Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.244
1.
Cells ; 13(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38727316

Epithelial-mesenchymal transition (EMT) is a process during which epithelial cells lose epithelial characteristics and gain mesenchymal features. Here, we used several cell models to study migratory activity and redistribution of cell-cell adhesion proteins in cells in different EMT states: EGF-induced EMT of epithelial IAR-20 cells; IAR-6-1 cells with a hybrid epithelial-mesenchymal phenotype; and their more mesenchymal derivatives, IAR-6-1-DNE cells lacking adherens junctions. In migrating cells, the cell-cell adhesion protein α-catenin accumulated at the leading edges along with ArpC2/p34 and α-actinin. Suppression of α-catenin shifted cell morphology from fibroblast-like to discoid and attenuated cell migration. Expression of exogenous α-catenin in MDA-MB-468 cells devoid of α-catenin drastically increased their migratory capabilities. The Y654 phosphorylated form of ß-catenin was detected at integrin adhesion complexes (IACs). Co-immunoprecipitation studies indicated that α-catenin and pY654-ß-catenin were associated with IAC proteins: vinculin, zyxin, and α-actinin. Taken together, these data suggest that in cells undergoing EMT, catenins not participating in assembly of adherens junctions may affect cell migration.


Actin Cytoskeleton , Cell Movement , Epithelial-Mesenchymal Transition , alpha Catenin , Humans , Actin Cytoskeleton/metabolism , alpha Catenin/metabolism , beta Catenin/metabolism , Vinculin/metabolism , Adherens Junctions/metabolism , Cell Adhesion , Actinin/metabolism , Cell Line, Tumor , Zyxin/metabolism , Phosphorylation , Integrins/metabolism , Animals , Epithelial Cells/metabolism
2.
Life Sci Alliance ; 7(7)2024 Jul.
Article En | MEDLINE | ID: mdl-38719752

Septins are cytoskeletal proteins that participate in cell adhesion, migration, and polarity establishment. The septin subunit SEPT9 directly interacts with the single LIM domain of epithelial protein lost in neoplasm (EPLIN), an actin-bundling protein. Using a human SEPT9 KO fibroblast cell line, we show that cell adhesion and migration are regulated by the interplay between both proteins. The low motility of SEPT9-depleted cells could be partly rescued by increased levels of EPLIN. The normal organization of actin-related filopodia and stress fibers was directly dependent on the expression level of SEPT9 and EPLIN. Increased levels of SEPT9 and EPLIN enhanced the size of focal adhesions in cell protrusions, correlating with stabilization of actin bundles. Conversely, decreased levels had the opposite effect. Our work thus establishes the interaction between SEPT9 and EPLIN as an important link between the septin and the actin cytoskeleton, influencing cell adhesion, motility, and migration.


Cell Adhesion , Cell Movement , Fibroblasts , Focal Adhesions , LIM Domain Proteins , Septins , Humans , Septins/metabolism , Septins/genetics , Cell Movement/genetics , Fibroblasts/metabolism , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Focal Adhesions/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Pseudopodia/metabolism , Actin Cytoskeleton/metabolism , Cell Line , Actins/metabolism , Stress Fibers/metabolism
3.
Zool Res ; 45(3): 535-550, 2024 May 18.
Article En | MEDLINE | ID: mdl-38747058

Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function. Synaptic abnormalities, such as defects in the density and morphology of postsynaptic dendritic spines, underlie the pathology of various neuropsychiatric disorders. Protocadherin 17 (PCDH17) is associated with major mood disorders, including bipolar disorder and depression. However, the molecular mechanisms by which PCDH17 regulates spine number, morphology, and behavior remain elusive. In this study, we found that PCDH17 functions at postsynaptic sites, restricting the number and size of dendritic spines in excitatory neurons. Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety- and depression-like behaviors in mice. Mechanistically, PCDH17 interacts with actin-relevant proteins and regulates actin filament (F-actin) organization. Specifically, PCDH17 binds to ROCK2, increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3 (Ser3). Inhibition of ROCK2 activity with belumosudil (KD025) ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression, suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development. Hence, these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior, providing pathological insights into the neurobiological basis of mood disorders.


