Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 84
1.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article En | MEDLINE | ID: mdl-38256264

Recent works identified ClpXP, mitochondrial caseinolytic protease, as the only target of imipridones, a new class of antitumor agents. Our study of the mechanism of imipridone derivative TR-57 action in SUM159 human breast cancer cells demonstrated mitochondrial fragmentation, degradation of mitochondrial mtDNA and mitochondrial dysfunction due to inhibition of Complex I and Complex II activity. Complete inhibition of oxidative phosphorylation accompanied 90, 94, 88 and 87% decreases in the content of Complex I, II, III and IV proteins, respectively. The content of the FOF1-ATPase subunits decreased sharply by approximately 35% after 24 h and remained unchanged up to 72 h of incubation with TR-57. At the same time, a disappearance of the ATPIF1, the natural inhibitor of mitochondrial FOF1-ATPase, was observed after 24 h exposure to TR-57. ATPase inhibitor oligomycin did not affect the mitochondrial membrane potential in intact SUM159, whereas it caused a 65% decrease in TR-57-treated cells. SUM159 cells incubated with TR57 up to 72 h retained the level of proteins facilitating the ATP transfer across the mitochondrial membranes: VDAC1 expression was not affected, while expression of ANT-1/2 and APC2 increased by 20% and 40%, respectively. Thus, our results suggest that although TR-57 treatment leads to complete inhibition of respiratory chain activity of SUM159 cells, hydrolysis of cytoplasmic ATP by reversal activity of FOF1-ATPase supports mitochondrial polarization.


Mitochondria , Mitochondrial Diseases , Humans , Membrane Potential, Mitochondrial , Adenosine Triphosphatases , Adenine Nucleotide Translocator 2 , Electron Transport Complex I , Adenosine Triphosphate
2.
Int J Cancer ; 152(7): 1399-1413, 2023 04 01.
Article En | MEDLINE | ID: mdl-36346110

The mitochondrion is a gatekeeper of apoptotic processes, and mediates drug resistance to several chemotherapy agents used to treat cancer. Neuroblastoma is a common solid cancer in young children with poor clinical outcomes following conventional chemotherapy. We sought druggable mitochondrial protein targets in neuroblastoma cells. Among mitochondria-associated gene targets, we found that high expression of the mitochondrial adenine nucleotide translocase 2 (SLC25A5/ANT2), was a strong predictor of poor neuroblastoma patient prognosis and contributed to a more malignant phenotype in pre-clinical models. Inhibiting this transporter with PENAO reduced cell viability in a panel of neuroblastoma cell lines in a TP53-status-dependant manner. We identified the histone deacetylase inhibitor, suberanilohydroxamic acid (SAHA), as the most effective drug in clinical use against mutant TP53 neuroblastoma cells. SAHA and PENAO synergistically reduced cell viability, and induced apoptosis, in neuroblastoma cells independent of TP53-status. The SAHA and PENAO drug combination significantly delayed tumour progression in pre-clinical neuroblastoma mouse models, suggesting that these clinically advanced inhibitors may be effective in treating the disease.


Adenine Nucleotide Translocator 2 , Antineoplastic Agents , Histone Deacetylase Inhibitors , Hydroxamic Acids , Neuroblastoma , Animals , Mice , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Histone Deacetylase Inhibitors/pharmacology , Histones/metabolism , Hydroxamic Acids/therapeutic use , Mitochondria/metabolism , Neuroblastoma/drug therapy , Vorinostat/pharmacology , Adenine Nucleotide Translocator 2/antagonists & inhibitors
3.
Free Radic Biol Med ; 188: 312-327, 2022 08 01.
Article En | MEDLINE | ID: mdl-35714845

Adenine Nucleotide Translocator isoforms (ANTs) exchange ADP/ATP across the inner mitochondrial membrane, are also voltage-activated proton channels and regulate mitophagy and apoptosis. The ANT1 isoform predominates in heart and muscle while ANT2 is systemic. Here, we report the creation of Ant mutant mouse myoblast cell lines with normal Ant1 and Ant2 genes, deficient in either Ant1 or Ant2, and deficient in both the Ant1 and Ant2 genes. These cell lines are immortal under permissive conditions (IFN-γ + serum at 32 °C) permitting expansion but return to normal myoblasts that can be differentiated into myotubes at 37 °C. With this system we were able to complement our Ant1 mutant studies by demonstrating that ANT2 is important for myoblast to myotube differentiation and myotube mitochondrial respiration. ANT2 is also important in the regulation of mitochondrial biogenesis and antioxidant defenses. ANT2 is also associated with increased oxidative stress response and modulation for Ca++ sequestration and activation of the mitochondrial permeability transition (mtPTP) pore during cell differentiation.


