Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 73
1.
Article En | MEDLINE | ID: mdl-38782370

Current therapies for acute radiation syndrome (ARS) involve bone marrow transplantation (BMT), leading to graft-versus-host disease (GvHD). To address this challenge, we have developed a novel donor-recipient chimeric cell (DRCC) therapy to increase survival and prevent GvHD following total body irradiation (TBI)-induced hematopoietic injury without the need for immunosuppression. In this study, 20 Lewis rats were exposed to 7 Gy TBI to induce ARS, and we assessed the efficacy of various cellular therapies following systemic intraosseous administration. Twenty Lewis rats were randomly divided into four experimental groups (n = 5/group): saline control, allogeneic bone marrow transplantation (alloBMT), DRCC, and alloBMT + DRCC. DRCC were created by polyethylene glycol-mediated fusion of bone marrow cells from 24 ACI (RT1a) and 24 Lewis (RT11) rat donors. Fusion feasibility was confirmed by flow cytometry and confocal microscopy. The impact of different therapies on post-irradiation peripheral blood cell recovery was evaluated through complete blood count, while GvHD signs were monitored clinically and histopathologically. The chimeric state of DRCC was confirmed. Post-alloBMT mortality was 60%, whereas DRCC and alloBMT + DRCC therapies achieved 100% survival. DRCC therapy also led to the highest white blood cell counts and minimal GvHD changes in kidney and skin samples, in contrast to alloBMT treatment. In this study, transplantation of DRCC promoted the recovery of peripheral blood cell populations after TBI without the development of GVHD. This study introduces a novel and promising DRCC-based bridging therapy for treating ARS and extending survival without GvHD.


Acute Radiation Syndrome , Bone Marrow Transplantation , Disease Models, Animal , Graft vs Host Disease , Rats, Inbred Lew , Whole-Body Irradiation , Animals , Rats , Graft vs Host Disease/therapy , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Bone Marrow Transplantation/methods , Acute Radiation Syndrome/therapy , Transplantation Chimera , Male , Transplantation, Homologous , Humans , Blood Cells
2.
Probl Radiac Med Radiobiol ; 28: 519-543, 2023 Dec.
Article En, Uk | MEDLINE | ID: mdl-38155146

Under the conditions of war in Ukraine, there remains a high probability that russia will use nuclear weapons or commit terrorist acts against nuclear power plants, which will lead to exposure of the population in doses that cause acute radiation sickness (ARS). In this regard, our medical service must be ready for the treatment of ARS of various degrees of severity under a mass influx of victims. In peacetime, ARS is a rather infrequent pathology, so most doctors lack experience in its treatment. This article, having the form of a lecture, presents material on the pathogenesis, classification, clinic, diagnosis and treatment of ARS, taking into account the modern achievements of radiation medicine. Treatment of ARS is based on the use of pharmaceutical drugs that are licensed in Ukraine. The article will be useful for doctors and medical workers of all branches and levels of health care, who will have to deal with irradiated persons in order to timely identify patients with ARS and provide them with effective treatment.


Acute Radiation Syndrome , Humans , Acute Radiation Syndrome/diagnosis , Acute Radiation Syndrome/etiology , Acute Radiation Syndrome/therapy , Ukraine
3.
MedEdPORTAL ; 19: 11331, 2023.
Article En | MEDLINE | ID: mdl-37538304

Introduction: Acute radiation syndrome (ARS) is a high-risk, low-frequency diagnosis that can be fatal and is difficult to diagnose without an obvious history of ionizing radiation exposure. Methods: Twenty-two emergency medicine residents and one pharmacy resident participated in an hour-long simulation session. To accommodate all learners, the simulation was conducted eight times over a block of scheduled time (two to four learners/session). Sessions included a prebriefing, pre/post questionnaires, the ARS case, and a debriefing. Learners evaluated and managed a 47-year-old male (manikin) with the hematopoietic and cutaneous subsyndromes of ARS who presented with hand pain/erythema/edema and underlying signs of infection 2 weeks after an unrecognized radiation exposure. Learners had to perform a history and physical, recognize/manage abnormal vitals, order/interpret labs, consult appropriate disciplines, and initiate supportive care. Results: There was a mean reported increase in ability to recognize signs and symptoms of ARS (p < .001) and appropriately manage a patient with this condition (p = .03) even after controlling for baseline confidence in ability to make and manage uncommon diagnoses, respectively. Learners rated this simulation as a valuable learning experience, effective in teaching them how to diagnose and treat ARS, and one they would recommend to other health care professionals. Discussion: This simulation aimed to teach the diagnosis and initial management of the hematopoietic and cutaneous subsyndromes of ARS. It should be used to increase awareness of the potential for ionizing radiation exposure under less obvious conditions and raise the index of suspicion for ARS in the undifferentiated patient.


Acute Radiation Syndrome , Emergency Medicine , High Fidelity Simulation Training , Simulation Training , Male , Humans , Middle Aged , Acute Radiation Syndrome/diagnosis , Acute Radiation Syndrome/therapy , Emergency Medicine/education , Patient Simulation
4.
Pediatr Ann ; 52(6): e231-e237, 2023 Jun.
Article En | MEDLINE | ID: mdl-37280005

The conflict in Ukraine has raised the specter of radiological and nuclear incidents, including fighting at the Zaporizhzhia nuclear plant, the largest nuclear powerplant in Europe; concerns that a radiological dispersion device ("dirty bomb") may be used; and threats to deploy tactical nuclear weapons. Children are more susceptible than adults to immediate and delayed radiation health effects. This article reviews the diagnosis and treatment of acute radiation syndrome. Although definitive treatment of radiation injuries should involve consultation with specialists, nonspecialists should learn to recognize the distinctive signs of radiation injury and make an initial assessment of severity of exposure. [Pediatr Ann. 2023;52(6):e231-e237.].


Acute Radiation Syndrome , Terrorism , Adult , Child , Humans , Acute Radiation Syndrome/diagnosis , Acute Radiation Syndrome/etiology , Acute Radiation Syndrome/therapy , Europe
5.
Int J Radiat Biol ; 99(7): 1066-1079, 2023.
Article En | MEDLINE | ID: mdl-36862990

PURPOSE: Terrorist use of nuclear weapons and radiation accidents put the human population at risk for exposure to life-threatening levels of radiation. Victims of lethal radiation exposure face potentially lethal acute injury, while survivors of the acute phase are plagued with chronic debilitating multi-organ injuries for years after exposure. Developing effective medical countermeasures (MCM) for the treatment of radiation exposure is an urgent need that relies heavily on studies conducted in reliable and well-characterized animal models according to the FDA Animal Rule. Although relevant animal models have been developed in several species and four MCM for treatment of the acute radiation syndrome are now FDA-approved, animal models for the delayed effects of acute radiation exposure (DEARE) have only recently been developed, and there are no licensed MCM for DEARE. Herein, we provide a review of the DEARE including key characteristics of the DEARE gleaned from human data as well as animal, mechanisms common to multi-organ DEARE, small and large animal models used to study the DEARE, and promising new or repurposed MCM under development for alleviation of the DEARE. CONCLUSIONS: Intensification of research efforts and support focused on better understanding of mechanisms and natural history of DEARE are urgently needed. Such knowledge provides the necessary first steps toward the design and development of MCM that effectively alleviate the life-debilitating consequences of the DEARE for the benefit of humankind worldwide.


Acute Radiation Syndrome , Medical Countermeasures , Radiation Exposure , Radioactive Hazard Release , Animals , Humans , Models, Animal , Acute Radiation Syndrome/therapy
6.
Radiat Res ; 198(5): 514-535, 2022 11 01.
Article En | MEDLINE | ID: mdl-36001810

Animal models are necessary to demonstrate the efficacy of medical countermeasures (MCM) to mitigate/treat acute radiation syndrome and the delayed effects of acute radiation exposure and develop biodosimetry signatures for use in triage and to guide medical management. The use of animal models in radiation research allows for the simulation of the biological effects of exposure in humans. Robust and well-controlled animal studies provide a platform to address basic mechanistic and safety questions that cannot be conducted in humans. The U.S. Department of Health and Human Services has tasked the National Institute of Allergy and Infectious Diseases (NIAID) with identifying and funding early- through advanced-stage MCM development for radiation-induced injuries; and advancement of biodosimetry platforms and exploration of biomarkers for triage, definitive dose, and predictive purposes. Some of these NIAID-funded projects may transition to the Biomedical Advanced Research and Development Authority (BARDA), a component of the Office of the Assistant Secretary for Preparedness and Response in the U.S. Department of Health and Human Services, which is tasked with the advanced development of MCMs to include pharmacokinetic, exposure, and safety assessments in humans. Guided by the U.S. Food and Drug Administration's (FDA) Animal Rule, both NIAID and BARDA work closely with researchers to advance product and device development, setting them on a course for eventual licensure/approval/clearance of their approaches by the FDA. In August 2020, NIAID partnered with BARDA to conduct a workshop to discuss currently accepted animal care protocols and examine aspects of animal models that can influence outcomes of studies to explore MCM efficacy for potential harmonization. This report provides an overview of the two-day workshop, which includes a series of special topic presentations followed by panel discussions with subject-matter experts from academia, industry partners, and select governmental agencies.


Acute Radiation Syndrome , Medical Countermeasures , Animals , United States , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Acute Radiation Syndrome/therapy , Triage
7.
J Radiol Prot ; 42(3)2022 07 19.
Article En | MEDLINE | ID: mdl-35767939

Acute radiation syndrome (ARS) is a clinical syndrome involving four organ systems, resulting in the hematopoietic syndrome (HS), gastrointestinal subsyndrome (GIS), neurovascular subsyndrome (NVS) and cutaneous subsyndrome (CS). Since few healthcare providers have seen an ARS case, evidence-based recommendations are needed to guide medical management in a mass casualty scenario. The authors reviewed recommendations from evidence-based and narrative reviews by expert consultants to the World Health Organisation (WHO), a subsequent review of published HS cases, and infectious disease guidelines for management of febrile neutropenia. The WHO Consultancy applied a rigorous grading system to evaluate treatment strategies described in published ARS cases as of 2009, strategies to manage HS in unirradiated persons, results of ARS studies in animal models of ARS, and recommendations of prior expert panels. Major findings for HS were (a) no randomised controlled studies have been performed, (b) data are restricted by the lack of comparator groups, and (c) reports of countermeasures for management of injury to non-hematopoietic organs are often incomplete. Strength of recommendations ranged from strong to weak. Countermeasures of potential benefit include cytokines and for a subgroup of HS patients, hematopoietic stem cell transplantation. These recommendations did not change in a subsequent analysis of HS cases. Recommendations also included fluoroquinolones, bowel decontamination, serotonin receptor antagonists, loperamide and enteral nutrition for GIS; supportive care for NVS; and topical steroids, antihistamines and antibiotics, and surgical excision/grafting for CS. Also reviewed are critical care management guidelines, the role of mesenchymal stem cells for CS, the potential of a platelet-stimulating cytokine for HS, and the author's approach to clinical management of microbial infections associated with ARS based on published guidelines of infectious disease experts. Today's management of HS is supported by evidence-based guidelines. Management of non-HS subsyndromes is supported by a narrative review of the literature and recommendations of infectious disease societies.


Acute Radiation Syndrome , Communicable Diseases , Acute Radiation Syndrome/therapy , Animals , Gastrointestinal Tract , Skin , World Health Organization
8.
J Radiol Prot ; 42(1)2022 Jan 25.
Article En | MEDLINE | ID: mdl-35021163

The major immediate and severe medical consequences in man following exposure to high doses of ionising radiation can be summarised within the concept of the acute radiation syndrome (ARS). In a dose-dependent fashion, a multitude of organ systems can be affected by such irradiation, presenting considerable medical challenges to treating physicians. Accidents or malevolent events leading to ARS can provoke devastating effects, but they occur at a low frequency and in a highly varying manner and magnitude. Thus, it is difficult to make precise medical predictions and planning, or to draw conclusive evidence from occurred events. Therefore, knowledge from on-going continuous developments within related medical areas needs to be acknowledged and incorporated into the ARS setting, enabling the creation of evidence-based guidelines. In 2011 the World Health Organization published a first global consensus on the medical management of ARS among patients subjected to nontherapeutic radiation. During the recent decade the understanding of and capability to counteract organ damage related to radiation and other agents have improved considerably. Furthermore, legal and logistic hurdles in the process of formally approving appropriate medical countermeasures have been reduced. We believe the time is now ripe for developing an update of internationally consented medical guidelines on ARS.


Acute Radiation Syndrome , Acute Radiation Syndrome/therapy , Humans , World Health Organization
9.
Stem Cell Res Ther ; 12(1): 459, 2021 08 18.
Article En | MEDLINE | ID: mdl-34407878

BACKGROUND: Acute radiation syndrome (ARS) is caused by acute exposure to ionizing radiation that damages multiple organ systems but especially the bone marrow (BM). We have previously shown that human macrophages educated with exosomes from human BM-derived mesenchymal stromal cells (MSCs) primed with lipopolysaccharide (LPS) prolonged survival in a xenogeneic lethal ARS model. The purpose of this study was to determine if exosomes from LPS-primed MSCs could directly educate human monocytes (LPS-EEMos) for the treatment of ARS. METHODS: Human monocytes were educated by exosomes from LPS-primed MSCs and compared to monocytes educated by unprimed MSCs (EEMos) and uneducated monocytes to assess survival and clinical improvement in a xenogeneic mouse model of ARS. Changes in surface molecule expression of exosomes and monocytes after education were determined by flow cytometry, while gene expression was determined by qPCR. Irradiated human CD34+ hematopoietic stem cells (HSCs) were co-cultured with LPS-EEMos, EEMos, or uneducated monocytes to assess effects on HSC survival and proliferation. RESULTS: LPS priming of MSCs led to the production of exosomes with increased expression of CD9, CD29, CD44, CD146, and MCSP. LPS-EEMos showed increases in gene expression of IL-6, IL-10, IL-15, IDO, and FGF-2 as compared to EEMos generated from unprimed MSCs. Generation of LPS-EEMos induced a lower percentage of CD14+ monocyte subsets that were CD16+, CD73+, CD86+, or CD206+ but a higher percentage of PD-L1+ cells. LPS-EEMos infused 4 h after lethal irradiation significantly prolonged survival, reducing clinical scores and weight loss as compared to controls. Complete blood counts from LPS-EEMo-treated mice showed enhanced hematopoietic recovery post-nadir. IL-6 receptor blockade completely abrogated the radioprotective survival benefit of LPS-EEMos in vivo in female NSG mice, but only loss of hematopoietic recovery was noted in male NSG mice. PD-1 blockade had no effect on survival. Furthermore, LPS-EEMos also showed benefits in vivo when administered 24 h, but not 48 h, after lethal irradiation. Co-culture of unprimed EEMos or LPS-EEMos with irradiated human CD34+ HSCs led to increased CD34+ proliferation and survival, suggesting hematopoietic recovery may be seen clinically. CONCLUSION: LPS-EEMos are a potential counter-measure for hematopoietic ARS, with a reduced biomanufacturing time that facilitates hematopoiesis.


Acute Radiation Syndrome , Exosomes , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cells , Acute Radiation Syndrome/therapy , Animals , Female , Male , Mice , Monocytes
10.
Front Immunol ; 12: 708950, 2021.
Article En | MEDLINE | ID: mdl-34386012

Mesenchymal stromal cells (MSCs) are being tested as a cell therapy in clinical trials for dozens of inflammatory disorders, with varying levels of efficacy reported. Suitable and robust preclinical animal models for testing the safety and efficacy of different types of MSC products before use in clinical trials are rare. We here introduce two highly robust animal models of immune pathology: 1) acute radiation syndrome (ARS) and 2) graft versus host disease (GvHD), in conjunction with studying the immunomodulatory effect of well-characterized Interferon gamma (IFNγ) primed bone marrow derived MSCs. The animal model of ARS is based on clinical grade dosimetry precision and bioluminescence imaging. We found that allogeneic MSCs exhibit lower persistence in naïve compared to irradiated animals, and that intraperitoneal infusion of IFNγ prelicensed allogeneic MSCs protected animals from radiation induced lethality by day 30. In direct comparison, we also investigated the effect of IFNγ prelicensed allogeneic MSCs in modulating acute GvHD in an animal model of MHC major mismatched bone marrow transplantation. Infusion of IFNγ prelicensed allogeneic MSCs failed to mitigate acute GvHD. Altogether our results demonstrate that infused IFNγ prelicensed allogeneic MSCs protect against lethality from ARS, but not GvHD, thus providing important insights on the dichotomy of IFNγ prelicensed allogenic MSCs in well characterized and robust animal models of acute tissue injury.


