impacts of the 2017 drought on canopy cover and growth in mixed Mediterranean forests (Fraxinus ornus, Quercus pubescens, Acer monspessulanum, Pinus pinaster) located in southern Italy. Legacy effects were assessed by calculating differences between observed and predicted basal area increment (BAI). Overall, the growth response of the study stands to the 2017 drought was contingent on site conditions and species characteristics. Most sites presented BAI and canopy cover reductions during the drought. Growth decline was followed by a quick recovery and positive legacy effects, particularly in the case of F. ornus. However, we found negative drought legacies in some species (e.g., Q. pubescens, A. monspessulanum) and sites. In those sites showing negative legacies, high growth rates prior to drought in response to previous wet winter-spring conditions may have predisposed trees to drought damage. Vice versa, the positive drought legacy found in some F. ornus site was linked to post-drought growth release due to Q. pubescens dieback and mortality. Therefore, we found evidences of structural drought overshoot, but it was restricted to specific sites and species. Our findings highlight the importance of considering site settings such as stand composition, pre-drought conditions and different tree species when studying structural overshoot. Droughts contribute to modify the composition and dynamics in mixed forests.


Asunto(s)
Sequías , Bosques , Árboles , Árboles/fisiología , Italia , Quercus/crecimiento & desarrollo , Quercus/fisiología , Cambio Climático , Pinus/fisiología , Pinus/crecimiento & desarrollo , Monitoreo del Ambiente , Fraxinus/fisiología , Fraxinus/crecimiento & desarrollo , Acer/crecimiento & desarrollo , Acer/fisiología
6.
BMC Plant Biol ; 22(1): 40, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35045819

RESUMEN

BACKGROUND: Most plants encounter water stress at one or more different stages of their life cycle. The maintenance of genetic stability is the integral component of desiccation tolerance that defines the storage ability and long-term survival of seeds. Embryonic axes of desiccation-sensitive recalcitrant seeds of Acer pseudoplatnus L. were used to investigate the genotoxic effect of desiccation. Alkaline single-cell gel electrophoresis (comet assay) methodology was optimized and used to provide unique insights into the onset and repair of DNA strand breaks and 8-oxo-7,8-dihydroguanine (8-oxoG) formation during progressive steps of desiccation and rehydration. RESULTS: The loss of DNA integrity and impairment of damage repair were significant predictors of the viability of embryonic axes. In contrast to the comet assay, automated electrophoresis failed to detect changes in DNA integrity resulting from desiccation. Notably, no significant correlation was observed between hydroxyl radical (Ù OH) production and 8-oxoG formation, although the former is regarded to play a major role in guanine oxidation. CONCLUSIONS: The high-throughput comet assay represents a sensitive tool for monitoring discrete changes in DNA integrity and assessing the viability status in plant germplasm processed for long-term storage.


Asunto(s)
Acer/genética , Ensayo Cometa/métodos , Reparación del ADN , Estrés Oxidativo , Semillas/genética , Acer/química , Acer/crecimiento & desarrollo , Tampones (Química) , Fragmentación del ADN , ADN-Formamidopirimidina Glicosilasa/metabolismo , Desecación , Guanosina/análogos & derivados , Guanosina/genética , Guanosina/metabolismo , Análisis de Componente Principal , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo
7.
Plant Cell Environ ; 44(4): 1243-1256, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32683699

RESUMEN

Hydraulic redistribution (HR) can buffer drought events of tree individuals, however, its relevance for neighbouring trees remains unclear. Here, we quantified HR to neighbouring trees in single- and mixed-species combinations. We hypothesized that uptake of HR water positively correlates with root length, number of root tips and root xylem hydraulic conductivity and that neighbours in single-species combinations receive more HR water than in phylogenetic distant mixed-species combinations. In a split-root experiment, a sapling with its roots split between two pots redistributed deuterium labelled water from a moist to a dry pot with an additional tree each. We quantified HR water received by the sapling in the dry pot for six temperate tree species. After 7 days, one quarter of the water in roots (2.1 ± 0.4 ml), stems (0.8 ± 0.2 ml) and transpiration (1.0 ± 0.3 ml) of the drought stressed sapling originated from HR. The amount of HR water transpired by the receiving plant stayed constant throughout the experiment. While the uptake of HR water increased with root length, species identity did not affect HR as saplings of Picea abies ((L.) Karst) and Fagus sylvatica (L.) in single- and mixed-species combinations received the same amount of HR water.