Adenine Nucleotide Translocator 2 , Adenine Nucleotides , Adenine Nucleotide Translocator 2/genetics , Adenine Nucleotide Translocator 2/metabolism , Adenine Nucleotides/metabolism , Animals , Mice , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Muscle Development/genetics
4.
Molecules ; 27(3)2022 Feb 05.
Article En | MEDLINE | ID: mdl-35164336

Marine organisms are a rich source of bioactive secondary metabolites. Although many marine natural products with bioactivities have been isolated, successful elucidation of their mechanisms of action remains limited. In this study, we prepared a probe molecule based on the marine cyclic peptide kapakahine A (1) by introducing a linker with an azide terminal group, which enables the introduction of fluorescent groups for the effective monitoring of subcellular localization, or coupling to affinity beads for the pull-down of target proteins. The results of LC/MS/MS measurements, ProteinPilot analysis, and Western blotting suggest that kapakahine A interacts with the mitochondrial inner membrane proteins PHB1, PHB2, and ANT2, which is consistent with the results of the subcellular localization analysis using a fluorescent probe.


Adenine Nucleotide Translocator 2/metabolism , Aquatic Organisms/chemistry , Fluorescent Dyes/chemistry , Peptides, Cyclic/pharmacology , Prohibitins/metabolism , Animals , Cell Line , Chromatography, Liquid , Mice , Molecular Structure , Peptides, Cyclic/chemistry , Secondary Metabolism , Tandem Mass Spectrometry
5.
JCI Insight ; 6(20)2021 10 22.
Article En | MEDLINE | ID: mdl-34676827

Macrophage proinflammatory activation is an important etiologic component of the development of insulin resistance and metabolic dysfunction in obesity. However, the underlying mechanisms are not clearly understood. Here, we demonstrate that a mitochondrial inner membrane protein, adenine nucleotide translocase 2 (ANT2), mediates proinflammatory activation of adipose tissue macrophages (ATMs) in obesity. Ant2 expression was increased in ATMs of obese mice compared with lean mice. Myeloid-specific ANT2-knockout (ANT2-MKO) mice showed decreased adipose tissue inflammation and improved insulin sensitivity and glucose tolerance in HFD/obesity. At the molecular level, we found that ANT2 mediates free fatty acid-induced mitochondrial permeability transition, leading to increased mitochondrial reactive oxygen species production and damage. In turn, this increased HIF-1α expression and NF-κB activation, leading to proinflammatory macrophage activation. Our results provide a previously unknown mechanism for how obesity induces proinflammatory activation of macrophages with propagation of low-grade chronic inflammation (metaflammation).


Adenine Nucleotide Translocator 2/metabolism , Inflammation/genetics , Macrophage Activation/genetics , Obesity/genetics , Animals , Disease Models, Animal , Female , Humans , Male , Mice
6.
Sci Rep ; 11(1): 14001, 2021 07 07.
Article En | MEDLINE | ID: mdl-34234233

Long-term studies have shown that virus infection affects the energy metabolism of host cells, which mainly affects the function of mitochondria and leads to the hydrolysis of ATP in host cells, but it is not clear how virus infection participates in mitochondrial energy metabolism in host cells. In our study, HUVEC cells were infected with HSV-1, and the differentially expressed genes were obtained by microarray analysis and data analysis. The viral gene encoding protein UL16 was identified to interact with host protein ANT2 by immunoprecipitation and mass spectrometry. We also reported that UL16 transfection promoted oxidative phosphorylation of glucose and significantly increased intracellular ATP content. Furthermore, UL16 was transfected into the HUVEC cell model with mitochondrial dysfunction induced by D-Gal, and it was found that UL16 could restore the mitochondrial function of cells. It was first discovered that viral protein UL16 could enhance mitochondrial function in mammalian cells by promoting mitochondrial metabolism. This study provides a theoretical basis for the prevention and treatment of mitochondrial dysfunction or the pathological process related to mitochondrial dysfunction.


