Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 294
1.
Am J Physiol Endocrinol Metab ; 326(5): E735-E746, 2024 May 01.
Article En | MEDLINE | ID: mdl-38597830

Most studies on fat appetite have focused on long-chain triglycerides (LCTs) due to their obesogenic properties. Medium-chain triglycerides (MCTs), conversely, exhibit antiobesogenic effects; however, the regulation of MCT intake remains elusive. Here, we demonstrate that mice can distinguish between MCTs and LCTs, and the specific appetite for MCTs is governed by hepatic ß-oxidation. We generated liver-specific medium-chain acyl-CoA dehydrogenase (MCAD)-deficient (MCADL-/-) mice and analyzed their preference for MCT and LCT solutions using glyceryl trioctanoate (C8-TG), glyceryl tridecanoate (C10-TG), corn oil, and lard oil in two-bottle choice tests conducted over 8 days. In addition, we used lick microstructure analyses to evaluate the palatability and appetite for MCT and LCT solutions. Finally, we measured the expression levels of genes associated with fat ingestion (Galanin, Qrfp, and Nmu) in the hypothalamus 2 h after oral gavage of fat. Compared with control mice, MCADL-/- mice exhibited a significantly reduced preference for MCT solutions, with no alteration in the preference for LCTs. Lick analysis revealed that MCADL-/- mice displayed a significantly decreased appetite for MCT solutions only while the palatability of both MCT and LCT solutions remained unaffected. Hypothalamic Galanin expression in control mice was elevated by oral gavage of C8-TG but not by LCTs, and this response was abrogated in MCADL-/- mice. In summary, our data suggest that hepatic ß-oxidation is required for MCT-specific appetite but not for LCT-specific appetite. The induction of hypothalamic galanin upon MCT ingestion, dependent on hepatic ß-oxidation, could be involved in the regulation of MCT-specific appetite.NEW & NOTEWORTHY Whether and how medium-chain triglyceride (MCT) intake is regulated remains unknown. Here, we showed that mice can discriminate between MCTs and LCTs. Hepatic ß-oxidation participates in MCT-specific appetite, and hypothalamic galanin may be one of the factors that regulate MCT intake. Because of the antiobesity effects of MCTs, studying MCT-specific appetite may help combat obesity by promoting the intake of MCTs instead of LCTs.


Acyl-CoA Dehydrogenase , Appetite , Fatty Acids , Liver , Mice, Knockout , Oxidation-Reduction , Triglycerides , Animals , Triglycerides/metabolism , Mice , Oxidation-Reduction/drug effects , Liver/metabolism , Liver/drug effects , Male , Fatty Acids/metabolism , Appetite/drug effects , Appetite/physiology , Acyl-CoA Dehydrogenase/metabolism , Acyl-CoA Dehydrogenase/genetics , Mice, Inbred C57BL , Hypothalamus/metabolism , Hypothalamus/drug effects
2.
Sci Rep ; 14(1): 9533, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664460

Clear cell renal cell carcinoma (ccRCC) represents a highly frequent renal cancer subtype. However, medium-chain acyl-CoA dehydrogenase (ACADM) encodes an important enzyme responsible for fatty acid ß-oxidation (FAO) and its association with prognosis and immunity in cancers has rarely been reported. Therefore, the present work focused on exploring ACADM's expression and role among ccRCC cases. We used multiple public databases and showed the hypo levels of ACADM protein and mRNA within ccRCC. Additionally, we found that ACADM down-regulation showed a remarkable relation to the advanced stage, high histological grade, as well as dismal prognostic outcome. As suggested by Kaplan-Meier curve analysis, cases showing low ACADM levels displayed shorter overall survival (OS) as well as disease-free survival (DFS). Moreover, according to univariate/multivariate Cox regression, ACADM-mRNA independently predicted the prognosis of ccRCC. In addition, this work conducted immunohistochemistry for validating ACADM protein expression and its prognostic role in ccRCC samples. KEGG and GO analyses revealed significantly enriched genes related to ACADM expression during fatty acid metabolism. The low-ACADM group with more regulatory T-cell infiltration showed higher expression of immune negative regulation genes and higher TIDE scores, which might contribute to poor response to immunotherapies. In conclusion, our results confirmed that downregulated ACADM predicted a poor prognosis for ccRCC and a poor response to immunotherapy. Our results provide important data for developing immunotherapy for ccRCC.