Asunto(s)
Bosques , Árboles/fisiología , Acer/crecimiento & desarrollo , Acer/fisiología , Deshidratación , Fagaceae/crecimiento & desarrollo , Fagaceae/fisiología , Hojas de la Planta/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Transpiración de Plantas , Pseudotsuga/crecimiento & desarrollo , Pseudotsuga/fisiología , Quercus/crecimiento & desarrollo , Quercus/fisiología , Árboles/crecimiento & desarrollo , Agua/metabolismo , Xilema/crecimiento & desarrollo , Xilema/fisiología
8.
BMC Plant Biol ; 20(1): 410, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883206

RESUMEN

BACKGROUND: To fully elucidate the roles and mechanisms of plant hormones in leaf senescence, we adopted an integrated analysis of both non-senescing and senescing leaves from red maple with transcriptome and metabolome data. RESULTS: Transcription and metabolite profiles were generated through a combination of deep sequencing, third-generation sequencing data analysis, and ultrahigh-performance liquid chromatograph Q extractive mass spectrometry (UHPLC-QE-MS), respectively. We investigated the accumulation of compounds and the expression of biosynthesis and signaling genes for eight hormones. The results revealed that ethylene and abscisic acid concentrations increased during the leaf senescence process, while the contents of cytokinin, auxin, jasmonic acid, and salicylic acid continued to decrease. Correlation tests between the hormone content and transcriptional changes were analyzed, and in six pathways, genes closely linked with leaf senescence were identified. CONCLUSIONS: These results will enrich our understanding of the mechanisms of plant hormones that regulate leaf senescence in red maple, while establishing a foundation for the genetic modification of Acer in the future.


Asunto(s)
Acer/genética , Redes y Vías Metabólicas , Metaboloma , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Transcriptoma , Acer/crecimiento & desarrollo , Acer/metabolismo , Perfilación de la Expresión Génica , Redes y Vías Metabólicas/genética , Metabolómica , Reguladores del Crecimiento de las Plantas/genética , Hojas de la Planta/genética , Transcripción Genética
9.
BMC Plant Biol ; 20(1): 309, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32615933

RESUMEN

BACKGROUND: Tissue culture and rapid propagation technology is an important way to solve the difficulties of plant propagation. This experiment aims to explore the appropriate conditions at each stage of the red maple's tissue culture process and to obtain plantlets, thus providing a theoretical basis for the establishment of the red maple's tissue culture system. RESULTS: The results showed that the stem segment is the most suitable explant for inducing embryogenic callus. The MS (Murashige&Skoog) + 0.8 mg/L TDZ (Thidiazuron) + 1.0 mg/L 6-BA (6-Benzylaminopurine) + 0.5 mg/L IAA(Indole-3-acetic acid) + 35 g/L sucrose+ 7.5 g/L semi-fixed medium was the best for callus formation. When selecting type VI callus as embryonic callus induction material, MS + 0.6 mg/L TDZ + 0.5 mg/L 6-BA + 2.0 mg/L IAA + 35 g/L sucrose+ 7.5 g/L semi-fixed medium can get embryonic callus. The optimal medium for adventitious bud induction is MS + 1.0 mg/L TDZ + 3.0 mg/L 6-BA+ 0.2 mg/L NAA (1-Naphthaleneacetic acid) + 1.2 mg/L IAA + 35 g/L sucrose+ 7.5 g/L semi-fixed medium. The induction rate of adventitious roots in MS + 0.6 mg/L TDZ + 1.0 mg/L 6-BA+ 3 mg/L NAA + 35 g/L sucrose+ 7.5 g/L semi-fixed medium was the highest, reaching 76%. CONCLUSIONS: In the course of our research, we found that PGRs play an important role in the callus induction stage, and the effect of TDZ is particularly obvious; The callus cells grow and proliferate according to the "S" growth curve, and can be sub-cultured when the highest growth point is reached to maintain the rapid proliferation of the callus cells and to avoid inactivation of callus caused by tight niche.


