Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Nat Commun ; 12(1): 5812, 2021 10 04.
Article En | MEDLINE | ID: mdl-34608164

The advantage of locally applied anesthetics is that they are not associated with the many adverse effects, including addiction liability, of systemically administered analgesics. This therapeutic approach has two inherent pitfalls: specificity and a short duration of action. Here, we identified nociceptor endocytosis as a promising target for local, specific, and long-lasting treatment of inflammatory pain. We observed preferential expression of AP2α2, an α-subunit isoform of the AP2 complex, within CGRP+/IB4- nociceptors in rodents and in CGRP+ dorsal root ganglion neurons from a human donor. We utilized genetic and pharmacological approaches to inhibit nociceptor endocytosis demonstrating its role in the development and maintenance of acute and chronic inflammatory pain. One-time injection of an AP2 inhibitor peptide significantly reduced acute and chronic pain-like behaviors and provided prolonged analgesia. We evidenced sexually dimorphic recovery responses to this pharmacological approach highlighting the importance of sex differences in pain development and response to analgesics.


Calcitonin Gene-Related Peptide/metabolism , Chronic Pain/drug therapy , Endocytosis/drug effects , Nociceptors/drug effects , Adaptor Protein Complex 2/antagonists & inhibitors , Adaptor Protein Complex 2/genetics , Adaptor Protein Complex 2/metabolism , Adaptor Protein Complex alpha Subunits/antagonists & inhibitors , Adaptor Protein Complex alpha Subunits/genetics , Adaptor Protein Complex alpha Subunits/metabolism , Animals , Chronic Pain/metabolism , Chronic Pain/physiopathology , Epidermis/innervation , Female , Ganglia, Spinal/metabolism , Humans , Inflammation , Male , Mice , Neurons, Afferent/drug effects , Neurons, Afferent/metabolism , Nociceptors/metabolism , Nociceptors/physiology , Peptides/administration & dosage , Peptides/metabolism , Peptides/pharmacology , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology
2.
Blood ; 119(11): 2510-22, 2012 Mar 15.
Article En | MEDLINE | ID: mdl-22174158

The stem cell-intrinsic model of self-renewal via asymmetric cell division (ACD) posits that fate determinants be partitioned unequally between daughter cells to either activate or suppress the stemness state. ACD is a purported mechanism by which hematopoietic stem cells (HSCs) self-renew, but definitive evidence for this cellular process remains open to conjecture. To address this issue, we chose 73 candidate genes that function within the cell polarity network to identify potential determinants that may concomitantly alter HSC fate while also exhibiting asymmetric segregation at cell division. Initial gene-expression profiles of polarity candidates showed high and differential expression in both HSCs and leukemia stem cells. Altered HSC fate was assessed by our established in vitro to in vivo screen on a subcohort of candidate polarity genes, which revealed 6 novel positive regulators of HSC function: Ap2a2, Gpsm2, Tmod1, Kif3a, Racgap1, and Ccnb1. Interestingly, live-cell videomicroscopy of the endocytic protein AP2A2 shows instances of asymmetric segregation during HSC/progenitor cell cytokinesis. These results contribute further evidence that ACD is functional in HSC self-renewal, suggest a role for Ap2a2 in HSC activity, and provide a unique opportunity to prospectively analyze progeny from HSC asymmetric divisions.


Adaptor Protein Complex 2/metabolism , Adaptor Protein Complex alpha Subunits/metabolism , Asymmetric Cell Division/physiology , Cell Polarity/genetics , Endocytosis/genetics , Hematopoietic Stem Cells/cytology , Neoplastic Stem Cells/pathology , Stem Cells/cytology , Adaptor Protein Complex 2/antagonists & inhibitors , Adaptor Protein Complex 2/genetics , Adaptor Protein Complex alpha Subunits/antagonists & inhibitors , Adaptor Protein Complex alpha Subunits/genetics , Animals , Biomarkers/metabolism , Blotting, Western , Cell Differentiation , Cell Lineage , Cell Proliferation , Flow Cytometry , Gene Expression Profiling , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/physiology , Leukemia/metabolism , Leukemia/pathology , Mice , Neoplastic Stem Cells/metabolism , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Stem Cells/physiology
3.
J Cell Biol ; 185(1): 129-45, 2009 Apr 06.
Article En | MEDLINE | ID: mdl-19349583

Phosphatidic acid (PA) is postulated to have both structural and signaling functions during membrane dynamics in animal cells. In this study, we show that before a critical time period during rhabdomere biogenesis in Drosophila melanogaster photoreceptors, elevated levels of PA disrupt membrane transport to the apical domain. Lipidomic analysis shows that this effect is associated with an increase in the abundance of a single, relatively minor molecular species of PA. These transport defects are dependent on the activation state of Arf1. Transport defects via PA generated by phospholipase D require the activity of type I phosphatidylinositol (PI) 4 phosphate 5 kinase, are phenocopied by knockdown of PI 4 kinase, and are associated with normal endoplasmic reticulum to Golgi transport. We propose that PA levels are critical for apical membrane transport events required for rhabdomere biogenesis.


Drosophila melanogaster/ultrastructure , Phosphatidic Acids/metabolism , Photoreceptor Cells/ultrastructure , 1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , 1-Phosphatidylinositol 4-Kinase/physiology , ADP-Ribosylation Factor 1/physiology , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/physiology , Adaptor Protein Complex alpha Subunits/antagonists & inhibitors , Adaptor Protein Complex alpha Subunits/physiology , Animals , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Diacylglycerol Cholinephosphotransferase/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Dynamins/genetics , Dynamins/metabolism , Dynamins/physiology , Membrane Lipids/metabolism , Microscopy, Electron, Transmission , Phenotype , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/metabolism , Phospholipase D/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/physiology , Photoreceptor Cells/metabolism , Photoreceptor Cells/physiology , RNA Interference
...