Carcinoma, Renal Cell , Gene Expression Regulation, Neoplastic , Kidney Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/mortality , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/mortality , Prognosis , Female , Male , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Aged , Acyl-CoA Dehydrogenase/genetics , Acyl-CoA Dehydrogenase/metabolism , Kaplan-Meier Estimate
3.
Clin Biochem ; 125: 110735, 2024 Mar.
Article En | MEDLINE | ID: mdl-38401771

BACKGROUND: Multiple Acyl-CoA Dehydrogenase Deficiency (MADD), also known as Glutaric Aciduria Type II, is an exceptionally rare autosomal recessive genetic disorder that disrupts the metabolism of fatty acids, amino acids, and choline. It presents with a wide range of clinical manifestations, from severe neonatal-onset forms to milder late-onset cases, with symptoms including metabolic disturbances and muscle weakness. Jordan's anomaly is a distinctive morphological feature found in peripheral blood white cells and is typically associated with Neutral Lipid Storage Disease (NLSD). CASE REPORT: In our case report, the patient initially presented with symptoms of vomiting, abdominal pain, and altered consciousness. The presence of white cell Jordan's anomaly was detected in the blood smear. Subsequent serum tests revealed elevated levels of transaminases, creatine kinase, uric acid, and multiple acylcarnitines, while blood glucose and free carnitine levels were notably reduced. High-throughput sequencing confirmed heterozygous pathogenic variants in the electron-transferring flavoprotein dehydrogenase (ETFDH) gene, leading to the conclusive diagnosis of MADD. Following a three-month treatment regimen involving high-dose vitamin B2, coenzyme Q10, and other supportive interventions, the patient exhibited significant clinical improvement, ultimately resulting in discharge. CONCLUSION: The identification of Jordan's anomaly in a pediatric patient with late-onset MADD sheds light on its broader implications within the realm of lipid storage myopathies. The significance of this finding extends beyond its conventional association with NLSD, challenging the notion of its exclusivity. This novel observation serves as a compelling reminder of the diagnostic significance this morphological abnormality holds, potentially revolutionizing diagnostic practices within the field.


Ichthyosiform Erythroderma, Congenital , Lipid Metabolism, Inborn Errors , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Muscular Diseases , Infant, Newborn , Humans , Child , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Jordan , Amino Acids , Lipids , Mutation , Acyl-CoA Dehydrogenase/genetics
4.
Orphanet J Rare Dis ; 19(1): 72, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38365830

BACKGROUND: Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is the most common lipid storage myopathy. There are sex differences in fat metabolism and it is not known whether late-onset MADD affects men and women equally. METHODS: In this systematic review and meta-analysis, the PubMed, Embase, Web of Science, CNKI, CBM, and Wanfang databases were searched until 01/08/2023. Studies reporting sex distribution in patients with late-onset MADD were included. Two authors independently screened studies for eligibility, extracted data, and assessed risk of bias. Pre-specified outcomes of interest were the male-to-female ratio (MFR) of patients with late-onset MADD, the differences of clinical characteristics between the sexes, and factors influencing the MFR. RESULTS: Of 3379 identified studies, 34 met inclusion criteria, yielding a total of 609 late-onset MADD patients. The overall pooled percentage of males was 58% (95% CI, 54-63%) with low heterogeneity across studies (I2 = 2.99%; P = 0.42). The mean onset ages, diagnostic delay, serum creatine kinase (CK), and allelic frequencies of 3 hotspot variants in ETFDH gene were similar between male and female patients (P > 0.05). Meta-regressions revealed that ethnic group was associated with the MFR in late-onset MADD, and subgroup meta-analyses demonstrated that East-Asian patients had a higher percentage of male, lower CK, and higher proportion of hotspot variants in ETFDH gene than non-East-Asian patients (P < 0.05). CONCLUSIONS: Male patients with late-onset MADD were more common than female patients. Ethnicity was proved to be a factor influencing the MFR in late-onset MADD. These findings suggest that male sex may be a risk factor for the disease.


Iron-Sulfur Proteins , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Oxidoreductases Acting on CH-NH Group Donors , Humans , Male , Female , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/metabolism , Mutation , Delayed Diagnosis , Electron-Transferring Flavoproteins/genetics , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Acyl-CoA Dehydrogenase/genetics , Acyl-CoA Dehydrogenase/metabolism
5.
J Mol Med (Berl) ; 102(1): 95-111, 2024 Jan.
Article En | MEDLINE | ID: mdl-37987775

Diabetic cardiomyopathy describes heart disease in patients with diabetes who have no other cardiac conditions but have a higher risk of developing heart failure. Specific therapies to treat the diabetic heart are limited. A key mechanism involved in the progression of diabetic cardiomyopathy is dysregulation of cardiac energy metabolism. The aim of this study was to determine if increasing the expression of medium-chain acyl-coenzyme A dehydrogenase (MCAD; encoded by Acadm), a key regulator of fatty acid oxidation, could improve the function of the diabetic heart. Male mice were administered streptozotocin to induce diabetes, which led to diastolic dysfunction 8 weeks post-injection. Mice then received cardiac-selective adeno-associated viral vectors encoding MCAD (rAAV6:MCAD) or control AAV and were followed for 8 weeks. In the non-diabetic heart, rAAV6:MCAD increased MCAD expression (mRNA and protein) and increased Acadl and Acadvl, but an increase in MCAD enzyme activity was not detectable. rAAV6:MCAD delivery in the diabetic heart increased MCAD mRNA expression but did not significantly increase protein, activity, or improve diabetes-induced cardiac pathology or molecular metabolic and lipid markers. The uptake of AAV viral vectors was reduced in the diabetic versus non-diabetic heart, which may have implications for the translation of AAV therapies into the clinic. KEY MESSAGES: The effects of increasing MCAD in the diabetic heart are unknown. Delivery of rAAV6:MCAD increased MCAD mRNA and protein, but not enzyme activity, in the non-diabetic heart. Independent of MCAD enzyme activity, rAAV6:MCAD increased Acadl and Acadvl in the non-diabetic heart. Increasing MCAD cardiac gene expression alone was not sufficient to protect against diabetes-induced cardiac pathology. AAV transduction efficiency was reduced in the diabetic heart, which has clinical implications.