Asunto(s)
Acer/crecimiento & desarrollo , Cámbium/embriología , Brotes de la Planta/crecimiento & desarrollo , Acer/embriología , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/embriología , Regeneración
10.
J Hazard Mater ; 392: 122280, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32066021

RESUMEN

Two-year-old seedlings of Acer platanoides were cultivated during a three-month hydroponic experiment in modified Knop solution enriched with inorganic (As(III), As(V)) and organic (dimethylarsinic acid - DMA) arsenic forms at 0.06 mM, 0.6 mM and their combinations. The profile and content of low molecular weight organic acids (LMWOAs) and phenolic compounds were also determined in the rhizosphere, roots and leaves. Arsenic (As) treatment caused an elevated creation of the above mentioned metabolites, which was higher in leaves than in the rhizosphere or roots, and their overall content was correlated with the concentration of As in A. platanoides organs. The addition of all As forms strongly induced the exudation of citric and oxalic acids into the rhizosphere, while malonic, acetic, citric and malic acids were formed in the roots. The most differential profile of roots was confirmed for As(V) 0.06 mM (4-hydroxybenzoic (4-HBA), syringic, 2,5 dihydroxybenzoic (2,5-DHBA), caffeic, chlorogenic, ferulic, p-coumaric and sinapic acids and catechin). The obtained results indicate that the presence of particular As forms has a significant impact on the content and profile of exuded and created LMWOAs and phenolic compounds, and can also have a decisive influence on the activation of appropriate detoxification mechanisms.


Asunto(s)
Acer/efectos de los fármacos , Arsenicales/administración & dosificación , Acer/crecimiento & desarrollo , Acer/metabolismo , Ácidos/metabolismo , Peso Molecular , Fenoles/metabolismo , Fitoquímicos/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Rizosfera , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo
11.
Ecotoxicol Environ Saf ; 183: 109475, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31442810

RESUMEN

Community-scale impacts of glyphosate-based herbicides on wetland plant communities and the magnitude of those impacts that should be considered biologically relevant are poorly understood. We contrast three different thresholds for setting biologically meaningful critical effect sizes for complex ANOVA study designs. We use each of the of the critical effect sizes to determine optimal α levels for assessment of how different concentrations of glyphosate-based herbicides affect wetland plant communities over two years of herbicide application (alone and in combination with agricultural fertilizers) and two subsequent years without herbicide (or fertilizer) application. The application of glyphosate-based herbicides was found to result in a decrease in macrophyte species richness, an increase in macrophyte species evenness, a decrease in macrophyte cover and a reduction in community similarity. There was little evidence that nutrient additions directly or indirectly affected plant community endpoints. The glyphosate effects were evident in the first year of herbicide application in 2009, and became more pronounced in the second year of herbicide application in 2010. However, when herbicides were not applied in 2011, recovery was observed in most endpoints, with the exception being species evenness, for which partial recovery was not observed until 2012. Optimal α levels differed among the three critical effect sizes for each ANOVA term and endpoint combination, however regardless of differences in α levels, conclusions were generally consistent across all critical effect sizes.