Adenine Nucleotide Translocator 2/metabolism , Energy Metabolism , Herpes Simplex/metabolism , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Mitochondria/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Biomarkers , Cell Line , Gene Expression Profiling , Herpes Simplex/genetics , Host-Pathogen Interactions/genetics , Humans , Membrane Potential, Mitochondrial , Oxidation-Reduction , Protein Binding , Reactive Oxygen Species/metabolism
7.
Cells ; 9(12)2020 11 25.
Article En | MEDLINE | ID: mdl-33255741

Following a prolonged exposure to hypoxia-reoxygenation, a partial disruption of the ER-mitochondria tethering by mitofusin 2 (MFN2) knock-down decreases the Ca2+ transfer between the two organelles limits mitochondrial Ca2+ overload and prevents the Ca2+-dependent opening of the mitochondrial permeability transition pore, i.e., limits cardiomyocyte cell death. The impact of the metabolic changes resulting from the alteration of this Ca2+crosstalk on the tolerance to hypoxia-reoxygenation injury remains partial and fragmented between different field of expertise. >In this study, we report that MFN2 loss of function results in a metabolic switch driven by major modifications in energy production by mitochondria. During hypoxia, mitochondria maintain their ATP concentration and, concomitantly, the inner membrane potential by importing cytosolic ATP into mitochondria through an overexpressed ANT2 protein and by decreasing the expression and activity of the ATP hydrolase via IF1. This adaptation further blunts the detrimental hyperpolarisation of the inner mitochondrial membrane (IMM) upon re-oxygenation. These metabolic changes play an important role to attenuate cell death during a prolonged hypoxia-reoxygenation challenge.


Adenine Nucleotide Translocator 2/metabolism , Adenosine Triphosphate/metabolism , Hypoxia/metabolism , Mitochondria/metabolism , Animals , Calcium/metabolism , Cell Death/physiology , Cell Line , Membrane Potential, Mitochondrial/physiology , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Myocytes, Cardiac/metabolism , Rats
8.
Int J Mol Sci ; 21(22)2020 Nov 19.
Article En | MEDLINE | ID: mdl-33228255

Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a lack of dystrophin, a protein essential for myocyte integrity. Mitochondrial dysfunction is reportedly responsible for DMD. This study examines the effect of glucocorticoid deflazacort on the functioning of the skeletal-muscle mitochondria of dystrophin-deficient mdx mice and WT animals. Deflazacort administration was found to improve mitochondrial respiration of mdx mice due to an increase in the level of ETC complexes (complexes III and IV and ATP synthase), which may contribute to the normalization of ATP levels in the skeletal muscle of mdx animals. Deflazacort treatment improved the rate of Ca2+ uniport in the skeletal muscle mitochondria of mdx mice, presumably by affecting the subunit composition of the calcium uniporter of organelles. At the same time, deflazacort was found to reduce the resistance of skeletal mitochondria to MPT pore opening, which may be associated with a change in the level of ANT2 and CypD. In this case, deflazacort also affected the mitochondria of WT mice. The paper discusses the mechanisms underlying the effect of deflazacort on the functioning of mitochondria and contributing to the improvement of the muscular function of mdx mice.


Gene Expression Regulation/drug effects , Mitochondria, Muscle/drug effects , Muscle, Skeletal/drug effects , Muscular Dystrophy, Duchenne/drug therapy , Pregnenediones/pharmacology , Adenine Nucleotide Translocator 2/genetics , Adenine Nucleotide Translocator 2/metabolism , Adenosine Triphosphate/biosynthesis , Animals , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Peptidyl-Prolyl Isomerase F/genetics , Peptidyl-Prolyl Isomerase F/metabolism , Electron Transport Complex III/genetics , Electron Transport Complex III/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Mitochondria, Muscle/genetics , Mitochondria, Muscle/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology
9.
Mar Drugs ; 18(8)2020 Aug 09.
Article En | MEDLINE | ID: mdl-32784874