Congenital Bone Marrow Failure Syndromes , Diabetes Mellitus , Diabetic Cardiomyopathies , Lipid Metabolism, Inborn Errors , Mitochondrial Diseases , Muscular Diseases , Humans , Male , Mice , Animals , Acyl-CoA Dehydrogenase/genetics , Acyl-CoA Dehydrogenase/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/therapy , Genetic Therapy , RNA, Messenger/genetics
6.
J Biol Phys ; 50(1): 89-118, 2024 Mar.
Article En | MEDLINE | ID: mdl-38103157

Acyl-CoA dehydrogenase deficiency (ACAD) is an inherited and potentially fatal disorder with variable clinical symptoms. The relationship between pathogenicity and deleterious point mutations is investigated here in ACAD structures of short (SCAD) and medium-chain (MCAD) types. Structures and dynamic features of native and mutant forms of enzymes models were compared. A total of 2.88 µs molecular dynamics simulations were performed at four different temperatures. Total energy, RMSD, protein ligand interactions and affinity, RMSF measures, secondary structure changes, and important interactions were studied. Mutations in the three main domains of ACADs are pathogenic, while those located at linker turns are not. Mutations affect mostly tetramer formations, secondary structures, and many contacts and interactions. In R206H (MCAD mutant) which is experimentally known to cause a huge turnover decrease, the lack of a single H-bond between substrate and FAD was observed. Secondary structures showed temperature-dependent changes, and SCAD activity was found to be highly correlated to the enzyme helix 3-10 content. Finally, RMSF patterns pointed to one important loop that maintains the substrate close to the active site and is a cause of substrate wobbling upon mutation. Despite similar structure, function, and cellular location, SCAD and MCAD may have different optimum temperatures that are related to the structure taken at that specific temperature. In conclusion, new insight has been provided on the effect of various SCAD and MCAD pathogenic mutations on the structure and dynamical features of the enzymes.


Lipid Metabolism, Inborn Errors , Point Mutation , Humans , Virulence , Acyl-CoA Dehydrogenase/chemistry , Acyl-CoA Dehydrogenase/genetics , Lipid Metabolism, Inborn Errors/genetics , Protein Structure, Secondary
7.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(6): 707-713, 2023 Dec 07.
Article En, Zh | MEDLINE | ID: mdl-38105686

OBJECTIVES: To investigate the genotypes and biochemical phenotypes of neonates with abnormal metabolism of butyrylcarnitine (C4). METHODS: One hundred and twenty neonates with increased C4 levels detected by tandem mass spectrometry in the neonatal screening at Children's Hospital, Zhejiang University School of Medicine from January 2018 to June 2023 were included. The initial screening data and recalled data of C4 and C4/C3 were collected and converted into multiples of C4 reference range. Next generation sequencing was performed and the exons with adjacent 50 bp regions of ACAD8 and ACADS genes were captured by liquid phase capture technique. Variant information was obtained by bioinformatic analysis and the pathogenicity were classified according to the American College of Medical Genetics and Genomics criteria. The Wilcoxon rank sum test was used to analyze the differences in C4 levels among neonates with different variation types. RESULTS: In total, 32 variants in ACAD8 gene were detected, of which 7 variants were reported for the first time; while 41 variants of ACADS gene were detected, of which 17 variants have not been previously reported. There were 39 cases with ACAD8 biallelic variations and 3 cases with ACAD8 monoallelic variations; 34 cases with ACADS biallelic variations and 36 cases with ACADS monoallelic variations. Furthermore, 5 cases were detected with both ACAD8 and ACADS gene variations. Inter group comparison showed that the multiples of C4 reference range in initial screening and re-examination of the ACAD8 biallelic variations and ACADS biallelic variations groups were significantly higher than those of the ACADS monoallelic variations group (all P<0.01), while the multiples in the ACAD8 biallelic variations group were significantly higher than those in the ACADS biallelic variations group (all P<0.01). The multiples of C4 reference range in the initial screening greater than 1.5 times were observed in all neonates carrying ACAD8 or ACADS biallelic variations, while only 25% (9/36) in neonates carrying ACADS monoallelic variations. CONCLUSIONS: ACAD8 and/or ACADS gene variants are the main genetic causes for elevated C4 in newborns in Zhejiang region with high genotypic heterogeneity. The C4 levels of neonates with biallelic variations are significantly higher than those of neonates with monoallelic variations. The cut-off value for C4 level could be modestly elevated, which could reduce the false positive rate in tandem mass spectrometry neonatal screening.