Asunto(s)
Acer/efectos de los fármacos , Betula/efectos de los fármacos , Glicina/análogos & derivados , Herbicidas/toxicidad , Picea/efectos de los fármacos , Humedales , Acer/crecimiento & desarrollo , Agricultura , Betula/crecimiento & desarrollo , Glicina/toxicidad , Modelos Teóricos , Nuevo Brunswick , Picea/crecimiento & desarrollo , Glifosato
12.
PLoS One ; 14(6): e0218884, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31226157

RESUMEN

In many woody dicot plant species, colder temperatures correlate with a greater degree of leaf dissection and with larger and more abundant leaf teeth (the serrated edges along margins). The measurement of site-mean characteristics of leaf size and shape (physiognomy), including leaf dissection and tooth morphology, has been an important paleoclimate tool for over a century. These physiognomic-based climate proxies require that all woody dicot plants at a site, regardless of species, change their leaf shape rapidly and predictably in response to temperature. Here we experimentally test these assumptions by growing five woody species in growth cabinets under two temperatures (17 and 25°C). In keeping with global site-based patterns, plants tend to develop more dissected leaves with more abundant and larger leaf teeth in the cool treatment. Overall, this upholds the assumption that leaf shape responds in a particular direction to temperature change. The assumption that leaf shape variables respond to temperature in the same way regardless of species did not hold because the responses varied by species. Leaf physiognomic models for inferring paleoclimate should take into account these species-specific responses.


Asunto(s)
Acer/crecimiento & desarrollo , Betula/crecimiento & desarrollo , Betulaceae/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Quercus/crecimiento & desarrollo , Acer/anatomía & histología , Betula/anatomía & histología , Betulaceae/anatomía & histología , Clima , Frío , Calor , Quercus/anatomía & histología , Semillas/crecimiento & desarrollo , Especificidad de la Especie
13.
BMC Plant Biol ; 19(1): 240, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170934

RESUMEN

BACKGROUND: Red maple (Acer rubrum L.) is one of the most common and widespread trees with colorful leaves. We found a mutant with red, yellow, and green leaf phenotypes in different branches, which provided ideal materials with the same genetic relationship, and little interference from the environment, for the study of complex metabolic networks that underly variations in the coloration of leaves. We applied a combination of NGS and SMRT sequencing to various red maple tissues. RESULTS: A total of 125,448 unigenes were obtained, of which 46 and 69 were thought to be related to the synthesis of anthocyanins and carotenoids, respectively. In addition, 88 unigenes were presumed to be involved in the chlorophyll metabolic pathway. Based on a comprehensive analysis of the pigment gene expression network, the mechanisms of leaf color were investigated. The massive accumulation of Cy led to its higher content and proportion than other pigments, which caused the redness of leaves. Yellow coloration was the result of the complete decomposition of chlorophyll pigments, the unmasking of carotenoid pigments, and a slight accumulation of Cy. CONCLUSIONS: This study provides a systematic analysis of color variations in the red maple. Moreover, mass sequence data obtained by deep sequencing will provide references for the controlled breeding of red maple.


Asunto(s)
Acer/fisiología , Perfilación de la Expresión Génica/instrumentación , Pigmentación/genética , Transcriptoma , Acer/genética , Acer/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología
14.
Chemosphere ; 229: 589-601, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31100630

RESUMEN

The study aimed to evaluate the physiological mechanisms underlying differences in metals and metalloid uptake and tolerance of two tree species cultivated in mining waste material. Two-year old Acer platanoides L. and Tilia cordata Mill. were cultivated in mining sludge characterized by high pH, salinity and an extremely high concentration of As. Both species were able to develop leaves from leafless seedlings, however, their total biomass was greatly reduced in comparison to control plants, following the severe disturbances in chlorophyll content. Phytoextraction abilities were observed for T. cordata for Ba, Nb, Rb and Se, and phytostabilisation was stated for Pd, Ru, Sc and Sm for both species, Ba and Nd for A. platonoides and Be for T. cordata only. Metal exclusion was observed for the majority of detected elements indicating an intense limitation of metal transport to photosynthetic tissue. A diversified uptake of elements was accompanied by a species-specific pattern of physiological reaction during the cultivation in sludge. Organic ligands (glutatnione and low-molecular-weight organic acids) were suppressed in A. platanoides, and enhanced biosynthesis of phenolic compounds was observed for both species, being more pronounced in T. cordata. Despite its higher accumulation of key metabolites for plant reaction to oxidative stress, such as phenolic acids, flavonoids and organic ligands, T. cordata exhibited relatively lower tolerance to sludge, probably due to the increased uptake and translocation rate of toxic metal/loids to aerial organs and/or restricted accumulation of salicylic acid which is known to play a decisive role in mechanisms of plant tolerance.