Actin Cytoskeleton , Cadherins , Dendritic Spines , rho-Associated Kinases , Animals , Dendritic Spines/metabolism , Dendritic Spines/physiology , Mice , Actin Cytoskeleton/metabolism , Cadherins/metabolism , Cadherins/genetics , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Gene Expression Regulation
4.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38748250

Dynamic presynaptic actin remodeling drives structural and functional plasticity at synapses, but the underlying mechanisms remain largely unknown. Previous work has shown that actin regulation via Rac1 guanine exchange factor (GEF) Vav signaling restrains synaptic growth via bone morphogenetic protein (BMP)-induced receptor macropinocytosis and mediates synaptic potentiation via mobilization of reserve pool vesicles in presynaptic boutons. Here, we find that Gef26/PDZ-GEF and small GTPase Rap1 signaling couples the BMP-induced activation of Abelson kinase to this Vav-mediated macropinocytosis. Moreover, we find that adenylate cyclase Rutabaga (Rut) signaling via exchange protein activated by cAMP (Epac) drives the mobilization of reserve pool vesicles during post-tetanic potentiation (PTP). We discover that Rap1 couples activation of Rut-cAMP-Epac signaling to Vav-mediated synaptic potentiation. These findings indicate that Rap1 acts as an essential, convergent node for Abelson kinase and cAMP signaling to mediate BMP-induced structural plasticity and activity-induced functional plasticity via Vav-dependent regulation of the presynaptic actin cytoskeleton.


Neuronal Plasticity , Signal Transduction , rap1 GTP-Binding Proteins , Animals , Neuronal Plasticity/physiology , rap1 GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/genetics , Presynaptic Terminals/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Proto-Oncogene Proteins c-vav/metabolism , Proto-Oncogene Proteins c-vav/genetics , Mice , Cyclic AMP/metabolism , Actin Cytoskeleton/metabolism , Bone Morphogenetic Proteins/metabolism , Shelterin Complex/metabolism
5.
J Cell Biol ; 223(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38748453

There has long been conflicting evidence as to how bundled actin filaments, found in cellular structures such as filopodia, are disassembled. In this issue, Chikireddy et al. (https://doi.org/10.1083/jcb.202312106) provide a detailed in vitro analysis of the steps involved in fragmentation of fascin-bundled actin filaments and propose a novel mechanism for severing two-filament bundles.


Actin Cytoskeleton , Actin Cytoskeleton/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Actins/metabolism , Pseudopodia/metabolism , Humans , Animals , Carrier Proteins/metabolism , Carrier Proteins/genetics
6.
Sci Rep ; 14(1): 10241, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702365

Within the bloodstream, monocytes must traverse the microvasculature to prevent leukostasis, which is the entrapment of monocytes within the confines of the microvasculature. Using the model cell line, THP-1, and VCAM-1 coated channels to simulate the microvasculature surface, we demonstrate that monocytes predominantly adopt an amoeboid phenotype, which is characterized by the formation of blebs. As opposed to cortical actin flow in leader blebs, cell movement is correlated with myosin contraction at the cell rear. It was previously documented that cofilin-1 promotes cortical actin turnover at leader bleb necks in melanoma cells. In monocytes, our data suggest that cofilin-1 promotes the local upregulation of myosin contractility through actin cytoskeleton remodeling. In support of this concept, cofilin-1 is found to localize to a single cell edge. Moreover, the widespread upregulation of myosin contractility was found to inhibit migration. Thus, monocytes within the microvasculature may avoid entrapment by adopting an amoeboid mode of migration.