Carnitine , Child , Humans , Infant, Newborn , Acyl-CoA Dehydrogenase/genetics , Genotype , Phenotype , Carnitine/metabolism , Mutation
8.
BMC Biol ; 21(1): 184, 2023 09 04.
Article En | MEDLINE | ID: mdl-37667308

BACKGROUND: Monogenetic inborn errors of metabolism cause a wide phenotypic heterogeneity that may even differ between family members carrying the same genetic variant. Computational modelling of metabolic networks may identify putative sources of this inter-patient heterogeneity. Here, we mainly focus on medium-chain acyl-CoA dehydrogenase deficiency (MCADD), the most common inborn error of the mitochondrial fatty acid oxidation (mFAO). It is an enigma why some MCADD patients-if untreated-are at risk to develop severe metabolic decompensations, whereas others remain asymptomatic throughout life. We hypothesised that an ability to maintain an increased free mitochondrial CoA (CoASH) and pathway flux might distinguish asymptomatic from symptomatic patients. RESULTS: We built and experimentally validated, for the first time, a kinetic model of the human liver mFAO. Metabolites were partitioned according to their water solubility between the bulk aqueous matrix and the inner membrane. Enzymes are also either membrane-bound or in the matrix. This metabolite partitioning is a novel model attribute and improved predictions. MCADD substantially reduced pathway flux and CoASH, the latter due to the sequestration of CoA as medium-chain acyl-CoA esters. Analysis of urine from MCADD patients obtained during a metabolic decompensation showed an accumulation of medium- and short-chain acylcarnitines, just like the acyl-CoA pool in the MCADD model. The model suggested some rescues that increased flux and CoASH, notably increasing short-chain acyl-CoA dehydrogenase (SCAD) levels. Proteome analysis of MCADD patient-derived fibroblasts indeed revealed elevated levels of SCAD in a patient with a clinically asymptomatic state. This is a rescue for MCADD that has not been explored before. Personalised models based on these proteomics data confirmed an increased pathway flux and CoASH in the model of an asymptomatic patient compared to those of symptomatic MCADD patients. CONCLUSIONS: We present a detailed, validated kinetic model of mFAO in human liver, with solubility-dependent metabolite partitioning. Personalised modelling of individual patients provides a novel explanation for phenotypic heterogeneity among MCADD patients. Further development of personalised metabolic models is a promising direction to improve individualised risk assessment, management and monitoring for inborn errors of metabolism.


Lipid Metabolism, Inborn Errors , Lipid Metabolism , Humans , Acyl-CoA Dehydrogenase/genetics , Coenzyme A , Lipid Metabolism, Inborn Errors/genetics
9.
Mol Genet Metab ; 140(3): 107689, 2023 11.
Article En | MEDLINE | ID: mdl-37660571

Triheptanoin (triheptanoylglycerol) has shown value as anaplerotic therapy for patients with long chain fatty acid oxidation disorders but is contraindicated in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. In search for anaplerotic therapy for patients with MCAD deficiency, fibroblasts from three patients homozygous for the most common mutation, ACADMG985A/G985A, were treated with fatty acids hypothesized not to require MCAD for their metabolism, including heptanoic (C7; the active component of triheptanoin), 2,6-dimethylheptanoic (dMC7), 6-amino-2,4-dimethylheptanoic (AdMC7), or 4,8-dimethylnonanoic (dMC9) acids. Their effectiveness as anaplerotic fatty acids was assessed in live cells by monitoring changes in cellular oxygen consumption rate (OCR) and mitochondrial protein lysine succinylation, which reflects cellular succinyl-CoA levels, using immunofluorescence (IF) staining. Krebs cycle intermediates were also quantitated in these cells using targeted metabolomics. The four fatty acids induced positive changes in OCR parameters, consistent with their oxidative catalysis and utilization. Increases in cellular IF staining of succinylated lysines were observed, indicating that the fatty acids were effective sources of succinyl-CoA in the absence of media glucose, pyruvate, and lipids. The ability of MCAD deficient cells to metabolize C7 was confirmed by the ability of extracts to enzymatically utilize C7-CoA as substrate but not C8-CoA. To evaluate C7 therapeutic potential in vivo, Acadm-/- mice were treated with triheptanoin for seven days. Dose dependent increase in plasma levels of heptanoyl-, valeryl-, and propionylcarnitine indicated efficient metabolism of the medication. The pattern of the acylcarnitine profile paralleled resolution of liver pathology including reversing hepatic steatosis, increasing hepatic glycogen content, and increasing hepatocyte protein succinylation, all indicating improved energy homeostasis in the treated mice. These results provide the impetus to evaluate triheptanoin and the medium branched chain fatty acids as potential therapeutic agents for patients with MCAD deficiency.