Acute Radiation Syndrome/therapy , Graft vs Host Disease/therapy , Interferon-gamma/pharmacology , Mesenchymal Stem Cell Transplantation , Animals , Disease Models, Animal , Female , Luminescent Measurements , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Transplantation, Homologous
11.
J Radiol Prot ; 41(3)2021 Aug 19.
Article En | MEDLINE | ID: mdl-34265749

Thirty-five years have passed since the moment of the disaster at the Chernobyl nuclear power plant. It is quite a sufficient period to assess the correctness of the organisation of medical care for victims, to summarise the results of monitoring the health status of various groups of persons involved in the accident, including its direct participants. Radiation from a massive source of relatively uniform gamma radiation and a heterogeneous source of beta radiation can cause affected people to develop acute radiation syndrome (ARS) of varying severity, including non-curable forms of the disease ARS developed in 134 patients; 28 patients from 134 with ARS died in a short time (100 d) after exposure. Among the patients whose disease ended in death, 2/3 of the outcome could be due to radiation skin lesions (19 people). Treatment of ARS varying severity, which was combined with common skin burns with beta radiation, requires long-term specialised treatment. The experience of treating this group of patients has demonstrated that the indications for bone marrow transplantation in the curable form of ARS are limited. The percentage of victims who have absolute indications for allogeneic bone marrow transplantation and in whom this procedure will lead to an improved prognosis for life is very small. Recovery of own myelopoiesis and survival are possible after whole-body irradiation from 6 to 8 Gy, which was found after rejection of haploidentical human leucocyte antigen transplantation, as well as in patients who did not use bone marrow transplantation due to the absence of a corresponding donor. Patients who have undergone ARS need lifelong medical supervision and the provision of necessary medical care.


Acute Radiation Syndrome , Chernobyl Nuclear Accident , Acute Radiation Syndrome/therapy , Bone Marrow Transplantation , Gamma Rays , Humans , Nuclear Power Plants
12.
J Radiat Res ; 62(5): 752-763, 2021 Sep 13.
Article En | MEDLINE | ID: mdl-34308479

The USA has experienced one large-scale nuclear incident in its history. Lessons learned during the Three-Mile Island nuclear accident provided government planners with insight into property damage resulting from a low-level release of radiation, and an awareness concerning how to prepare for future occurrences. However, if there is an incident resulting from detonation of an improvised nuclear device or state-sponsored device/weapon, resulting casualties and the need for medical treatment could overwhelm the nation's public health system. After the Cold War ended, government investments in radiation preparedness declined; however, the attacks on 9/11 led to re-establishment of research programs to plan for the possibility of a nuclear incident. Funding began in earnest in 2004, to address unmet research needs for radiation biomarkers, devices and products to triage and treat potentially large numbers of injured civilians. There are many biodosimetry approaches and medical countermeasures (MCMs) under study and in advanced development, including those to address radiation-induced injuries to organ systems including bone marrow, the gastrointestinal (GI) tract, lungs, skin, vasculature and kidneys. Biomarkers of interest in determining level of radiation exposure and susceptibility of injury include cytogenetic changes, 'omics' technologies and other approaches. Four drugs have been approved by the US Food and Drug Administration (FDA) for the treatment of acute radiation syndrome (ARS), with other licensures being sought; however, there are still no cleared devices to identify radiation-exposed individuals in need of treatment. Although many breakthroughs have been made in the efforts to expand availability of medical products, there is still work to be done.


Disaster Planning/organization & administration , Disasters , Public Health Administration , Radioactive Hazard Release , Acute Radiation Syndrome/etiology , Acute Radiation Syndrome/therapy , Animals , Armed Conflicts , Biomarkers , Device Approval , Disaster Planning/economics , Disaster Planning/legislation & jurisprudence , Environmental Pollution , Humans , Internationality , Nuclear Power Plants , Public Health , Public-Private Sector Partnerships , Radiation Injuries, Experimental/therapy , Radiation-Protective Agents/therapeutic use , Radioisotopes/pharmacokinetics , Radiometry , Research/legislation & jurisprudence , Terrorism , United States , War-Related Injuries/therapy
13.
Stem Cells Transl Med ; 10(7): 1095-1114, 2021 07.
Article En | MEDLINE | ID: mdl-33724714

Acute radiation syndrome (ARS) is the radiation toxicity that can affect the hematopoietic, gastrointestinal, and nervous systems upon accidental radiation exposure within a short time. Currently, there are no effective and safe approaches to treat mass population exposure to ARS. Our study aimed to evaluate the therapeutic potential of allogeneic adipose-derived stem cells (ASCs) for total body irradiation (TBI)-induced ARS and understand the underlying mitigation mechanism. We employed 9.25 Gy TBI dose to C57BL/6 mice and studied the effect of allogeneic ASCs on mice survival and regeneration of the hematopoietic system. Our results indicate that intraperitoneal-injected ASCs migrated to the bone marrow, rescued hematopoiesis, and improved the survival of irradiated mice. Our transwell coculture results confirmed the migration of ASCs to irradiated bone marrow and rescue hematopoietic activity. Furthermore, contact coculture of ASCs improved the survival and hematopoiesis of irradiated bone marrow in vitro. Irradiation results in DNA damage, upregulation of inflammatory signals, and apoptosis in bone marrow cells, while coculture with ASCs reduces apoptosis via activation of DNA repair and the antioxidation system. Upon exposure to irradiated bone marrow cells, ASCs secrete prosurvival and hematopoietic factors, such as GM-CSF, MIP1α, MIP1ß, LIX, KC, 1P-10, Rantes, IL-17, MCSF, TNFα, Eotaxin, and IP-10, which reduces oxidative stress and rescues damaged bone marrow cells from apoptosis. Our findings suggest that allogeneic ASCs therapy is effective in mitigating TBI-induced ARS in mice and may be beneficial for clinical adaptation to treat TBI-induced toxicities. Further studies will help to advocate the scale-up and adaptation of allogeneic ASCs as the radiation countermeasure.


Acute Radiation Syndrome , Apoptosis , Bone Marrow Cells/radiation effects , Hematopoietic Stem Cell Transplantation , Acute Radiation Syndrome/therapy , Adipose Tissue/cytology , Animals , Hematopoiesis , Mice , Mice, Inbred C57BL
14.
Health Phys ; 120(4): 400-409, 2021 04 01.
Article En | MEDLINE | ID: mdl-33315652

ABSTRACT: A suite of software tools has been developed for dose estimation (BAT, WinFRAT) and prediction of acute health effects (WinFRAT, H-Module) using clinical symptoms and/or changes in blood cell counts. We constructed a database of 191 ARS cases using the METREPOL (n = 167) and the SEARCH-database (n = 24). The cases ranged from unexposed (RC0), to mild (RC1), moderate (RC2), severe (RC3), and lethal ARS (RC4). From 2015-2019, radiobiology students and participants of two NATO meetings predicted clinical outcomes (RC, H-ARS, and hospitalization) based on clinical symptoms. We evaluated the prediction outcomes using the same input datasets with a total of 32 teams and 94 participants. We found that: (1) unexposed (RC0) and mildly exposed individuals (RC1) could not be discriminated; (2) the severity of RC2 and RC3 were systematically overestimated, but almost all lethal cases (RC4) were correctly predicted; (3) introducing a prior education component for non-physicians significantly increased the correct predictions of RC, ARS, and hospitalization by around 10% (p<0.005) with a threefold reduction in variance and a halving of the evaluation time per case; (4) correct outcome prediction was independent of the software tools used; and (5) comparing the dose estimates generated by the teams with H-ARS severity reflected known limitations of dose alone as a surrogate for H-ARS severity. We found inexperienced personnel can use software tools to make accurate diagnostic and treatment recommendations with up to 98% accuracy. Educational training improved the quality of decision making and enabled participants lacking a medical background to perform comparably to experts.


Acute Radiation Syndrome , Acute Radiation Syndrome/diagnosis , Acute Radiation Syndrome/etiology , Acute Radiation Syndrome/therapy , Databases, Factual , Hospitalization , Humans , Radiobiology/education , Software
15.
Med Hypotheses ; 146: 110430, 2021 Jan.
Article En | MEDLINE | ID: mdl-33279325

Almost three decades ago Dr. Nikolaev and co-authors reported a remarkable finding that a single-course low-volume hemoperfusion through uncoated spherical activated carbon led to a significant increase in survival of dogs acutely irradiated with X-rays of the dose of 5.25 Gy (Artif. Organs. 1993; 17: 362-8). In those studies, the adsorptive detoxification, which is characteristic for carbon adsorbents, was less likely to play a predominant role in radioprotection, thus prompting the authors to assume that some other, unknown, mechanisms were involved. This article is aimed to interpret the radioprotective effect of activated carbon, based on the mounting evidence that it is capable of reducing the oxidative stress and promoting the recovery in various tissues and organs (including hematopoietic) with an active involvement of relatively radioresistant tissue-resident macrophages.


Acute Radiation Syndrome , Hemoperfusion , Radiation-Protective Agents , Acute Radiation Syndrome/therapy , Adsorption , Animals , Charcoal , Dogs , Oxidative Stress , Radiation-Protective Agents/therapeutic use
16.
Int J Radiat Biol ; 97(sup1): S88-S99, 2021.
Article En | MEDLINE | ID: mdl-32909856

PURPOSE: Well-characterized animal models that mimic the human response to potentially lethal doses of radiation are necessary in order to assess the efficacy of candidate medical countermeasures under the criteria of the U.S. Food and Drug Administration 'Animal Rule'. Development of a model requires the determination of the radiation dose response relationship and time course of mortality and morbidity under scenarios likely to be present in the human population during mass casualty situations. These scenarios include understanding the impact of medical management on survival of the hematopoietic acute radiation syndrome (H-ARS). Little information is available to compare the impact of medical management under identical study conditions. The work presented here provides a comparison of the impact of different levels of medical management (supportive care) on the survival outcome in two large animal models: the male Gottingen minipig and the male rhesus macaque (NHP). MATERIALS AND METHODS: In the context of this comparison, limited supportive care consisted of administration of analgesics only, standard supportive care consisted of prophylactic administration of analgesics, antibiotics and fluids (minipigs) or analgesics, antibiotics, antidiarrheals, nutritional and fluid support (NHP) on a set schedule regardless of indication, and full supportive care (NHP only) consisted of analgesics, antibiotics, antidiarrheals, nutritional and fluid support, antiemetics and blood transfusions on an individual animal, trigger-to-treat regimen. Regardless of level of supportive care, minipigs were exposed to total body irradiation using a Co60 source and NHPs were exposed to total body irradiation using 6 MV photon energy. RESULTS: Based on estimated LD50 values, the inclusion of antimicrobial or broad-spectrum antibiotics provided a dose modifying factor (DMF) of 1.09 in the minipig, and by 1.15 in the NHP (standard supportive care to limited supportive care ratio. For the NHP, the administration of supportive care based on symptomology rather than a set schedule, and inclusion of blood transfusions yielded a DMF of 1.05 (full supportive care to standard supportive care ratio). Conversely, comparison of the estimated LD50 values between full supportive care and limited supportive care in the NHP provided a DMF of 1.21. CONCLUSION: The study reported here provides a comparison of the impact of antibiotic administration on radiation-induced lethality.


Acute Radiation Syndrome , Whole-Body Irradiation , Acute Radiation Syndrome/therapy , Animals , Anti-Bacterial Agents , Antidiarrheals , Disease Models, Animal , Macaca mulatta , Male , Models, Animal , Swine , Swine, Miniature , Whole-Body Irradiation/adverse effects
17.
Science ; 370(6516)2020 10 30.
Article En | MEDLINE | ID: mdl-33122357

Ionizing radiation causes acute radiation syndrome, which leads to hematopoietic, gastrointestinal, and cerebrovascular injuries. We investigated a population of mice that recovered from high-dose radiation to live normal life spans. These "elite-survivors" harbored distinct gut microbiota that developed after radiation and protected against radiation-induced damage and death in both germ-free and conventionally housed recipients. Elevated abundances of members of the bacterial taxa Lachnospiraceae and Enterococcaceae were associated with postradiation restoration of hematopoiesis and gastrointestinal repair. These bacteria were also found to be more abundant in leukemia patients undergoing radiotherapy, who also displayed milder gastrointestinal dysfunction. In our study in mice, metabolomics revealed increased fecal concentrations of microbially derived propionate and tryptophan metabolites in elite-survivors. The administration of these metabolites caused long-term radioprotection, mitigation of hematopoietic and gastrointestinal syndromes, and a reduction in proinflammatory responses.


Acute Radiation Syndrome/microbiology , Clostridiales/metabolism , Enterococcaceae/metabolism , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome , Radiation Protection , Tryptophan/metabolism , Acute Radiation Syndrome/prevention & control , Acute Radiation Syndrome/therapy , Animals , Fatty Acids, Volatile/therapeutic use , Humans , Metabolomics , Mice , Mice, Inbred C57BL , Survivors
18.
Oxid Med Cell Longev ; 2020: 8340756, 2020.
Article En | MEDLINE | ID: mdl-32855768

With the extensive utilization of radioactive materials for medical, industrial, agricultural, military, and research purposes, medical researchers are trying to identify new methods to treat acute radiation syndrome (ARS). Radiation may cause injury to different tissues and organs, but no single drug has been proven to be effective in all circumstances. Radioprotective agents are always effective if given before irradiation, but many nuclear accidents are unpredictable. Medical countermeasures that can be beneficial to different organ and tissue injuries caused by radiation are urgently needed. Cellular therapy, especially stem cell therapy, has been a promising approach in ARS. Hematopoietic stem cells (HSCs) and mesenchymal stromal cells (MSCs) are the two main kinds of stem cells which show good efficacy in ARS and have attracted great attention from researchers. There are also some limitations that need to be investigated in future studies. In recent years, there are also some novel methods of stem cells that could possibly be applied on ARS, like "drug" stem cell banks obtained from clinical grade human induced pluripotent stem cells (hiPSCs), MSC-derived products, and infusion of HSCs without preconditioning treatment, which make us confident in the future treatment of ARS. This review focuses on major scientific and clinical advances of hematopoietic stem cells and mesenchymal stromal cells on ARS.


Acute Radiation Syndrome/therapy , Hematopoietic Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Animals , Hematopoietic Stem Cell Transplantation , Humans , Mesenchymal Stem Cell Transplantation , Models, Biological
19.
Am J Transplant ; 20(8): 2044-2057, 2020 08.
Article En | MEDLINE | ID: mdl-32040239

There is an unmet medical need for radiation countermeasures that can be deployed for treatment of exposed individuals during ionizing radiation (IR) accidents or terrorism. Wharton's jelly mesenchymal stem cells (WJ-MSCs) from human umbilical cord have been shown to avoid allorecognition and induce a tissue-regenerating microenvironment, which makes them an attractive candidate for mitigating IR injury. We found that WJ-MSCs protected mice from a lethal dose of IR even when transplanted up to 24 hours after irradiation, and a combination of WJ-MSCs and antibiotic (tetracycline) could further expand the window of protection offered by WJ-MSCs. This combinatorial approach mitigated IR-induced damage to the hematopoietic and gastrointestinal system. WJ-MSCs increased the serum concentration of the cytoprotective cytokines granulocyte colony-stimulating factor (G-CSF) and IL-6 in mice. Knockdown of G-CSF and IL-6 in WJ-MSCs before injection to lethally irradiated mice or transplantation of WJ-MSCs to lethally irradiated Nrf-2 knockout mice significantly nullified the therapeutic protective efficacy. Hence, WJ-MSCs could be a potential cell-based therapy for individuals accidentally exposed to radiation.


Acute Radiation Syndrome , Mesenchymal Stem Cells , Wharton Jelly , Acute Radiation Syndrome/therapy , Animals , Cell Differentiation , Cells, Cultured , Humans , Mice , Regeneration , Umbilical Cord
20.
Int J Radiat Biol ; 96(1): 4-11, 2020 01.
Article En | MEDLINE | ID: mdl-30403905

Purpose: In the wake of a nuclear detonation, individuals with acute radiation syndrome will be a significant source of morbidity and mortality. Mathematical modeling can compare response strategies developed for real-world chaotic conditions after a nuclear blast in order to identify optimal strategies for administering effective treatment to these individuals. To maximize responders' abilities to save lives it is critical to understand how treatment efficacy is impacted by real-world conditions and levels of supportive care. To illustrate the importance of these factors, we developed a mathematical model of cytokine administration 24 h after the blast with varying levels of supportive care described in the primary literature.Conclusion: The results highlight the proportionally higher life-saving benefit of administering cytokines to individuals with a moderate to high dose of radiation exposure, compared to those with a lower dose. However, the fidelity of mathematical models is dependent on the primary data informing them. We describe the data needed to fully explore the impact of timing, dosage, and fractional benefit of cytokines and supportive care treatment in non-optimal situations that could be seen after a nuclear detonation. Studies addressing these types of knowledge gaps are essential to evaluating the relative efficacy of countermeasures to refine existing plans and help develop new strategies and priorities.


Medical Countermeasures , Nuclear Weapons , Radiation Exposure/adverse effects , Time-to-Treatment , Acute Radiation Syndrome/etiology , Acute Radiation Syndrome/metabolism , Acute Radiation Syndrome/prevention & control , Acute Radiation Syndrome/therapy , Cytokines/metabolism , Humans
...