Actin Cytoskeleton , Cell Movement , Cofilin 1 , Monocytes , Monocytes/metabolism , Humans , Cofilin 1/metabolism , Actin Cytoskeleton/metabolism , Myosins/metabolism , Actins/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , THP-1 Cells
7.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38722279

In addition to its well-established role in actin assembly, profilin 1 (PFN1) has been shown to bind to tubulin and alter microtubule growth. However, whether PFN1's predominant control over microtubules in cells occurs through direct regulation of tubulin or indirectly through the polymerization of actin has yet to be determined. Here, we manipulated PFN1 expression, actin filament assembly, and actomyosin contractility and showed that reducing any of these parameters for extended periods of time caused an adaptive response in the microtubule cytoskeleton, with the effect being significantly more pronounced in neuronal processes. All the observed changes to microtubules were reversible if actomyosin was restored, arguing that PFN1's regulation of microtubules occurs principally through actin. Moreover, the cytoskeletal modifications resulting from PFN1 depletion in neuronal processes affected microtubule-based transport and mimicked phenotypes that are linked to neurodegenerative disease. This demonstrates how defects in actin can cause compensatory responses in other cytoskeleton components, which in turn significantly alter cellular function.


Actins , Microtubules , Profilins , Animals , Humans , Mice , Actin Cytoskeleton/metabolism , Actins/metabolism , Actins/genetics , Actomyosin/metabolism , Microtubules/metabolism , Neurons/metabolism , Profilins/metabolism , Profilins/genetics , Tubulin/metabolism , Tubulin/genetics
8.
Methods Mol Biol ; 2800: 115-145, 2024.
Article En | MEDLINE | ID: mdl-38709482

The actin cortex is an essential element of the cytoskeleton allowing cells to control and modify their shape. It is involved in cell division and migration. However, probing precisely the physical properties of the actin cortex has proved to be challenging: it is a thin and dynamic material, and its location in the cell-directly under the plasma membrane-makes it difficult to study with standard light microscopy and cell mechanics techniques. In this chapter, we present a novel protocol to probe dynamically the thickness of the cortex and its fluctuations using superparamagnetic microbeads in a uniform magnetic field. A bead ingested by the cell and another outside the cell attract each other due to dipolar forces. By tracking their position with nanometer precision, one can measure the thickness of the cortex pinched between two beads and monitor its evolution in time. We first present the set of elements necessary to realize this protocol: a magnetic field generator adapted to a specific imaging setup and the aforementioned superparamagnetic microbeads. Then we detail the different steps of a protocol that can be used on diverse cell types, adherent or not.


Actins , Actins/metabolism , Humans , Magnetic Fields , Actin Cytoskeleton/metabolism , Microspheres , Animals
9.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732116

Hypertension is a pervasive and widespread health condition that poses a significant risk factor for cardiovascular disease, which includes conditions such as heart attack, stroke, and heart failure. Despite its widespread occurrence, the exact cause of hypertension remains unknown, and the mechanisms underlying the progression from prehypertension to hypertension require further investigation. Recent proteomic studies have shown promising results in uncovering potential biomarkers related to disease development. In this study, serum proteomic data collected from Qatar Biobank were analyzed to identify altered protein expression between individuals with normal blood pressure, prehypertension, and hypertension and to elucidate the biological pathways contributing to this disease. The results revealed a cluster of proteins, including the SRC family, CAMK2B, CAMK2D, TEC, GSK3, VAV, and RAC, which were markedly upregulated in patients with hypertension compared to those with prehypertension (fold change ≥ 1.6 or ≤-1.6, area under the curve ≥ 0.8, and q-value < 0.05). Pathway analysis showed that the majority of these proteins play a role in actin cytoskeleton remodeling. Actin cytoskeleton reorganization affects various biological processes that contribute to the maintenance of blood pressure, including vascular tone, endothelial function, cellular signaling, inflammation, fibrosis, and mechanosensing. Therefore, the findings of this study suggest a potential novel role of actin cytoskeleton-related proteins in the progression from prehypertension to hypertension. The present study sheds light on the underlying pathological mechanisms involved in hypertension and could pave the way for new diagnostic and therapeutic approaches for the treatment of this disease.


Actin Cytoskeleton , Hypertension , Proteomics , Humans , Hypertension/metabolism , Proteomics/methods , Male , Female , Middle Aged , Actin Cytoskeleton/metabolism , Prehypertension/metabolism , Biomarkers , Proteome/metabolism , Adult , Blood Pressure , Aged
10.
J Colloid Interface Sci ; 668: 293-302, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38678885

Understanding the cytotoxicity of fluorescent carbon dots (CDs) is crucial for their applications, and various biochemical assays have been used to study the effects of CDs on cells. Knowledge on the effects of CDs from a biophysical perspective is integral to the recognition of their cytotoxicity, however the related information is very limited. Here, we report that atomic force microscopy (AFM) can be used as an effective tool for studying the effects of CDs on cells from the biophysical perspective. We achieve this by integrating AFM-based nanomechanics with AFM-based imaging. We demonstrate the performance of this method by measuring the influence of CDs on living human neuroblastoma (SH-SY5Y) cells at the single-cell level. We find that high-dose CDs can mechanically induce elevated normalized hysteresis (energy dissipation during the cell deformation) and structurally impair actin skeleton. The nanomechanical change highly correlates with the alteration of actin filaments, indicating that CDs-induced changes in SH-SY5Y cells are revealed in-depth from the AFM-based biophysical aspect. We validate the reliability of the biophysical observations using conventional biological methods including cell viability test, fluorescent microscopy, and western blot assay. Our work contributes new and significant information on the cytotoxicity of CDs from the biophysical perspective.


Carbon , Cell Survival , Microscopy, Atomic Force , Quantum Dots , Humans , Carbon/chemistry , Quantum Dots/chemistry , Cell Survival/drug effects , Neurons/drug effects , Neurons/cytology , Neurons/metabolism , Cell Line, Tumor , Particle Size , Surface Properties , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/drug effects , Actins/metabolism , Actins/chemistry
11.
Biochem Soc Trans ; 52(2): 505-515, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38629612

In eukaryotic cells, organelle and vesicle transport, positioning, and interactions play crucial roles in cytoplasmic organization and function. These processes are governed by intracellular trafficking mechanisms. At the core of that trafficking, the cytoskeleton and directional transport by motor proteins stand out as its key regulators. Plant cell tip growth is a well-studied example of cytoplasm organization by polarization. This polarization, essential for the cell's function, is driven by the cytoskeleton and its associated motors. This review will focus on myosin XI, a molecular motor critical for vesicle trafficking and polarized plant cell growth. We will center our discussion on recent data from the moss Physcomitrium patens and the liverwort Marchantia polymorpha. The biochemical properties and structure of myosin XI in various plant species are discussed, highlighting functional conservation across species. We further explore this conservation of myosin XI function in the process of vesicle transport in tip-growing cells. Existing evidence indicates that myosin XI actively organizes actin filaments in tip-growing cells by a mechanism based on vesicle clustering at their tips. A hypothetical model is presented to explain the essential function of myosin XI in polarized plant cell growth based on vesicle clustering at the tip. The review also provides insight into the in vivo localization and dynamics of myosin XI, emphasizing its role in cytosolic calcium regulation, which influences the polymerization of F-actin. Lastly, we touch upon the need for additional research to elucidate the regulation of myosin function.


Myosins , Plant Cells , Myosins/metabolism , Plant Cells/metabolism , Bryopsida/metabolism , Bryopsida/growth & development , Plant Proteins/metabolism , Actin Cytoskeleton/metabolism , Marchantia/metabolism , Marchantia/growth & development , Plant Development/physiology
12.
Commun Biol ; 7(1): 446, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605154

Podocyte detachment due to mechanical stress is a common issue in hypertension-induced kidney disease. This study highlights the role of zyxin for podocyte stability and function. We have found that zyxin is significantly up-regulated in podocytes after mechanical stretch and relocalizes from focal adhesions to actin filaments. In zyxin knockout podocytes, we found that the loss of zyxin reduced the expression of vinculin and VASP as well as the expression of matrix proteins, such as fibronectin. This suggests that zyxin is a central player in the translation of mechanical forces in podocytes. In vivo, zyxin is highly up-regulated in patients suffering from diabetic nephropathy and in hypertensive DOCA-salt treated mice. Furthermore, zyxin loss in mice resulted in proteinuria and effacement of podocyte foot processes that was measured by super resolution microscopy. This highlights the essential role of zyxin for podocyte maintenance in vitro and in vivo, especially under mechanical stretch.


Hypertension, Renal , Nephritis , Podocytes , Humans , Mice , Animals , Zyxin/genetics , Zyxin/metabolism , Podocytes/metabolism , Actin Cytoskeleton/metabolism , Kidney Glomerulus , Focal Adhesions/metabolism
13.
Life Sci Space Res (Amst) ; 41: 80-85, 2024 May.
Article En | MEDLINE | ID: mdl-38670656

The disuse of skeletal limb muscles occurs in a variety of conditions, yet our comprehension of the molecular mechanisms involved in adaptation to disuse remains incomplete. We studied the mechanical characteristics of actin-myosin interaction using an in vitro motility assay and isoform composition of myosin heavy and light chains by dint of SDS-PAGE in soleus muscle of both control and hindlimb-unloaded rats. 14 days of hindlimb unloading led to the increased maximum sliding velocity of actin, reconstituted, and native thin filaments over rat soleus muscle myosin by 24 %, 19 %, and 20 %, respectively. The calcium sensitivity of the "pCa-velocity" relationship decreased. There was a 26 % increase in fast myosin heavy chain IIa (MHC IIa), a 22 % increase in fast myosin light chain 2 (MLC 2f), and a 13 % increase in fast MLC 1f content. The content of MLC 1s/v, typical for slow skeletal muscles and cardiac ventricles did not change. At the same time, MLC 1s, typical only for slow skeletal muscles, disappeared. The maximum velocity of soleus muscle native thin filaments was 24 % higher compared to control ones sliding over the same rabbit myosin. Therefore, both myosin and native thin filament kinetics could influence the mechanical characteristics of the soleus muscle. Additionally, the MLC 1s and MLC 1s/v ratio may contribute to the mechanical characteristics of slow skeletal muscle, along with MHC, MLC 2, and MLC 1 slow/fast isoforms ratio.


Hindlimb Suspension , Muscle, Skeletal , Rats, Wistar , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Rats , Male , Myosin Heavy Chains/metabolism , Myosin Light Chains/metabolism , Rabbits , Myosins/metabolism , Calcium/metabolism , Actin Cytoskeleton/metabolism , Protein Isoforms
14.
Sheng Li Xue Bao ; 76(2): 341-345, 2024 Apr 25.
Article Zh | MEDLINE | ID: mdl-38658382

There are three main classes of actin nucleation factors: Arp2/3 complexes, Spire and Formin. Spire assembles microfilaments by nucleating stable longitudinal tetramers and binding actin to the growing end of the microfilament. As early as 1999, Wellington et al. identified Spire as an actin nucleating agent, however, over the years, most studies have focused on Arp2/3 and Formin proteins; there has been relatively less research on Spire as a member of the actin nucleating factors. Recent studies have shown that Spire is involved in the vesicular transport through the synthesis of actin and plays an important role in neural development. In this paper, we reviewed the structure, expression and function of Spire, and its association with disease in order to identify meaningful potential directions for studies on Spire.


Actins , Microfilament Proteins , Nuclear Proteins , Microfilament Proteins/metabolism , Microfilament Proteins/physiology , Humans , Animals , Actins/metabolism , Actins/physiology , Actin-Related Protein 2-3 Complex/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/physiology
15.
Nat Commun ; 15(1): 3139, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605007

Several actin-binding proteins (ABPs) phase separate to form condensates capable of curating the actin network shapes. Here, we use computational modeling to understand the principles of actin network organization within VASP condensate droplets. Our simulations reveal that the different actin shapes, namely shells, rings, and mixture states are highly dependent on the kinetics of VASP-actin interactions, suggesting that they arise from kinetic trapping. Specifically, we show that reducing the residence time of VASP on actin filaments reduces degree of bundling, thereby promoting assembly of shells rather than rings. We validate the model predictions experimentally using a VASP-mutant with decreased bundling capability. Finally, we investigate the ring opening within deformed droplets and found that the sphere-to-ellipsoid transition is favored under a wide range of filament lengths while the ellipsoid-to-rod transition is only permitted when filaments have a specific range of lengths. Our findings highlight key mechanisms of actin organization within phase-separated ABPs.


Actin Cytoskeleton , Actins , Actins/metabolism , Actin Cytoskeleton/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Cytoskeleton/metabolism
16.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673765

Quantum dots (QDs) are a novel type of nanomaterial that has unique optical and physical characteristics. As such, QDs are highly desired because of their potential to be used in both biomedical and industrial applications. However, the mass adoption of QDs usage has raised concerns among the scientific community regarding QDs' toxicity. Although many papers have reported the negative impact of QDs on a cellular level, the exact mechanism of the QDs' toxicity is still unclear. In this investigation, we study the adverse effects of QDs by focusing on one of the most important cellular processes: actin polymerization and depolymerization. Our results showed that QDs act in a biphasic manner where lower concentrations of QDs stimulate the polymerization of actin, while high concentrations of QDs inhibit actin polymerization. Furthermore, we found that QDs can bind to filamentous actin (F-actin) and cause bundling of the filament while also promoting actin depolymerization. Through this study, we found a novel mechanism in which QDs negatively influence cellular processes and exert toxicity.


Actins , Cadmium Compounds , Quantum Dots , Selenium Compounds , Sulfides , Zinc Compounds , Quantum Dots/chemistry , Actins/metabolism , Zinc Compounds/chemistry , Sulfides/chemistry , Cadmium Compounds/chemistry , Selenium Compounds/chemistry , Polymerization , Animals , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/drug effects , Humans
17.
Nat Commun ; 15(1): 3444, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658549

Mechanical work serves as the foundation for dynamic cellular processes, ranging from cell division to migration. A fundamental driver of cellular mechanical work is the actin cytoskeleton, composed of filamentous actin (F-actin) and myosin motors, where force generation relies on adenosine triphosphate (ATP) hydrolysis. F-actin architectures, whether bundled by crosslinkers or branched via nucleators, have emerged as pivotal regulators of myosin II force generation. However, it remains unclear how distinct F-actin architectures impact the conversion of chemical energy to mechanical work. Here, we employ in vitro reconstitution of distinct F-actin architectures with purified components to investigate their influence on myosin ATP hydrolysis (consumption). We find that F-actin bundles composed of mixed polarity F-actin hinder network contraction compared to non-crosslinked network and dramatically decelerate ATP consumption rates. Conversely, linear-nucleated networks allow network contraction despite reducing ATP consumption rates. Surprisingly, branched-nucleated networks facilitate high ATP consumption without significant network contraction, suggesting that the branched network dissipates energy without performing work. This study establishes a link between F-actin architecture and myosin energy consumption, elucidating the energetic principles underlying F-actin structure formation and the performance of mechanical work.


Actins , Adenosine Triphosphate , Actins/metabolism , Adenosine Triphosphate/metabolism , Animals , Actin Cytoskeleton/metabolism , Hydrolysis , Myosins/metabolism , Biomechanical Phenomena , Rabbits , Myosin Type II/metabolism
18.
J Cell Sci ; 137(6)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38563209

Actin is well known for its cytoskeletal functions, where it helps to control and maintain cell shape and architecture, as well as regulating cell migration and intracellular cargo transport, among others. However, actin is also prevalent in the nucleus, where genome-regulating roles have been described, including it being part of chromatin-remodeling complexes. More recently, with the help of advances in microscopy techniques and specialized imaging probes, direct visualization of nuclear actin filament dynamics has helped elucidate new roles for nuclear actin, such as in cell cycle regulation, DNA replication and repair, chromatin organization and transcriptional condensate formation. In this Cell Science at a Glance article, we summarize the known signaling events driving the dynamic assembly of actin into filaments of various structures within the nuclear compartment for essential genome functions. Additionally, we highlight the physiological role of nuclear F-actin in meiosis and early embryonic development.


Actins , Cell Nucleus , Actins/metabolism , Cell Nucleus/metabolism , Actin Cytoskeleton/metabolism , Cytoskeleton/metabolism , Cell Cycle
19.
Elife ; 122024 Apr 10.
Article En | MEDLINE | ID: mdl-38597186

Epithelial intercellular adhesion molecule (ICAM)-1 is apically polarized, interacts with, and guides leukocytes across epithelial barriers. Polarized hepatic epithelia organize their apical membrane domain into bile canaliculi and ducts, which are not accessible to circulating immune cells but that nevertheless confine most of ICAM-1. Here, by analyzing ICAM-1_KO human hepatic cells, liver organoids from ICAM-1_KO mice and rescue-of-function experiments, we show that ICAM-1 regulates epithelial apicobasal polarity in a leukocyte adhesion-independent manner. ICAM-1 signals to an actomyosin network at the base of canalicular microvilli, thereby controlling the dynamics and size of bile canalicular-like structures. We identified the scaffolding protein EBP50/NHERF1/SLC9A3R1, which connects membrane proteins with the underlying actin cytoskeleton, in the proximity interactome of ICAM-1. EBP50 and ICAM-1 form nano-scale domains that overlap in microvilli, from which ICAM-1 regulates EBP50 nano-organization. Indeed, EBP50 expression is required for ICAM-1-mediated control of BC morphogenesis and actomyosin. Our findings indicate that ICAM-1 regulates the dynamics of epithelial apical membrane domains beyond its role as a heterotypic cell-cell adhesion molecule and reveal potential therapeutic strategies for preserving epithelial architecture during inflammatory stress.


Actomyosin , Intercellular Adhesion Molecule-1 , Animals , Mice , Humans , Actomyosin/metabolism , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Epithelial Cells/metabolism , Hepatocytes/metabolism , Liver/metabolism , Actin Cytoskeleton/metabolism , Leukocytes/metabolism , Cell Polarity
20.
Nat Commun ; 15(1): 3000, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589403

Actomyosin networks constrict cell area and junctions to alter cell and tissue shape. However, during cell expansion under mechanical stress, actomyosin networks are strengthened and polarized to relax stress. Thus, cells face a conflicting situation between the enhanced actomyosin contractile properties and the expansion behaviour of the cell or tissue. To address this paradoxical situation, we study late Drosophila oogenesis and reveal an unusual epithelial expansion wave behaviour. Mechanistically, Rac1 and Rho1 integrate basal pulsatile actomyosin networks with ruffles and focal adhesions to increase and then stabilize basal area of epithelial cells allowing their flattening and elongation. This epithelial expansion behaviour bridges cell changes to oocyte growth and extension, while oocyte growth in turn deforms the epithelium to drive cell spreading. Basal pulsatile actomyosin networks exhibit non-contractile mechanics, non-linear structures and F-actin/Myosin-II spatiotemporal signal separation, implicating unreported expanding properties. Biophysical modelling incorporating these expanding properties well simulates epithelial cell expansion waves. Our work thus highlights actomyosin expanding properties as a key mechanism driving tissue morphogenesis.


Actomyosin , Drosophila Proteins , Animals , Actomyosin/metabolism , Drosophila Proteins/metabolism , Epithelial Cells/metabolism , Actin Cytoskeleton/metabolism , Drosophila/metabolism , Epithelium/metabolism , Morphogenesis
...