Asunto(s)
Acer/crecimiento & desarrollo , Minería , Contaminantes del Suelo/farmacocinética , Tilia/crecimiento & desarrollo , Acer/efectos de los fármacos , Arsénico/análisis , Arsénico/farmacocinética , Biodegradación Ambiental , Clorofila/metabolismo , Metales/farmacocinética , Metales/toxicidad , Fotosíntesis/efectos de los fármacos , Fotosíntesis/fisiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Especificidad de la Especie , Tilia/efectos de los fármacos , Árboles/efectos de los fármacos , Árboles/crecimiento & desarrollo
15.
Sci Total Environ ; 663: 537-547, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30721845

RESUMEN

Alkaline residuals, such as wood ash and lime mud generated from pulp and paper mills, could be recycled as liming agents in sugar maple (Acer saccharum Marsh.) forests affected by soil acidification. The objectives of this study were (1) to evaluate soil chemistry, in particular soil acidity, after the application of three alkaline residuals from the pulp and paper industry, and (2) to determine if these alkaline residuals altered soil greenhouse gas (GHG) emissions as a result of the change in soil pH or due to their chemical composition. Soil properties and GHG fluxes were monitored for two years after alkaline residuals were applied to six forest sites dominated by sugar maple in southeastern Quebec, Canada. Each site received six treatments: wood ash applied at 5, 10 and 20 t ha-1, lime mud (7.5 t ha-1), a mixture of slaker grits and green liquor sludge (7 t ha-1) and an unamended control. These treatments had acid-neutralizing power from 0 to 9 t ha-1. All alkaline residuals buffered soil acidity as a function of their neutralizing power, and more neutralization occurred in the forest floor layer than in the underlying mineral soil. In the forest floor, the alkaline residual treatments significantly increased pH by more than one unit, nearly doubled the base saturation, and reduced exchangeable acidity, Al and Fe concentrations compared to control plots. The CO2 and N2O fluxes were lower after application of alkaline residuals, and this was related to the soil pH increase and the type of alkaline residual applied. Lime mud was more effective at reducing GHG fluxes than other alkaline residuals. We conclude that these alkaline residuals can effectively counteract soil acidity in sugar maple forests without increasing soil GHG emissions, at least in the short term.


Asunto(s)
Contaminación del Aire/prevención & control , Fertilizantes/análisis , Agricultura Forestal/métodos , Bosques , Gases de Efecto Invernadero/análisis , Residuos Industriales/análisis , Suelo/química , Acer/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Industrias , Papel , Quebec
16.
Pest Manag Sci ; 75(7): 1971-1978, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30609246

RESUMEN

BACKGROUND: The flatheaded appletree borer (Chrysobothris femorata Olivier) (FHAB) is a native pest of fruit, shade and nut trees throughout the United States. Use of cover crops is an effective pest management tool for some key insect pests in vegetable and cereal production systems, but its impact in woody ornamental production systems has not been investigated. The goal of this study was to evaluate the effectiveness of a winter cover crop for management of FHAB in nursery production. Red maple trees (Acer rubrum L.) grown under four treatment regimes (cover crop, cover crop + insecticide, bare row and bare row + insecticide) were evaluated for damage by FHAB and impact on tree growth parameters. RESULTS: The cover crop reduced FHAB damage, with results equivalent to standard imidacloprid treatments. The reduction in FHAB attacks in cover crop treatments may be due to microclimate changes at preferred oviposition sites, trunk camouflage or interference with access to oviposition sites. Tree growth was reduced in the cover crop treatments due to competition for resources. CONCLUSION: Physical blockage of oviposition sites by cover crops and subsequent microclimate changes protected against FHAB damage. Therefore, cover crops can be an alternative to chemical insecticides. © 2019 Society of Chemical Industry.