Tilapia piscidin (TP) 4 is an antimicrobial peptide derived from Nile tilapia (Oreochromis niloticus), which shows broad-spectrum antibacterial activity and excellent cancer-killing ability in vitro and in vivo. Like many other antimicrobial peptides, TP4 treatment causes mitochondrial toxicity in cancer cells. However, the molecular mechanisms underlying TP4 targeting of mitochondria remain unclear. In this study, we used a pull-down assay on A549 cell lysates combined with LC-MS/MS to discover that TP4 targets adenine nucleotide translocator (ANT) 2, a protein essential for adenine nucleotide exchange across the inner membrane. We further showed that TP4 accumulates in mitochondria and colocalizes with ANT2. Moreover, molecular docking studies showed that the interaction requires Phe1, Ile2, His3, His4, Ser11, Lys14, His17, Arg21, Arg24 and Arg25 residues in TP4 and key residues within the cavity of ANT2. These findings suggest a mechanism by which TP4 may induce mitochondrial dysfunction to disrupt cellular energy metabolism.


Adenine Nucleotide Translocator 2/drug effects , Antimicrobial Cationic Peptides/pharmacology , Antineoplastic Agents/pharmacology , Cichlids/metabolism , Fish Proteins/pharmacology , Mitochondria/drug effects , Mitochondrial Membranes/drug effects , Neoplasms/drug therapy , A549 Cells , Adenine Nucleotide Translocator 2/metabolism , Animals , Antimicrobial Cationic Peptides/isolation & purification , Antimicrobial Cationic Peptides/metabolism , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/metabolism , Energy Metabolism/drug effects , Fish Proteins/isolation & purification , Fish Proteins/metabolism , Humans , MCF-7 Cells , Microscopy, Confocal , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Molecular Docking Simulation , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding
10.
Mol Genet Genomic Med ; 8(8): e1346, 2020 08.
Article En | MEDLINE | ID: mdl-32515122

BACKGROUND: The aberrant expression of genes involved in androgen metabolism and genetic contribution are unclear in hypospadias. METHODS: We compared gene expression profiles by RNA sequencing from five non-hypospadiac foreskins, five mild hypospadiac foreskins, and five severe hypospadiac foreskins. In addition, to identify rare coding variants with large effects on hypospadias risk, we carried out whole exome sequencing in three patients in a hypospadias family. RESULTS: The average expression of androgen receptor (AR) and CYP19A1 were significantly decreased in severe hypospadias (p < .01) and mild hypospadias (p < .05), whereas expression of several other androgen metabolism enzymes, including CYP3A4, HSD17B14, HSD3B7, HSD17B7, CYP11A1 were exclusively significantly expressed in severe hypospadias (p < .05). Compound rare damaging mutants of AR gene with HSD3B1 and SLC25A5 genes were identified in the different severe hypospadias. CONCLUSIONS: In conclusion, our findings demonstrated that dysregulation of AR and CYP19A1 could play a crucial role in the development of hypospadias. Inconsistent AR expression may be caused by the feedback loop of ESR1 signaling or combined genetic effects with other risk genes. This findings complement the possible role of AR triggered mechanism in the development of hypospadias.


Androgens/genetics , Hypospadias/genetics , Mutation , Transcriptome , 17-Hydroxysteroid Dehydrogenases/genetics , 17-Hydroxysteroid Dehydrogenases/metabolism , Adenine Nucleotide Translocator 2/genetics , Adenine Nucleotide Translocator 2/metabolism , Androgens/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Child , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Exome , Humans , Hypospadias/pathology , Male , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Progesterone Reductase/genetics , Progesterone Reductase/metabolism , S100 Calcium Binding Protein A6/genetics , S100 Calcium Binding Protein A6/metabolism , Steroid Isomerases/genetics , Steroid Isomerases/metabolism
11.
Theranostics ; 10(6): 2571-2586, 2020.
Article En | MEDLINE | ID: mdl-32194820