Acyl-CoA Dehydrogenases , Lipid Metabolism, Inborn Errors , Humans , Animals , Mice , Acyl-CoA Dehydrogenase/genetics , Lipid Metabolism, Inborn Errors/drug therapy , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/metabolism , Fatty Acids/metabolism , Liver/metabolism , Acyl-CoA Dehydrogenases/genetics
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(7): 787-794, 2023 Jul 10.
Article Zh | MEDLINE | ID: mdl-37368378

OBJECTIVE: To explore the clinical and genetic characteristics of four patients with medium-chain acyl-CoA dehydrogenase deficiency (MCADD). METHODS: Four children who had presented at the Children's Hospital Affiliated to Zhengzhou University between August 2019 and August 2021 were selected as the study subjects. Clinical data of the children were collected. The children were subjected to whole exome sequencing (WES). RESULTS: All of the four children were diagnosed with MCADD. Blood amino acid and ester acyl carnitine spectrum test showed that the concentration of octanoyl carnitine (C8) was significantly increased. The main clinical manifestations included poor mental response (3 cases), intermittent diarrhea with abdominal pain (1 case), vomiting (1 case), increased transaminase (3 cases), and metabolic acidosis (2 cases). Five variants were identified by genetic testing, among which c.341A>G (p.Y114C) was unreported previously. Three were missense variants, one was frameshift variant and one was splicing variant. CONCLUSION: The clinical heterogeneity of MCADD is obvious, and the severity of the disease may vary. WES can assist with the diagnosis. Delineation of the clinical symptoms and genetic characteristics of the disease can facilitate early diagnosis and treatment of the disease.


Lipid Metabolism, Inborn Errors , Neonatal Screening , Child , Humans , Acyl-CoA Dehydrogenase/genetics , Carnitine , Genetic Testing , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics
11.
Int J Biol Sci ; 19(7): 2114-2131, 2023.
Article En | MEDLINE | ID: mdl-37151879

Emerging studies have revealed matrix stiffness promotes hepatocellular carcinoma (HCC) development. We studied metabolic dysregulation in HCC using the TCGA-LIHC database (n=374) and GEO datasets (GSE14520). HCC samples were classified into three heterogeneous metabolic pathway subtypes with different metabolic profiles: Cluster 1, an ECM-producing subtype with upregulated glycan metabolism; Cluster 2, a hybrid subtype with partial pathway dysregulation. Cluster 3, a lipogenic subtype with upregulated lipid metabolism; These three subtypes have different prognosis, clinical features and genomic alterations. We identified key enzymes that respond to matrix stiffness and regulate lipid metabolism through bioinformatic analysis. We found long-chain acyl-CoA dehydrogenase (ACADL) is a mechanoreactive enzyme that reprograms HCC cell lipid metabolism in response to extracellular matrix stiffness. ACADL is also regarded as tumor suppressor in HCC. We found that increased extracellular matrix stiffness led to activation of Yes-associated protein (YAP) and the YAP/TEA Domain transcription factor 4 (TEAD4) transcriptional complex was able to directly repress ACADL at the transcriptional level. The ACADL-dependent mechanoresponsive pathway is a potential therapeutic target for HCC treatment.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Lipid Metabolism/genetics , Acyl-CoA Dehydrogenase/genetics , Acyl-CoA Dehydrogenase/metabolism , Adaptor Proteins, Signal Transducing/metabolism , YAP-Signaling Proteins , Cell Line, Tumor , Phosphoproteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , TEA Domain Transcription Factors
12.
Hum Mol Genet ; 32(14): 2347-2356, 2023 07 04.
Article En | MEDLINE | ID: mdl-37162351

Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common inherited disorder of mitochondrial fatty acid ß-oxidation (FAO) in humans. Patients exhibit clinical episodes often associated with fasting. Symptoms include hypoketotic hypoglycemia and Reye-like episodes. With limited treatment options, we explored the use of human MCAD (hMCAD) mRNA in fibroblasts from patients with MCAD deficiency to provide functional MCAD protein and reverse the metabolic block. Transfection of hMCAD mRNA into MCAD- deficient patient cells resulted in an increased MCAD protein that localized to mitochondria, concomitant with increased enzyme activity in cell extracts. The therapeutic hMCAD mRNA-lipid nanoparticle (LNP) formulation was also tested in vivo in Acadm-/- mice. Administration of multiple intravenous doses of the hMCAD mRNA-LNP complex (LNP-MCAD) into Acadm-/- mice produced a significant level of MCAD protein with increased enzyme activity in liver, heart and skeletal muscle homogenates. Treated Acadm-/- mice were more resistant to cold stress and had decreased plasma levels of medium-chain acylcarnitines compared to untreated animals. Furthermore, hepatic steatosis in the liver from treated Acadm-/- mice was reduced compared to untreated ones. Results from this study support the potential therapeutic value of hMCAD mRNA-LNP complex treatment for MCAD deficiency.