Asunto(s)
Acer/parasitología , Escarabajos/fisiología , Control Biológico de Vectores/métodos , Acer/crecimiento & desarrollo , Animales , Control de Insectos/métodos , Insecticidas , Medicago , Neonicotinoides , Nitrocompuestos , Oviposición , Triticum
17.
Sci Total Environ ; 658: 1523-1530, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30678010

RESUMEN

Trees are important components of urban landscapes because of the ecosystem services they provide. However, the effects of urbanization, particularly high temperatures, can benefit chronic insect pests and threaten ecosystem services offered by urban trees. Urban forest fragments are an often-overlooked component of the greater urban forest which may help to mitigate the damaging effects of urbanization. Melanaspis tenebricosa (gloomy scale) is a common pest of Acer rubrum (red maple) that becomes more abundant because of the urban heat island effect. We conducted observational and manipulative field experiments to test the hypothesis that trees in urban forest fragments would be cooler than those in surrounding ornamental landscapes and would thus have fewer M. tenebricosa, particularly in a hot mid-latitude city. Trees in forest fragments were 1.3° cooler and had three orders of magnitude fewer M. tenebricosa than trees in ornamental landscapes in Raleigh, NC USA. However, there was no difference in M. tenebricosa density between forest and landscape trees in Newark, DE and Philadelphia, PA USA which are 3.95 degrees of latitude higher, and nearer to the northern range extent. Trees in landscapes and forest fragments did not differ in predawn water potential, a measure of water stress, but likely differed in soil composition and moisture. We used potted trees to control for these differences and found that M. tenebricosa density still increased three times more in landscapes than forests suggesting temperature and not tree stress is the dominant factor. Taken together our results indicate two things. First, that trees growing in urban forest fragments are buffered from a chronic urban tree pest due to lower temperatures. Second, that temperature-driven differences in M. tenebricosa density which we saw in Raleigh could predict future density of the pest in higher latitude cities as the climate warms.


Asunto(s)
Acer/fisiología , Bosques , Calentamiento Global , Hemípteros/fisiología , Árboles/fisiología , Acer/crecimiento & desarrollo , Animales , Ciudades , Cambio Climático , Cadena Alimentaria , Herbivoria , Calor , North Carolina , Dinámica Poblacional , Árboles/crecimiento & desarrollo , Urbanización
18.
Equine Vet J ; 51(5): 701-704, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30629759

RESUMEN

BACKGROUND: Several pasture management strategies have been proposed to avoid hypoglycin A (HGA) intoxication in horses, but their efficacy has never been investigated. OBJECTIVES: To evaluate the effect of mowing and herbicidal spraying on HGA content of sycamore seedlings and the presence of HGA in seeds and seedlings processed within haylage and silage. STUDY DESIGN: Experimental study. METHODS: Groups of seedlings were mowed (n = 6), sprayed with a dimethylamine-based (n = 2) or a picolinic acid-based herbicide (n = 1). Seedlings were collected before intervention, and at 48 h, 1 and 2 weeks after. Cut grass in the vicinity of mowed seedlings was collected pre-cutting and after 1 week. Seeds and seedling (n = 6) samples processed within haylage and silage were collected. HGA concentration in samples was measured using a validated LC-MS-based method. RESULTS: There was no significant decline in HGA content in either mowed or sprayed seedlings; indeed, mowing induced a temporary significant rise in HGA content of seedlings. HGA concentration increased significantly (albeit to low levels) in grass cut with the seedlings by 1 week. HGA was still present in sycamore material after 6-8 months storage within either hay or silage. MAIN LIMITATIONS: Restricted number of herbicide compounds tested. CONCLUSIONS: Neither mowing nor herbicidal spraying reduces HGA concentration in sycamore seedlings up to 2 weeks after intervention. Cross contamination is possible between grass and sycamore seedlings when mowed together. Mowing followed by collection of sycamore seedlings seems the current best option to avoid HGA toxicity in horses grazing contaminated pasture. Pastures contaminated with sycamore material should not be used to produce processed hay or silage as both seedlings and seeds present in the bales still pose a risk of intoxication.