Rationale: P21-activated kinase 6 (PAK6) is a member of the class II PAKs family, which is a conserved family of serine/threonine kinases. Although the effects of PAK6 on many malignancies, especially in prostate cancer, have been studied for a long time, the role of PAK6 in mitochondria remains unknown. Methods: The expression of PAK6, SIRT4 and ANT2 in prostate cancer and adjacent non-tumor tissues was detected by immunohistochemistry. Immunofuorescence and immunoelectron microscopy were used to determine the subcellular localization of PAK6. Immunoprecipitation, immunofuorescence and ubiquitination assays were performed to determine how PAK6 regulates SIRT4, how SIRT4 regulates ANT2, and how PAK6 regulates ANT2. Flow cytometry detection and xenograft models were used to evaluate the impact of ANT2 mutant expression on the prostate cancer cell cycle and apoptosis regulation. Results: The present study revealed that the PAK6-SIRT4-ANT2 complex is involved in mitochondrial apoptosis in prostate cancer cells. It was found that PAK6 is mainly located in the mitochondrial inner membrane, in which PAK6 promotes SIRT4 ubiquitin-mediated proteolysis. Furthermore, SIRT4 deprives the ANT2 acetylation at K105 to promote its ubiquitination degradation. Hence, PAK6 adjusts the acetylation level of ANT2 through the PAK6-SIRT4-ANT2 pathway, in order to regulate the stability of ANT2. Meanwhile, PAK6 directly phosphorylates ANT2 atT107 to inhibit the apoptosis of prostate cancer cells. Therefore, the phosphorylation and deacetylation modifications of ANT2 are mutually regulated, leading to tumor growth in vivo. Consistently, these clinical prostate cancer tissue evaluations reveal that PAK6 is positively correlated with ANT2 expression, but negatively correlated with SIRT4. Conclusion: These present findings suggest the pivotal role of the PAK6-SIRT4-ANT2 complex in the apoptosis of prostate cancer. This complex could be a potential biomarker for the treatment and prognosis of prostate cancer.


Adenine Nucleotide Translocator 2/metabolism , Adenocarcinoma/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Prostatic Neoplasms/metabolism , Sirtuins/metabolism , p21-Activated Kinases/metabolism , Animals , Apoptosis , Biomarkers, Tumor/metabolism , HEK293 Cells , Humans , Male , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , PC-3 Cells
12.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165674, 2020 05 01.
Article En | MEDLINE | ID: mdl-31926263

Duchenne muscular dystrophy (DMD) is characterized by a pronounced and progressive degradation of the structure of skeletal muscles, which decreases their strength and lowers endurance of the organism. At muscular dystrophy, mitochondria are known to undergo significant functional changes, which is manifested in a decreased efficiency of oxidative phosphorylation and impaired energy metabolism of the cell. It is believed that the DMD-induced functional changes of mitochondria are mainly associated with the dysregulation of Ca2+ homeostasis. This work examines the kinetic parameters of Ca2+ transport and the opening of the Ca2+-dependent MPT pore in the skeletal-muscle mitochondria of the dystrophin-deficient C57BL/10ScSn-mdx mice. As compared to the organelles of wild-type animals, skeletal-muscle mitochondria of mdx mice have been found to be much less efficient in respect to Ca2+ uniport, with the kinetics of Na+-dependent Ca2+ efflux not changing. The data obtained indicate that the decreased rate of Ca2+ uniport in the mitochondria of mdx mice may be associated with the increased level of the dominant negative subunit of Ca2+ uniporter (MCUb). The experiments have also shown that in mdx mice, skeletal-muscle mitochondria have low resistance to the induction of MPT, which may be related to a significantly increased expression of adenylate translocator (ANT2), a possible structural element of the MPT pore. The paper discusses how changes in the expression of calcium uniporter and putative components of the MPT pore caused by the development of DMD can affect Ca2+ homeostasis of skeletal-muscle mitochondria.


Calcium/metabolism , Mitochondria, Muscle/pathology , Mitochondrial Transmembrane Permeability-Driven Necrosis/genetics , Muscular Dystrophy, Duchenne/pathology , Adenine Nucleotide Translocator 2/genetics , Adenine Nucleotide Translocator 2/metabolism , Animals , Cations, Divalent/metabolism , Disease Models, Animal , Dystrophin/genetics , Dystrophin/metabolism , Humans , Ion Transport/genetics , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred mdx , Microscopy, Electron , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/ultrastructure , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/ultrastructure , Muscular Dystrophy, Duchenne/genetics , Oxidative Phosphorylation
13.
Biomolecules ; 11(1)2020 Dec 30.
Article En | MEDLINE | ID: mdl-33396658

ADP/ATP carriers (AACs) are mitochondrial transport proteins playing a strategic role in maintaining the respiratory chain activity, fueling the cell with ATP, and also regulating mitochondrial apoptosis. To understand if AACs might represent a new molecular target for cancer treatment, we evaluated AAC expression levels in cancer/normal tissue pairs available on the Tissue Cancer Genome Atlas database (TCGA), observing that AACs are dysregulated in most of the available samples. It was observed that at least two AACs showed a significant differential expression in all the available kidney cancer/normal tissue pairs. Thus, we investigated AAC expression in the corresponding kidney non-cancer (HK2)/cancer (RCC-Shaw and CaKi-1) cell lines, grown in complete medium or serum starvation, for investigating how metabolic alteration induced by different growth conditions might influence AAC expression and resistance to mitochondrial apoptosis initiators, such as "staurosporine" or the AAC highly selective inhibitor "carboxyatractyloside". Our analyses showed that AAC2 and AAC3 transcripts are more expressed than AAC1 in all the investigated kidney cell lines grown in complete medium, whereas serum starvation causes an increase of at least two AAC transcripts in kidney cancer cell lines compared to non-cancer cells. However, the total AAC protein content is decreased in the investigated cancer cell lines, above all in the serum-free medium. The observed decrease in AAC protein content might be responsible for the decrease of OXPHOS activity and for the observed lowered sensitivity to mitochondrial apoptosis induced by staurosporine or carboxyatractyloside. Notably, the cumulative probability of the survival of kidney cancer patients seriously decreases with the decrease of AAC1 expression in KIRC and KIRP tissues making AAC1 a possible new biomarker of metabolic remodeling and survival in kidney cancers.


Adenine Nucleotide Translocator 2/genetics , Adenine Nucleotide Translocator 3/genetics , Arylamine N-Acetyltransferase/genetics , Isoenzymes/genetics , Kidney Neoplasms/genetics , Mitochondrial ADP, ATP Translocases/genetics , Amino Acid Sequence/genetics , Apoptosis/genetics , Biomarkers, Tumor/genetics , Cell Line, Tumor , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Kaplan-Meier Estimate , Kidney/metabolism , Kidney/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Male , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial ADP, ATP Translocases/metabolism , Oxidative Phosphorylation
14.
Nat Metab ; 1(1): 86-97, 2019 01.
Article En | MEDLINE | ID: mdl-31528845

Decreased adipose tissue oxygen tension and increased HIF-1α expression can trigger adipose tissue inflammation and dysfunction in obesity. Our current understanding of obesity-associated decreased adipose tissue oxygen tension is mainly focused on changes in oxygen supply and angiogenesis. Here, we demonstrate that increased adipocyte O2 demand, mediated by ANT2 activity, is the dominant cause of adipocyte hypoxia. Deletion of adipocyte Ant2 improves obesity-induced intracellular adipocyte hypoxia by decreasing obesity-induced adipocyte oxygen demand, without effects on mitochondrial number or mass, or oligomycin-sensitive respiration. This led to decreased adipose tissue HIF-1α expression and inflammation with improved glucose tolerance and insulin resistance in both a preventative or therapeutic setting. Our results suggest that ANT2 may be a target for the development of insulin sensitizing drugs and that ANT2 inhibition might have clinical utility.


Adenine Nucleotide Translocator 2/deficiency , Adipocytes/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Insulin Resistance/genetics , Obesity/etiology , Obesity/metabolism , Adipose Tissue/metabolism , Animals , Apoptosis , Fibrosis , Gene Expression Regulation , Gene Knockdown Techniques , Glucose/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/etiology , Inflammation/metabolism , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Oxygen/metabolism
15.
Am J Physiol Regul Integr Comp Physiol ; 317(1): R68-R82, 2019 07 01.
Article En | MEDLINE | ID: mdl-31017805

In addition to skeletal muscle dysfunction, cancer cachexia is a systemic disease involving remodeling of nonmuscle organs such as adipose and liver. Impairment of mitochondrial function is associated with multiple chronic diseases. The tissue-specific control of mitochondrial function in cancer cachexia is not well defined. This study determined mitochondrial respiratory capacity and coupling control of skeletal muscle, white adipose tissue (WAT), and liver in colon-26 (C26) tumor-induced cachexia. Tissues were collected from PBS-injected weight-stable mice, C26 weight-stable mice and C26 mice with moderate (10% weight loss) and severe cachexia (20% weight loss). The respiratory control ratio [(RCR) an index of oxidative phosphorylation (OXPHOS) coupling efficiency] was low in WAT during the induction of cachexia because of high nonphosphorylating LEAK respiration. Liver RCR was low in C26 weight-stable and moderately cachexic mice because of reduced OXPHOS. Liver RCR was further reduced with severe cachexia, where Ant2 but not Ucp2 expression was increased. Ant2 was inversely correlated with RCR in the liver (r = -0.547, P < 0.01). Liver cardiolipin increased in moderate and severe cachexia, suggesting this early event may also contribute to mitochondrial uncoupling. Impaired skeletal muscle mitochondrial respiration occurred predominantly in severe cachexia, at complex I. These findings suggest that mitochondrial function is subject to tissue-specific control during cancer cachexia, whereby remodeling in WAT and liver arise early and may contribute to altered energy balance, followed by impaired skeletal muscle respiration. We highlight an under-recognized role of liver and WAT mitochondrial function in cancer cachexia and suggest mitochondrial function of multiple tissues to be therapeutic targets.


Cachexia/metabolism , Mitochondria, Muscle/metabolism , Neoplasms, Experimental/metabolism , Oxygen Consumption/physiology , Adenine Nucleotide Translocator 2/genetics , Adenine Nucleotide Translocator 2/metabolism , Animals , Cardiolipins/metabolism , Colonic Neoplasms , Liver/metabolism , Male , Mice , Muscle, Skeletal/metabolism , Oxidative Coupling , Random Allocation , Reactive Oxygen Species , Weight Loss
16.
FEBS J ; 286(11): 2043-2061, 2019 06.
Article En | MEDLINE | ID: mdl-30828972

The nucleosome remodelling and deacetylase complex (NuRD) is a widely conserved regulator of gene expression. The determination of the subunit composition of the complex and identification of its binding partners are important steps towards understanding its architecture and function. The question of how these properties of the complex vary across different cell types has not been addressed in detail to date. Here, we set up a two-step purification protocol coupled to liquid chromatography-tandem mass spectrometry to assess NuRD composition and interaction partners in three different cancer cell lines, using label-free intensity-based absolute quantification (iBAQ). Our data indicate that the stoichiometry of the NuRD complex is preserved across our three different cancer cell lines. In addition, our interactome data suggest ZNF219 and SLC25A5 as possible interaction partners of the complex. To corroborate this latter finding, in vitro and cell-based pull-down experiments were carried out. These experiments indicated that ZNF219 can interact with RBBP4, GATAD2A/B and chromodomain helicase DNA binding 4, whereas SLC25A5 might interact with MTA2 and GATAD2A.


Cell Line, Tumor/chemistry , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Neoplasm Proteins/metabolism , Protein Interaction Maps , Adenine Nucleotide Translocator 2/metabolism , Centrifugation, Density Gradient , Chromatography, Affinity , Chromatography, Liquid , DNA-Binding Proteins/metabolism , Gene Expression Profiling , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/chemistry , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasms/metabolism , Neoplasms/pathology , Protein Interaction Mapping/methods , Protein Subunits , RNA, Messenger/biosynthesis , RNA, Neoplasm/biosynthesis , Recombinant Proteins/metabolism , Tandem Mass Spectrometry , Zinc Fingers
17.
Cell Death Differ ; 26(2): 276-290, 2019 01.
Article En | MEDLINE | ID: mdl-29786070

Cellular senescence is a form of cell cycle arrest that limits the proliferative potential of cells, including tumour cells. However, inability of immune cells to subsequently eliminate senescent cells from the organism may lead to tissue damage, inflammation, enhanced carcinogenesis and development of age-related diseases. We found that the anticancer agent mitochondria-targeted tamoxifen (MitoTam), unlike conventional anticancer agents, kills cancer cells without inducing senescence in vitro and in vivo. Surprisingly, it also selectively eliminates both malignant and non-cancerous senescent cells. In naturally aged mice treated with MitoTam for 4 weeks, we observed a significant decrease of senescence markers in all tested organs compared to non-treated animals. Mechanistically, we found that the susceptibility of senescent cells to MitoTam is linked to a very low expression level of adenine nucleotide translocase-2 (ANT2), inherent to the senescent phenotype. Restoration of ANT2 in senescent cells resulted in resistance to MitoTam, while its downregulation in non-senescent cells promoted their MitoTam-triggered elimination. Our study documents a novel, translationally intriguing role for an anticancer agent targeting mitochondria, that may result in a new strategy for the treatment of age-related diseases and senescence-associated pathologies.


Adenine Nucleotide Translocator 2/metabolism , Antineoplastic Agents, Hormonal/pharmacology , Cellular Senescence/drug effects , Mitochondria/drug effects , Tamoxifen/pharmacology , Adenine Nucleotide Translocator 2/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Gene Knockdown Techniques , Humans , MCF-7 Cells , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Mitochondria/metabolism , Transfection , Xenograft Model Antitumor Assays
19.
J Biol Chem ; 293(36): 14080-14088, 2018 09 07.
Article En | MEDLINE | ID: mdl-30006350

Targeting mRNAs via seed region pairing is the canonical mechanism by which microRNAs (miRNAs) regulate cellular functions and disease processes. Emerging evidence suggests miRNAs might also act through other mechanisms. miRNA isomers that contain identical seed region sequences, such as miR-29a and miR-29b, provide naturally occurring, informative models for identifying those miRNA effects that are independent of seed region pairing. miR-29a and miR-29b are both expressed in HeLa cells, and miR-29b has been reported to localize to the nucleus in early mitosis because of unique nucleotide sequences on its 3' end. Here, we sought to better understand the mechanism of miR-29b nuclear localization and its function in cell division. We hypothesized that its nuclear localization may be facilitated by protein-miRNA interactions unique to miR-29b. Specific blockade of miR-29b resulted in striking nuclear irregularities not observed following miR-29a blockade. We also observed that miR-29b, but not miR-29a, is enriched in the nucleus and perinuclear clusters during mitosis. Targeted proteomic analysis of affinity-purified samples identified several proteins interacting with synthetic oligonucleotides mimicking miR-29b, but these proteins did not interact with miR-29a. One of these proteins, ADP/ATP translocase 2 (ANT2), known to be involved in mitotic spindle formation, colocalized with miR-29b in perinuclear clusters independently of Argonaute 2. Of note, ANT2 knockdown resulted in nuclear irregularities similar to those observed following miR-29b blockade and prevented nuclear uptake of endogenous miR-29b. Our findings reveal that miR-29 regulates nuclear morphology during mitosis and that this critical function is unique to the miR-29b isoform.


Active Transport, Cell Nucleus , MicroRNAs/physiology , Adenine Nucleotide Translocator 2/analysis , Cell Division , Cell Nucleus Shape , HeLa Cells , Humans , Isomerism , MicroRNAs/metabolism , Mitosis , Proteomics
20.
Biochem Biophys Res Commun ; 496(4): 1222-1228, 2018 02 19.
Article En | MEDLINE | ID: mdl-29397938

Death associated protein kinase (DAPK)-related apoptosis-inducing protein kinase (DRAK)-1 is a positive apoptosis regulator. However, the molecular mechanisms underlying the DRAK1-mediated apoptotic pathway remain unclear. In this study, we demonstrated the intracellular localization and binding partners of DRAK1. In human osteosarcoma cell line U2OS cells, DRAK1 was mainly localized in the nucleus and translocated outside the nucleus through Ser395 phosphorylation by protein kinase C. In the nucleus, DRAK1 associated with tumor suppressor p53 and positively regulated p53 transcriptional activity in response to DNA-damaging agent cisplatin. On the other hand, DRAK1 interacted with the mitochondrial inner-membrane protein, adenine nucleotide translocase (ANT)-2, an anti-apoptotic oncoprotein, outside the nucleus. These findings suggest that DRAK1 translocates in response to stimuli and induces apoptosis through its interaction with specific binding partners, p53 and/or ANT2.


Adenine Nucleotide Translocator 2/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis , Osteosarcoma/metabolism , Osteosarcoma/pathology , Subcellular Fractions/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Humans , Protein Binding , Protein Serine-Threonine Kinases , Tissue Distribution
...