Acyl-CoA Dehydrogenases , Fibroblasts , Humans , Mice , Animals , Acyl-CoA Dehydrogenase/genetics , Acyl-CoA Dehydrogenase/metabolism , RNA, Messenger/genetics , Disease Models, Animal , Fibroblasts/metabolism
13.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166766, 2023 10.
Article En | MEDLINE | ID: mdl-37257730

Medium chain acyl-CoA dehydrogenase (MCAD) deficiency (MCADD) is associated with ACADM gene mutations, leading to an impaired function and/or structure of MCAD. Importantly, after import into the mitochondria, MCAD must incorporate a molecule of flavin adenine dinucleotide (FAD) per subunit and assemble into tetramers. However, the effect of MCAD amino acid substitutions on FAD incorporation has not been investigated. Herein, the commonest MCAD variant (p.K304E) and 11 additional rare variants (p.Y48C, p.R55G, p.A88P, p.Y133C, p.A140T, p.D143V, p.G224R, p.L238F, p.V264I, p.Y372N, and p.G377V) were functionally and structurally characterized. Half of the studied variants presented a FAD content <65 % compared to the wild-type. Most of them were recovered as tetramers, except the p.Y372N (mainly as dimers). No correlation was found between the levels of tetramers and FAD content. However, a correlation between FAD content and the cofactor's affinity, proteolytic stability, thermostability, and thermal inactivation was established. We showed that the studied amino acid changes in MCAD may alter the substrate chain-length dependence and the interaction with electron-transferring-flavoprotein (ETF) necessary for a proper functioning electron transfer thus adding additional layers of complexity to the pathological effect of ACADM missense mutations. Although the majority of the variant MCADs presented an impaired capacity to retain FAD during their synthesis, some of them were structurally rescued by cofactor supplementation, suggesting that in the mitochondrial environment the levels and activity of those variants may be dependent of FAD's availability thus contributing for the heterogeneity of the MCADD phenotype found in patients presenting the same genotype.


Flavin-Adenine Dinucleotide , Mutation, Missense , Humans , Acyl-CoA Dehydrogenase/genetics , Acyl-CoA Dehydrogenase/metabolism , Flavin-Adenine Dinucleotide/metabolism , Mutation
14.
BMJ Case Rep ; 16(5)2023 May 22.
Article En | MEDLINE | ID: mdl-37217231

Multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare inborn error of metabolism that results in impairment of mitochondrial ß-oxidation of fatty acids. It is inherited in an autosomal recessive manner and impairs electron transfer in the electron transport chain. The clinical manifestations of MADD are highly variable and include exercise intolerance, myopathy, cardiomyopathy, encephalopathy, coma and death. Early-onset MADD is often associated with a high mortality with significant number of patients presenting with severe metabolic acidosis, non-ketotic hypoglycaemia and/or hyperammonaemic presentations. While late-onset MADD is suggested to have a lower mortality, the severe encephalopathic presentations may well be under-reported as a diagnosis of MADD may not be considered.MADD is treatable with riboflavin and appropriate nutrition with a focus on prevention and early management of metabolic decompensation. The neonatal phenotype differs significantly from late-onset MADD, where diagnosis may be delayed due to heterogeneity in clinical features, atypical presentation and confounding comorbidities, together with lower awareness among physicians.This report describes a woman in her 30s who presented with acute-onset ataxia, confusion and hyperammonaemic encephalopathy requiring intubation. Subsequent biochemical investigation revealed a diagnosis of MADD. At present, there are no national guidelines in Australia for the management of MADD. This case highlights the investigation and treatment of late-onset MADD.


Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Female , Humans , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/complications , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Electron-Transferring Flavoproteins/genetics , Riboflavin/therapeutic use , Australia , Acyl-CoA Dehydrogenase/genetics , Mutation
15.
J Biomed Inform ; 141: 104345, 2023 05.
Article En | MEDLINE | ID: mdl-36958462

Stroke is the second largest cause of mortality in the world. Genome-wide association studies (GWAS) have identified some genetic variants associated with stroke risk, but their putative functional causal genes are unknown. Hence, we aimed to identify putative functional causal gene biomarkers of stroke risk. We used a summary-based Mendelian randomisation (SMR) approach to identify the pleiotropic associations of genetically regulated traits (i.e., gene expression and DNA methylation) with stroke risk. Using SMR approach, we integrated cis-expression quantitative loci (cis-eQTLs) and cis-methylation quantitative loci (cis-mQTLs) data with GWAS summary statistics of stroke. We also utilised heterogeneity in dependent instruments (HEIDI) test to distinguish pleiotropy from linkage from the observed associations identified through SMR analysis. Our integrative SMR analyses and HEIDI test revealed 45 candidate biomarker genes (FDR < 0.05; PHEIDI > 0.01) that were pleiotropically or potentially causally associated with stroke risk. Of those candidate biomarker genes, 10 genes (HTRA1, PMF1, FBN2, C9orf84, COL4A1, BAG4, NEK6, SH2B3, SH3PXD2A, ACAD10) were differentially expressed in genome-wide blood transcriptomics data from stroke and healthy individuals (FDR < 0.05). Functional enrichment analysis of the identified candidate biomarker genes revealed gene ontologies and pathways involved in stroke, including "cell aging", "metal ion binding" and "oxidative damage". Based on the evidence of genetically regulated expression of genes through SMR and directly measured expression of genes in blood, our integrative analysis suggests ten genes as blood biomarkers of stroke risk. Furthermore, our study provides a better understanding of the influence of DNA methylation on the expression of genes linked to stroke risk.


Stroke , Systems Biology , Humans , Genome-Wide Association Study , Phenotype , Stroke/diagnosis , Stroke/genetics , Genetic Markers , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , NIMA-Related Kinases/genetics , High-Temperature Requirement A Serine Peptidase 1/genetics , Acyl-CoA Dehydrogenase/genetics
16.
Clin Genet ; 103(6): 644-654, 2023 06.
Article En | MEDLINE | ID: mdl-36840705

Biallelic variants in the ACADM gene cause medium-chain acyl-CoA dehydrogenase deficiency (MCADD). This study reports on differences in the occurrence of secondary free carnitine (C0) deficiency and different biochemical phenotypes related to genotype and age in 109 MCADD patients followed-up at a single tertiary care center during 22 years. C0 deficiency occurred earlier and more frequently in c.985A>G homozygotes (genotype A) compared to c.985A>G compound heterozygotes (genotype B) and individuals carrying variants other than c.985A>G and c.199C>T (genotype D) (median age 4.2 vs. 6.6 years; p < 0.001). No patient carrying c.199C>T (genotype C) developed C0 deficiency. A daily dosage of 20-40 mg/kg carnitine was sufficient to maintain normal C0 concentrations. Compared to genotype A as reference group, octanoylcarnitine (C8) was significantly lower in genotypes B and C, whereas C0 was significantly higher by 8.28 µmol/L in genotype C (p < 0.05). In conclusion, C0 deficiency is mainly found in patients with pathogenic genotypes associated with high concentrations of presumably toxic acylcarnitines, while individuals carrying the variant c.199C>T are spared and show consistently mild biochemical phenotypes into adulthood. Low-dose carnitine supplementation maintains normal C0 concentrations. However, future studies need to evaluate clinical benefits on acute and chronic manifestations of MCADD.


Lipid Metabolism, Inborn Errors , Neonatal Screening , Humans , Infant, Newborn , Genotype , Lipid Metabolism, Inborn Errors/genetics , Carnitine , Amino Acids , Genetic Association Studies , Acyl-CoA Dehydrogenase/chemistry , Acyl-CoA Dehydrogenase/genetics
17.
Mol Genet Metab ; 138(1): 106971, 2023 01.
Article En | MEDLINE | ID: mdl-36549199

INTRODUCTION: The clinical significance of Short-chain acyl CoA dehydrogenase deficiency (SCADD), caused by biallelic variation in the ACADS gene, is contested. Clinically ascertained individuals have a range of reported metabolic and physical symptoms. Conversely, individuals identified through newborn screening remain overwhelmingly asymptomatic. Two common ACADS variants, c.511C > T (p.Arg171Trp) and c.625G > A (p.Gly209Ser) are known to reduce enzymatic activity with undetermined clinical correlate. We applied a genome-first approach to evaluate the prevalence and clinical consequences of ACADS variants in an ancestrally diverse and unselected patient population. MATERIAL AND METHODS: We used exome sequence data linked to electronic health records (EHRs) to identify clinically relevant ACADS variants, and estimate their prevalence and clinical implications in 27,447 ancestrally diverse and unrelated adults from the BioMe Biobank in New York, NY. We extracted International Classification of Diseases, ninth (ICD-9) and tenth (ICD-10) revision codes corresponding to eight SCADD-associated phenotypes relevant to adults from participants' EHRs. Phenotypes included intellectual disability, behavioral disorders with onset in childhood, epilepsy or seizure disorders, hypoglycemia, muscle weakness, metabolic acidosis, fatty liver, and a diagnosis of SCADD or disorder of fatty acid oxidation. We performed manual chart reviews for individuals homozygous for rare pathogenic variants. Multivariate logistic regression was used to determine the association between clinically relevant ACADS variants and phenotypes of interest. RESULTS: 1 in 10,000 BioMe participants were homozygous for rare pathogenic variants (PVs) in ACADS, 1 in 20 were homozygous or presumed compound heterozygous for common variants (CVs), and 1 in 300 harbored both a PV and a CV. Of the 2035 variant positive individuals, none had a documented diagnosis of SCADD. We identified five PV/PV positive individuals, none of whom had evidence of symptomatic SCADD on manual chart review. CV/CV positive and CV/PV positive individuals did not have increased odds of any of the eight ACADS phenotypes evaluated compared to variant negative individuals (OR for CV/CV 0.99, 95% CI 0.86-1.1, p = .88; OR for CV/PV OR 1.49, 95% CI 0.87-2.6, p = .15). CONCLUSIONS: The prevalence of clinically relevant ACADS variants in an unselected population was higher than previously reported SCADD prevalence of 1 in 35,000 in the United States. Clinically relevant variants in ACADS were not associated with evidence of metabolic disease in a large and ancestrally diverse adult population. These findings support the assertion that SCADD is more likely a biochemical entity without clinical correlate, in particular when caused by one or more common variants.


Lipid Metabolism, Inborn Errors , Humans , Infant, Newborn , Lipid Metabolism, Inborn Errors/genetics , Phenotype , Neonatal Screening , Homozygote , Acyl-CoA Dehydrogenase/genetics
18.
Endocrinol Diabetes Metab ; 6(1): e385, 2023 01.
Article En | MEDLINE | ID: mdl-36300606

INTRODUCTION: Medium-Chain Acyl-CoA Dehydrogenase Deficiency (MCADD) is the most common inherited metabolic disorder of ß-oxidation. Patients with MCADD present with hypoketotic hypoglycemia, which may quickly progress to lethargy, coma, and death. Prognosis for MCADD patients is highly promising once a diagnosis has been established, though management strategies may vary depending on the severity of illness and the presence of comorbidities. METHODS AND RESULTS: Given the rapid developments in the world of gene therapy and implementation of newborn screening for inherited metabolic disorders, the provision of concise and contemporary knowledge of MCADD is essential for clinicians to effectively manage patients. Thus, this review aims to consolidate current information for physicians on the pathogenesis, diagnostic tools, and treatment options for MCADD patients. CONCLUSION: MCADD is a commonly inherited metabolic disease with serious implications for health outcomes, particularly in children, that may be successfully managed with proper intervention.


Hypoglycemia , Lipid Metabolism, Inborn Errors , Infant, Newborn , Child , Humans , Acyl-CoA Dehydrogenase/genetics , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/therapy , Lipid Metabolism, Inborn Errors/complications , Neonatal Screening/adverse effects , Hypoglycemia/diagnosis , Hypoglycemia/etiology , Hypoglycemia/therapy
19.
Article En | WPRIM | ID: wpr-1009940

OBJECTIVES@#To investigate the genotypes and biochemical phenotypes of neonates with abnormal metabolism of butyrylcarnitine (C4).@*METHODS@#One hundred and twenty neonates with increased C4 levels detected by tandem mass spectrometry in the neonatal screening at Children's Hospital, Zhejiang University School of Medicine from January 2018 to June 2023 were included. The initial screening data and recalled data of C4 and C4/C3 were collected and converted into multiples of C4 reference range. Next generation sequencing was performed and the exons with adjacent 50 bp regions of ACAD8 and ACADS genes were captured by liquid phase capture technique. Variant information was obtained by bioinformatic analysis and the pathogenicity were classified according to the American College of Medical Genetics and Genomics criteria. The Wilcoxon rank sum test was used to analyze the differences in C4 levels among neonates with different variation types.@*RESULTS@#In total, 32 variants in ACAD8 gene were detected, of which 7 variants were reported for the first time; while 41 variants of ACADS gene were detected, of which 17 variants have not been previously reported. There were 39 cases with ACAD8 biallelic variations and 3 cases with ACAD8 monoallelic variations; 34 cases with ACADS biallelic variations and 36 cases with ACADS monoallelic variations. Furthermore, 5 cases were detected with both ACAD8 and ACADS gene variations. Inter group comparison showed that the multiples of C4 reference range in initial screening and re-examination of the ACAD8 biallelic variations and ACADS biallelic variations groups were significantly higher than those of the ACADS monoallelic variations group (all P<0.01), while the multiples in the ACAD8 biallelic variations group were significantly higher than those in the ACADS biallelic variations group (all P<0.01). The multiples of C4 reference range in the initial screening greater than 1.5 times were observed in all neonates carrying ACAD8 or ACADS biallelic variations, while only 25% (9/36) in neonates carrying ACADS monoallelic variations.@*CONCLUSIONS@#ACAD8 and/or ACADS gene variants are the main genetic causes for elevated C4 in newborns in Zhejiang region with high genotypic heterogeneity. The C4 levels of neonates with biallelic variations are significantly higher than those of neonates with monoallelic variations. The cut-off value for C4 level could be modestly elevated, which could reduce the false positive rate in tandem mass spectrometry neonatal screening.


Child , Humans , Infant, Newborn , Acyl-CoA Dehydrogenase/genetics , Genotype , Phenotype , Carnitine/metabolism , Mutation
20.
Article Zh | WPRIM | ID: wpr-981824

OBJECTIVE@#To explore the clinical and genetic characteristics of four patients with medium-chain acyl-CoA dehydrogenase deficiency (MCADD).@*METHODS@#Four children who had presented at the Children's Hospital Affiliated to Zhengzhou University between August 2019 and August 2021 were selected as the study subjects. Clinical data of the children were collected. The children were subjected to whole exome sequencing (WES).@*RESULTS@#All of the four children were diagnosed with MCADD. Blood amino acid and ester acyl carnitine spectrum test showed that the concentration of octanoyl carnitine (C8) was significantly increased. The main clinical manifestations included poor mental response (3 cases), intermittent diarrhea with abdominal pain (1 case), vomiting (1 case), increased transaminase (3 cases), and metabolic acidosis (2 cases). Five variants were identified by genetic testing, among which c.341A>G (p.Y114C) was unreported previously. Three were missense variants, one was frameshift variant and one was splicing variant.@*CONCLUSION@#The clinical heterogeneity of MCADD is obvious, and the severity of the disease may vary. WES can assist with the diagnosis. Delineation of the clinical symptoms and genetic characteristics of the disease can facilitate early diagnosis and treatment of the disease.


Child , Humans , Acyl-CoA Dehydrogenase/genetics , Carnitine , Genetic Testing , Lipid Metabolism, Inborn Errors/genetics , Neonatal Screening
...