Asunto(s)
Acer/química , Enfermedades de los Caballos/inducido químicamente , Hipoglicinas/metabolismo , Plantones/química , Acer/crecimiento & desarrollo , Acer/metabolismo , Agricultura , Animales , Enfermedades de los Caballos/prevención & control , Caballos , Hipoglicinas/química , Hipoglicinas/toxicidad , Miotoxicidad/veterinaria , Plantones/crecimiento & desarrollo , Plantones/metabolismo
19.
Glob Chang Biol ; 25(2): 420-430, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30506555

RESUMEN

Changes in growing season climate are often the foci of research exploring forest response to climate change. By contrast, little is known about tree growth response to projected declines in winter snowpack and increases in soil freezing in seasonally snow-covered forest ecosystems, despite extensive documentation of the importance of winter climate in mediating ecological processes. We conducted a 5-year snow-removal experiment whereby snow was removed for the first 4-5 weeks of winter in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire, USA. Our results indicate that adverse impacts of reduced snowpack and increased soil freezing on the physiology of Acer saccharum (sugar maple), a dominant species across northern temperate forests, are accompanied by a 40 ± 3% reduction in aboveground woody biomass increment, averaged across the 6 years following the start of the experiment. Further, we find no indication of growth recovery 1 year after cessation of the experiment. Based on these findings, we integrate spatial modeling of snowpack depth with forest inventory data to develop a spatially explicit, regional-scale assessment of the vulnerability of forest aboveground growth to projected declines in snowpack depth and increased soil frost. These analyses indicate that nearly 65% of sugar maple basal area in the northeastern United States resides in areas that typically experience insulating snowpack. However, under the RCP 4.5 and 8.5 emissions scenarios, we project a 49%-95% reduction in forest area experiencing insulating snowpack by the year 2099 in the northeastern United States, leaving large areas of northern forest vulnerable to these changes in winter climate, particularly along the northern edge of the region. Our study demonstrates that research focusing on growing season climate alone overestimates the stimulatory effect of warming temperatures on tree and forest growth in seasonally snow-covered forests.


Asunto(s)
Bosques , Congelación , Calentamiento Global , Nieve , Suelo , Árboles/crecimiento & desarrollo , Acer/crecimiento & desarrollo , Cambio Climático , New Hampshire
20.
Tree Physiol ; 39(3): 417-426, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239951

RESUMEN

The introduction of species contributes to both ecological restoration and regional economics, while serving as a potential strategy to conserve species under rapid climate change. Despite an anticipated significant increase in temperature at high latitudes by the end of the 21st century, very few experimental migration trials have been conducted regarding large climate range changes. We employed a provenance trial by introducing a temperate sugar maple (Acer saccharum Marsh) of three provenances with a mean annual temperature of 3.0 °C in Manitoba, 4.2 °C in Quebec and 9.4 °C in Ontario, Canada, to 15.8 °C at an introduced site in subtropical China. We measured survival, growth, summer photosynthesis in the field and stress-resistance responses under a temperature gradient in growth chambers with first-year seedlings. We found that the Ontario provenance had the highest propensity for survival and growth, followed by the Quebec provenance, while the Manitoba provenance had the lowest. The photosynthetic parameters of the seedlings changed over time of the day, with the Ontario provenance having a higher photosynthesis rate and stomatal conductance than the Quebec and Manitoba provenances. Furthermore, the growth chamber results revealed that the Ontario provenance had the best physiological adjustment for self-protection from heat stress, followed by the Quebec and Manitoba provenances. Our results suggested that the change in climate range drove the survival and growth of introduced seedlings and that the tolerance to summer heat stress through physiological mechanisms was responsible for the success of species introduction, from a cold to a warm climate.


Asunto(s)
Acer/fisiología , Calor/efectos adversos , Fotosíntesis , Termotolerancia , Acer/crecimiento & desarrollo , Canadá , China , Cambio Climático , Especies Introducidas , Longevidad , Estaciones del Año , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA