Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.375
1.
World J Microbiol Biotechnol ; 40(7): 206, 2024 May 17.
Article En | MEDLINE | ID: mdl-38755297

The significance of microorganisms occurring in foods is predominantly targeted due to their application for identifying a novel range of the bacterial spectrum. Diverse microbial species are capable of exhibiting potential pharmacological activities like antimicrobial and anticancer. Microbial strains capable of reducing obesity-related syndromes have also been reported. In the present study, the hypocholesterolemic efficacy of Bacillus amyloliquefaciens isolated from dairy products was scrutinised by in vitro (3T3-L1 adipose cells) and in vivo (high-fat diet-induced obese Wistar albino rats) methods. Potential cholesterol-lowering isolates were screened using a plate assay method and optimised by physical parameters. Molecular identification of the topmost five cholesterol-lowering isolates was acquired by amplification of the 16 S rRNA gene region. Bacillus amyloliquefaciens strain KAVK1, followed by strains KAVK2, KAVK3, KAVK4, and KAVK5 were molecularly determined. Further, cholesterol-lowering strains degraded the spectral patterns determined by the side chain of a cholesterol molecule. The anti-lipase activity was demonstrated using the porcine pancreatic lipase inhibitory method and compared with the reference compound Atorvastatin. Lyophilised strain KAVK1 revealed maximum pancreatic lipase inhibition. Strain KAVK1 attenuated lipid accumulation in 3T3-L1 adipose cell line predicted by Oil Red O staining method. Significant reduction of body weight and change in lipid profile was recognised after the supplement of KAVK1 to obese rats. Histopathological changes in organs were predominantly marked. The result of this study implies that the cholesterol-lowering B. amyloliquefaciens KAVK1 strain was used to treat hypercholesterolemia.


3T3-L1 Cells , Anticholesteremic Agents , Bacillus amyloliquefaciens , Diet, High-Fat , Lipid Metabolism , Obesity , RNA, Ribosomal, 16S , Rats, Wistar , Animals , Bacillus amyloliquefaciens/metabolism , Diet, High-Fat/adverse effects , Mice , Obesity/microbiology , Rats , Anticholesteremic Agents/pharmacology , Lipid Metabolism/drug effects , RNA, Ribosomal, 16S/genetics , Male , Disease Models, Animal , Cholesterol/metabolism , Lipase/metabolism , Adipocytes/metabolism , Adipocytes/drug effects
2.
Sci Rep ; 14(1): 10053, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698047

Type 2 diabetes mellitus is a worldwide public health issue. In the globe, Egypt has the ninth-highest incidence of diabetes. Due to its crucial role in preserving cellular homeostasis, the autophagy process has drawn a lot of attention in recent years, Therefore, the purpose of this study was to evaluate the traditional medication metformin with the novel therapeutic effects of cinnamondehyde on adipocyte and hepatic autophagy in a model of high-fat diet/streptozotocin-diabetic rats. The study was conducted on 40 male albino rats, classified into 2 main groups, the control group and the diabetic group, which was subdivided into 4 subgroups (8 rats each): untreated diabetic rats, diabetic rats received oral cinnamaldehyde 40 mg/kg/day, diabetic rats received oral metformin 200 mg/kg/day and diabetic rats received a combination of both cinnamaldehyde and metformin daily for 4 weeks. The outcomes demonstrated that cinnamaldehyde enhanced the lipid profile and glucose homeostasis. Moreover, Cinnamaldehyde had the opposite effects on autophagy in both tissues; by altering the expression of genes that control autophagy, such as miRNA 30a and mammalian target of rapamycin (mTOR), it reduced autophagy in adipocytes and stimulated it in hepatic tissues. It may be inferred that by increasing the treatment efficacy of metformin and lowering its side effects, cinnamaldehyde could be utilized as an adjuvant therapy with metformin for the treatment of type 2 diabetes.


Acrolein , Acrolein/analogs & derivatives , Adipocytes , Autophagy , Diabetes Mellitus, Experimental , Liver , Metformin , Animals , Acrolein/pharmacology , Acrolein/therapeutic use , Autophagy/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Rats , Adipocytes/drug effects , Adipocytes/metabolism , Metformin/pharmacology , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Streptozocin , Blood Glucose/metabolism , TOR Serine-Threonine Kinases/metabolism
3.
J Nat Prod ; 87(5): 1441-1453, 2024 May 24.
Article En | MEDLINE | ID: mdl-38722764

Herein, we report an extensive phytochemical study on the whole plant of Drymaria cordata, which led to the isolation of ten new orbitides, named drymariamides A-J (1-10). Compounds 2, 3, and 5 incorporate rare residues of noncanonical amino acids of kynurenine (Kyn) or 3a-hydroxypyrroloindoline (HPI). Their structures with absolute configurations were elucidated by a combination of spectroscopic analysis, advanced Marfey's method, X-ray diffraction, and electronic circular dichroism analysis. Compounds 1-10 exhibited antiadipogenic effects in 3T3-L1 adipocytes, and the most potent compound 7 showed an EC50 value of 1.17 ± 0.19 µM.


3T3-L1 Cells , Amino Acids , Peptides, Cyclic , Animals , Mice , Amino Acids/chemistry , Molecular Structure , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Adipogenesis/drug effects , Adipocytes/drug effects , Adipocytes/metabolism
4.
PLoS One ; 19(5): e0301966, 2024.
Article En | MEDLINE | ID: mdl-38776280

The purpose of this study is to assess the bioactive peptides derived from the defatted lemon basil seeds hydrolysate (DLSH) for their ability to inhibit pancreatic lipase, decrease intracellular lipid accumulation, and reduce adipogenesis. Response surface methodology (RSM) was employed to optimize trypsin hydrolysis conditions for maximizing lipase inhibitory activity (LI). A hydrolysis time of 387.06 min, a temperature of 49.03°C, and an enzyme concentration of 1.61% w/v, resulted in the highest LI with an IC50 of 368.07 µg/mL. The ultrafiltration of the protein hydrolysate revealed that the fraction below 0.65kDa exhibited the greatest LI potential. Further purification via RP-HPLC identified the Gly-Arg-Ser-Pro-Asp-Thr-His-Ser-Gly (GRSPDTHSG) peptide in the HPLC fraction F1 using mass spectrometry. The peptide was synthesized and demonstrated LI with an IC50 of 0.255 mM through a non-competitive mechanism, with a constant (Ki) of 0.61 mM. Docking studies revealed its binding site with the pancreatic lipase-colipase complex. Additionally, GRSPDTHSG inhibited lipid accumulation in 3T3-L1 cells in a dose-dependent manner without cytotoxic effects. Western blot analysis indicated downregulation of PPAR-γ and SREBP-1c levels under GRSPDTHSG treatment, while an increase in AMPK-α phosphorylation was observed, suggesting a role in regulating cellular lipid metabolism. Overall, GRSPDTHSG demonstrates potential in attenuating lipid absorption and adipogenesis, suggesting a prospective application in functional foods and nutraceuticals.


3T3-L1 Cells , Adipocytes , Adipogenesis , Lipase , Ocimum basilicum , PPAR gamma , Peptides , Seeds , Sterol Regulatory Element Binding Protein 1 , Mice , Animals , Adipogenesis/drug effects , Seeds/chemistry , PPAR gamma/metabolism , Adipocytes/drug effects , Adipocytes/metabolism , Hydrolysis , Lipase/antagonists & inhibitors , Lipase/metabolism , Peptides/pharmacology , Peptides/chemistry , Peptides/isolation & purification , Sterol Regulatory Element Binding Protein 1/metabolism , Ocimum basilicum/chemistry , Down-Regulation/drug effects , Molecular Docking Simulation
5.
Endocrinology ; 165(6)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38712392

Long-term ß-adrenoceptor (ß-AR) stimulation is a pathological mechanism associated with cardiovascular diseases resulting in endothelial and perivascular adipose tissue (PVAT) dysfunction. In this study, we aimed to identify whether ß-adrenergic signaling has a direct effect on PVAT. Thoracic aorta PVAT was obtained from male Wistar rats and cultured ex vivo with the ß-AR agonist isoproterenol (Iso; 1 µM) or vehicle for 24 hours. Conditioned culture medium (CCM) from Iso-treated PVAT induced a marked increase in aorta contractile response, induced oxidative stress, and reduced nitric oxide production in PVAT compared to vehicle. In addition, Iso-treated PVAT and PVAT-derived differentiated adipocytes exhibited higher corticosterone release and protein expression of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), an enzyme responsible for de novo synthesis of corticosterone. Macrophages exposed to Iso also exhibited increased corticosterone release in response to ß-AR stimulation. Incubation of Iso-treated PVAT and PVAT-derived differentiated adipocytes with ß3-AR antagonist restored aorta contractile function modulated by Iso-CCM and normalized 11ß-HSD1 protein expression. These results show that ß3-AR signaling leads to upregulation of 11ß-HSD1 in PVAT, thus increasing corticosterone release and contributing to impair the anticontractile function of this tissue.


11-beta-Hydroxysteroid Dehydrogenase Type 1 , Corticosterone , Isoproterenol , Rats, Wistar , Animals , Male , Rats , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Isoproterenol/pharmacology , Corticosterone/metabolism , Adrenergic beta-Agonists/pharmacology , Adipose Tissue/metabolism , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Adipocytes/metabolism , Adipocytes/drug effects , Receptors, Adrenergic, beta/metabolism , Oxidative Stress/drug effects , Nitric Oxide/metabolism , Culture Media, Conditioned/pharmacology
6.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732125

"Ganghwal" is a widely used herbal medicine in Republic of Korea, but it has not been reported as a treatment strategy for obesity and diabetes within adipocytes. In this study, we determined that Ostericum koreanum extract (OKE) exerts an anti-obesity effect by inhibiting adipogenesis and an anti-diabetic effect by increasing the expression of genes related to glucose uptake in adipocytes and inhibiting α-glucosidase activity. 3T3-L1 preadipocytes were differentiated for 8 days in methylisobutylxanthine, dexamethasone, and insulin medium, and the effect of OKE was confirmed by the addition of 50 and 100 µg/mL of OKE during the differentiation process. This resulted in a reduction in lipid accumulation and the expression of PPARγ (Peroxisome proliferator-activated receptor γ) and C/EBPα (CCAAT enhancer binding protein α). Significant activation of AMPK (AMP-activated protein kinase), increased expression of GLUT4 (Glucose Transporter Type 4), and inhibition of α-glucosidase activity were also observed. These findings provide the basis for the anti-obesity and anti-diabetic effects of OKE. In addition, OKE has a significant antioxidant effect. This study presents OKE as a potential natural product-derived material for the treatment of patients with metabolic diseases such as obesity- and obesity-induced diabetes.


3T3-L1 Cells , Adipocytes , Adipogenesis , Anti-Obesity Agents , Hypoglycemic Agents , PPAR gamma , Plant Extracts , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Adipogenesis/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Anti-Obesity Agents/pharmacology , Obesity/drug therapy , Obesity/metabolism , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , alpha-Glucosidases/metabolism , AMP-Activated Protein Kinases/metabolism , Antioxidants/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Crassulaceae/chemistry , Lipid Metabolism/drug effects , Cell Differentiation/drug effects
7.
Nutrients ; 16(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38732509

Isoeugenol (IEG), a natural component of clove oil, possesses antioxidant, anti-inflammatory, and antibacterial properties. However, the effects of IEG on adipogenesis have not yet been elucidated. Here, we showed that IEG blocks adipogenesis in 3T3-L1 cells at an early stage. IEG inhibits lipid accumulation in adipocytes in a concentration-dependent manner and reduces the expression of mature adipocyte-related factors including PPARγ, C/EBPα, and FABP4. IEG treatment at different stages of adipogenesis showed that IEG inhibited adipocyte differentiation by suppressing the early stage, as confirmed by lipid accumulation and adipocyte-related biomarkers. The early stage stimulates growth-arrested preadipocytes to enter mitotic clonal expansion (MCE) and initiates their differentiation into adipocytes by regulating cell cycle-related factors. IEG arrested 3T3-L1 preadipocytes in the G0/G1 phase of the cell cycle and attenuated cell cycle-related factors including cyclinD1, CDK6, CDK2, and cyclinB1 during the MCE stage. Furthermore, IEG suppresses reactive oxygen species (ROS) production during MCE and inhibits ROS-related antioxidant enzymes, including superoxide dismutase1 (SOD1) and catalase. The expression of cell proliferation-related biomarkers, including pAKT and pERK1/2, was attenuated by the IEG treatment of 3T3-L1 preadipocytes. These findings suggest that it is a potential therapeutic agent for the treatment of obesity.


3T3-L1 Cells , Adipocytes , Adipogenesis , Eugenol , Mitosis , Reactive Oxygen Species , Animals , Adipogenesis/drug effects , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Mitosis/drug effects , Eugenol/pharmacology , Eugenol/analogs & derivatives , Reactive Oxygen Species/metabolism , Cell Differentiation/drug effects , PPAR gamma/metabolism , Cell Proliferation/drug effects , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Lipid Metabolism/drug effects , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Antioxidants/pharmacology
8.
Toxicol Appl Pharmacol ; 486: 116937, 2024 May.
Article En | MEDLINE | ID: mdl-38643950

Selective Serotonin Reuptake Inhibitors (SSRIs) are widely used medications for the treatment of major depressive disorder. However, long-term SSRI use has been associated with weight gain and altered lipid profiles. These findings suggest that SSRIs may have negative effects on metabolism. Exposure to certain chemicals called 'obesogens' is known to promote lipid accumulation and obesity by modulating adipogenesis. Here, we investigated whether citalopram (CIT) and sertraline (SER) interfere with the process of adipogenesis, using human mesenchymal stem cells (MSCs) in a 2D and a 3D model. Assessment of intracellular lipid accumulation by fluorescence staining was used as a measure for enhanced adipogenesis. To explore possible mechanisms behind SSRIs' effects, receptor mediated activity was studied using responsive cell lines for various nuclear receptors. Furthermore, RNA sequencing was performed in the 3D model, followed by differential gene expression and pathway analysis. A dose dependent increase in lipid accumulation was observed in both models with CIT and SER. For the 3D model, the effect was seen in a range close to reported steady-state plasma concentrations (0.065-0.65 µM for SER and 0.12-0.92 µM for CIT). Pathway analysis revealed unexpected results of downregulation in adipogenesis-related pathways and upregulation in phospholipids and lysosomal pathways. This was confirmed by an observed increase in lysosomes in the 2D model. Our findings suggest lysosomal dysfunction and disrupted lipid metabolism in mature adipocytes, leading to excessive phospholipid synthesis. Moreover, important adipogenic processes are inhibited, potentially leading to dysfunctional adipocytes, which might have implications in the maintenance of a healthy metabolic balance.


Adipogenesis , Antidepressive Agents , Citalopram , Lipid Metabolism , Mesenchymal Stem Cells , Selective Serotonin Reuptake Inhibitors , Sertraline , Adipogenesis/drug effects , Sertraline/pharmacology , Sertraline/toxicity , Humans , Citalopram/pharmacology , Lipid Metabolism/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/toxicity , Antidepressive Agents/pharmacology , Adipocytes/drug effects , Adipocytes/metabolism , Cells, Cultured , Dose-Response Relationship, Drug
9.
Food Funct ; 15(10): 5300-5314, 2024 May 20.
Article En | MEDLINE | ID: mdl-38669145

Growing research has highlighted that the consumption of dairy products improves the metabolic health in obese individuals by functioning as regulatory modulators. However, the molecular basis of this effect remains largely unknown. Herein, we report a dairy-derived peptide, which we named Miltin, that activates the thermogenesis of brown adipocytes and increases white adipocyte browning. Previously, Miltin was merely identified for its antioxidant capacity, although it is commonly present in different dairy products. In this study, we revealed the effect of Miltin in modulating adipose thermogenesis and further explored its potential in treating obesity through in vivo and in vitro strategies. The administration of Miltin in mice fed with a high-fat diet resulted in enhanced thermogenesis, improved glucose homeostasis, and reduced body mass and lipid accumulation, indicating the anti-obesity effect of Miltin. Genomic analysis revealed that Miltin modulates thermogenesis by inducing the activation of the MAPK signaling pathway by preferentially interacting with GADD45γ to promote its stability. Together, our findings indicate that Miltin's role in initiating the thermogenesis of adipocytes makes it a potential anti-obesity therapy for future development.


Anti-Obesity Agents , Mice, Inbred C57BL , Obesity , Thermogenesis , Animals , Thermogenesis/drug effects , Mice , Anti-Obesity Agents/pharmacology , Obesity/drug therapy , Obesity/metabolism , Male , Diet, High-Fat , 3T3-L1 Cells , Adipocytes, Brown/drug effects , Adipocytes, Brown/metabolism , Peptides/pharmacology , Adipocytes/drug effects , Adipocytes/metabolism , Humans
10.
Phytomedicine ; 128: 155551, 2024 Jun.
Article En | MEDLINE | ID: mdl-38569293

BACKGROUND: Because obesity is associated with a hyperplasia-mediated increase in adipose tissue, inhibiting cell proliferation during mitotic clonal expansion (MCE) is a leading strategy for preventing obesity. Although (-)-hydroxycitric acid (HCA) is used to control obesity, the molecular mechanisms underlying its effects on MCE are poorly understood. PURPOSE: This study aimed to investigate the potential effects of HCA on MCE and underlying molecular mechanisms affecting adipogenesis and obesity improvements. METHODS: Preadipocyte cell line, 3T3-L1, were treated with HCA; oil red O, cell proliferation, cell cycle, and related alterations in signaling pathways were examined. High-fat diet (HFD)-fed mice were administered HCA for 12 weeks; body and adipose tissues weights were evaluated, and the regulation of signaling pathways in epidydimal white adipose tissue were examined in vivo. RESULTS: Here, we report that during MCE, HCA attenuates the proliferation of the preadipocyte cell line, 3T3-L1, by arresting the cell cycle at the G0/G1 phase. In addition, HCA markedly inhibits Forkhead Box O1 (FoxO1) phosphorylation, thereby inducing the expression of cyclin-dependent kinase inhibitor 1B and suppressing the levels of cyclin-dependent kinase 2, cyclin E1, proliferating cell nuclear antigen, and phosphorylated retinoblastoma. Importantly, we found that ribosomal protein S6 kinase A1 (RPS6KA1) influences HCA-mediated inactivation of FoxO1 and its nuclear exclusion. An animal model of obesity revealed that HCA reduced high-fat diet-induced obesity by suppressing adipocyte numbers as well as epididymal and mesenteric white adipose tissue mass, which is attributed to the regulation of RPS6KA1, FoxO1, CDKN1B and PCNA that had been consistently identified in vitro. CONCLUSIONS: These findings provide novel insights into the mechanism by which HCA regulates adipogenesis and highlight the RPS6KA1/FoxO1 signaling axis as a therapeutic target for obesity.


Cell Proliferation , Citrates , Forkhead Box Protein O1 , Obesity , Ribosomal Protein S6 Kinases, 90-kDa , Animals , Mice , 3T3-L1 Cells/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , Adipogenesis/drug effects , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Cell Proliferation/drug effects , Citrates/pharmacology , Citrates/therapeutic use , Diet, High-Fat/adverse effects , Forkhead Box Protein O1/antagonists & inhibitors , Forkhead Box Protein O1/metabolism , Mice, Inbred C57BL , Mitosis/drug effects , Obesity/drug therapy , Obesity/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction/drug effects
11.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article En | MEDLINE | ID: mdl-38673906

Air pollution poses a significant global health risk, with fine particulate matter (PM2.5) such as diesel exhaust particles (DEPs) being of particular concern due to their potential to drive systemic toxicities through bloodstream infiltration. The association between PM2.5 exposure and an increased prevalence of metabolic disorders, including obesity, metabolic syndrome, and type 2 diabetes mellitus (T2DM), is evident against a backdrop of rising global obesity and poor metabolic health. This paper examines the role of adipose tissue in mediating the effects of PM2.5 on metabolic health. Adipose tissue, beyond its energy storage function, is responsive to inhaled noxious stimuli, thus disrupting metabolic homeostasis and responding to particulate exposure with pro-inflammatory cytokine release, contributing to systemic inflammation. The purpose of this study was to characterize the metabolic response of adipose tissue in mice exposed to either DEPs or room air (RA), exploring both the adipokine profile and mitochondrial bioenergetics. In addition to a slight change in fat mass and a robust shift in adipocyte hypertrophy in the DEP-exposed animals, we found significant changes in adipose mitochondrial bioenergetics. Furthermore, the DEP-exposed animals had a significantly higher expression of adipose inflammatory markers compared with the adipose from RA-exposed mice. Despite the nearly exclusive focus on dietary factors in an effort to better understand metabolic health, these results highlight the novel role of environmental factors that may contribute to the growing global burden of poor metabolic health.


Adipose Tissue , Inflammation , Mitochondria , Particulate Matter , Vehicle Emissions , Animals , Vehicle Emissions/toxicity , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Particulate Matter/adverse effects , Particulate Matter/toxicity , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Inflammation/metabolism , Inflammation/chemically induced , Inflammation/pathology , Male , Mice, Inbred C57BL , Energy Metabolism/drug effects , Adipokines/metabolism , Air Pollutants/adverse effects , Air Pollutants/toxicity , Adipocytes/metabolism , Adipocytes/drug effects
12.
Sci Rep ; 14(1): 9689, 2024 04 27.
Article En | MEDLINE | ID: mdl-38678043

Today, probiotics are considered to be living microorganisms whose consumption has a certain number of beneficial effects on the consumer. The present study aimed to investigate the effect of a new probiotic extract (Lactobacillus delbrueckii subsp. lactis KUMS Y33) on the differentiation process of human adipose-derived stem cells (hADSCs) into adipocytes and osteocytes and, as a result, clarify its role in the prevention and treatment of bone age disease. Several bacteria were isolated from traditional yogurt. They were evaluated to characterize the probiotic's activity. Then, the isolated hADSCs were treated with the probiotic extract, and then osteogenesis and adipogenesis were induced. To evaluate the differentiation process, oil red O and alizarin red staining, a triglyceride content assay, an alkaline phosphatase (ALP) activity assay, as well as real-time PCR and western blot analysis of osteocyte- and adipocyte-specific genes, were performed. Ultimately, the new strain was sequenced and registered on NBCI. In the probiotic-treated group, the triglyceride content and the gene expression and protein levels of C/EBP-α and PPAR-γ2 (adipocyte-specific markers) were significantly decreased compared to the control group (P < 0.05), indicating an inhibited adipogenesis process. Furthermore, the probiotic extract caused a significant increase in the ALP activity, the expression levels of RUNX2 and osteocalcin, and the protein levels of collagen I and FGF-23 (osteocyte-specific markers) in comparison to the control group (P < 0.05), indicating an enhanced osteogenesis process. According to the results of the present study, the probiotic extract inhibits adipogenesis and significantly increases osteogenesis, suggesting a positive role in the prevention and treatment of osteoporosis and opening a new aspect for future in-vivo study.


Adipogenesis , Cell Differentiation , Lactobacillus delbrueckii , Mesenchymal Stem Cells , Osteogenesis , Probiotics , Humans , Probiotics/pharmacology , Osteogenesis/drug effects , Adipogenesis/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Lactobacillus delbrueckii/metabolism , Cell Differentiation/drug effects , Adipose Tissue/cytology , Adipose Tissue/metabolism , Cells, Cultured , Adipocytes/metabolism , Adipocytes/drug effects , Adipocytes/cytology
13.
Cell Death Dis ; 15(4): 285, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653969

Despite advances in the treatment and care of severe physical injuries, trauma remains one of the main reasons for disability-adjusted life years worldwide. Trauma patients often suffer from disturbances in energy utilization and metabolic dysfunction, including hyperglycemia and increased insulin resistance. White adipose tissue plays an essential role in the regulation of energy homeostasis and is frequently implicated in traumatic injury due to its ubiquitous body distribution but remains poorly studied. Initial triggers of the trauma response are mainly damage-associated molecular patterns (DAMPs) such as histones. We hypothesized that DAMP-induced adipose tissue inflammation contributes to metabolic dysfunction in trauma patients. Therefore, we investigated whether histone release during traumatic injury affects adipose tissue. Making use of a murine polytrauma model with hemorrhagic shock, we found increased serum levels of histones accompanied by an inflammatory response in white adipose tissue. In vitro, extracellular histones induced an inflammatory response in human adipocytes. On the molecular level, this inflammatory response was mediated via a MYD88-IRAK1-ERK signaling axis as demonstrated by pharmacological and genetic inhibition. Histones also induced lytic cell death executed independently of caspases and RIPK1 activity. Importantly, we detected increased histone levels in the bloodstream of patients after polytrauma. Such patients might benefit from a therapy consisting of activated protein C and the FDA-approved ERK inhibitor trametinib, as this combination effectively prevented histone-mediated effects on both, inflammatory gene activation and cell death in adipocytes. Preventing adipose tissue inflammation and adipocyte death in patients with polytrauma could help minimize posttraumatic metabolic dysfunction.


Adipocytes , Histones , Inflammation , Myeloid Differentiation Factor 88 , Humans , Animals , Histones/metabolism , Adipocytes/metabolism , Adipocytes/drug effects , Inflammation/pathology , Inflammation/metabolism , Mice , Myeloid Differentiation Factor 88/metabolism , Cell Death/drug effects , Male , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL , Wounds and Injuries/complications , Wounds and Injuries/metabolism , Wounds and Injuries/pathology , Signal Transduction/drug effects
14.
J Agric Food Chem ; 72(17): 9768-9781, 2024 May 01.
Article En | MEDLINE | ID: mdl-38629896

Lemon verbena has been shown to ameliorate obesity-related oxidative stress, but the intracellular final effectors underlying its antioxidant activity are still unknown. The purpose of this study was to correlate the antioxidant capacity of plasma metabolites of lemon verbena (verbascoside, isoverbascoside, hydroxytyrosol, caffeic acid, ferulic acid, homoprotocatechuic acid, and luteolin-7-diglucuronide) with their uptake and intracellular metabolism in hypertrophic adipocytes under glucotoxic conditions. To this end, intracellular ROS levels were measured, and the intracellular metabolites were identified and quantified by high-performance liquid chromatography with a diode array detector coupled to mass spectrometry (HPLC-DAD-MS). The results showed that the plasma metabolites of lemon verbena are absorbed by adipocytes and metabolized through phase II reactions and that the intracellular appearance of these metabolites correlates with the decrease in the level of glucotoxicity-induced oxidative stress. It is postulated that the biotransformation and accumulation of these metabolites in adipocytes contribute to the long-term antioxidant activity of the extract.


Adipocytes , Metabolome , Oxidative Stress , Plant Extracts , Polyphenols , Verbena , Oxidative Stress/drug effects , Polyphenols/metabolism , Polyphenols/chemistry , Adipocytes/metabolism , Adipocytes/drug effects , Plant Extracts/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Animals , Verbena/chemistry , Verbena/metabolism , Mice , Antioxidants/metabolism , Chromatography, High Pressure Liquid , Male , Glucose/metabolism , Reactive Oxygen Species/metabolism
15.
Endocrinology ; 165(6)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38648498

Hormonal contraceptives are widely prescribed due to their effectiveness and convenience and have become an integral part of family planning strategies worldwide. In the United States, approximately 65% of reproductive-aged women are estimated to be using contraceptive options, with approximately 33% using one or a combination of hormonal contraceptives. While these methods have undeniably contributed to improved reproductive health, recent studies have raised concerns regarding their potential effect on metabolic health. Despite widespread anecdotal reports, epidemiological research has been mixed as to whether hormonal contraceptives contribute to metabolic health effects. As such, the goals of this study were to assess the adipogenic activity of common hormonal contraceptive chemicals and their mixtures. Five different models of adipogenesis were used to provide a rigorous assessment of metabolism-disrupting effects. Interestingly, every individual contraceptive (both estrogens and progestins) and each mixture promoted significant adipogenesis (eg, triglyceride accumulation and/or preadipocyte proliferation). These effects appeared to be mediated in part through estrogen receptor signaling, particularly for the contraceptive mixtures, as cotreatment with fulvestrant acted to inhibit contraceptive-mediated proadipogenic effects on triglyceride accumulation. In conclusion, this research provides valuable insights into the complex interactions between hormonal contraceptives and adipocyte development. The results suggest that both progestins and estrogens within these contraceptives can influence adipogenesis, and the specific effects may vary based on the receptor disruption profiles. Further research is warranted to establish translation of these findings to in vivo models and to further assess causal mechanisms underlying these effects.


Adipogenesis , Adipogenesis/drug effects , Animals , Female , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Progestins/pharmacology , Humans , 3T3-L1 Cells , Estrogens/pharmacology , Contraceptives, Oral, Hormonal/pharmacology
16.
Mol Biol Rep ; 51(1): 562, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38644407

BACKGROUND: Obesity is associated with a wide variety of metabolic disorders that impose significant burdens on patients and society. The "browning" phenomenon in white adipose tissue (WAT) has emerged as a promising therapeutic strategy to combat metabolic disturbances. However, though the anti-diabetic drug dapagliflozin (DAPA) is thought to promote "browning," the specific mechanism of this was previously unclear. METHODS: In this study, C57BL/6 J male mice were used to establish an obesity model by high-fat diet feeding, and 3T3-L1 cells were used to induce mature adipocytes and to explore the role and mechanism of DAPA in "browning" through a combination of in vitro and in vivo experiments. RESULTS: The results show that DAPA promotes WAT "browning" and improves metabolic disorders. Furthermore, we discovered that DAPA activated "browning" through the fibroblast growth factor receptors 1-liver kinase B1-adenosine monophosphate-activated protein kinase signaling pathway. CONCLUSION: These findings provide a rational basis for the use of DAPA in treating obesity by promoting the browning of white adipose tissue.


Adipose Tissue, White , Benzhydryl Compounds , Glucosides , Protein Serine-Threonine Kinases , Receptor, Fibroblast Growth Factor, Type 1 , Signal Transduction , Animals , Male , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adipocytes/drug effects , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , AMP-Activated Protein Kinases/metabolism , Benzhydryl Compounds/pharmacology , Diet, High-Fat , Glucosides/pharmacology , Mice, Inbred C57BL , Obesity/metabolism , Obesity/drug therapy , Protein Serine-Threonine Kinases/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction/drug effects
17.
Mol Cell Endocrinol ; 588: 112225, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38570133

Although Liraglutide (Lira) increases serum irisin levels in type 2 diabetes mellitus (T2DM), it is unclear whether it induces expression of uncoupling protein 1 (UCP1) of adipocytes via promoting irisin secretion from skeletal muscle. Male T2DM rats were treated with 0.4 mg/kg/d Lira twice a day for 8 weeks, and the protein expression of phosphorylated AMP kinase (p-AMPK), phosphorylated acetyl-CoA carboxylase 1 (p-ACC1) and UCP1 in white adipose tissues were detected. Differentiated C2C12 cells were treated with palmitic acid (PA) and Lira to detect the secretion of irisin. Differentiated 3T3-L1 cells were treated with irisin, supernatant from Lira-treated C2C12 cells, Compound C or siAMPKα1, the triglyceride (TG) content and the related gene expression were measured. The transcriptome in irisin-treated differentiated 3T3-L1 cells was analyzed. Lira elevated serum irisin levels, decreased the adipocyte size and increased the protein expression of UCP1, p-AMPK and p-ACC1 in WAT. Moreover, it promoted the expression of PGC1α and FNDC5, the secretion of irisin in PA-treated differentiated C2C12 cells. The irisin and supernatant decreased TG synthesis and promoted the expression of browning- and lipolysis-related genes in differentiated 3T3-L1 cells. While Compound C and siAMPKα1 blocked AMPK activities and expression, irisin partly reversed the pathway. Finally, the transcriptome analysis indicated that differently expressed genes are mainly involved in browning and lipid metabolism. Overall, our findings showed that Lira modulated muscle-to-adipose signaling pathways in diabetes via irisin-mediated AMPKα/ACC1/UCP1/PPARα pathway. Our results suggest a new mechanism for the treatment of T2DM by Lira.


3T3-L1 Cells , Adipocytes , Fibronectins , Lipolysis , Liraglutide , Uncoupling Protein 1 , Animals , Fibronectins/metabolism , Fibronectins/genetics , Mice , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Male , Adipocytes/metabolism , Adipocytes/drug effects , Lipolysis/drug effects , Liraglutide/pharmacology , Rats , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , AMP-Activated Protein Kinases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Rats, Sprague-Dawley , Cell Differentiation/drug effects , Gene Expression Regulation/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects
18.
Biomed Pharmacother ; 174: 116531, 2024 May.
Article En | MEDLINE | ID: mdl-38574624

N-acylethanolamines (NAEs) are endogenous lipid-signalling molecules involved in inflammation and energy metabolism. The potential pharmacological effect of NAE association in managing inflammation-based metabolic disorders is unexplored. To date, targeting liver-adipose axis can be considered a therapeutic approach for the treatment of obesity and related dysfunctions. Here, we investigated the metabolic effect of OLALIAMID® (OLA), an olive oil-derived NAE mixture, in limiting liver and adipose tissue (AT) dysfunction of high-fat diet (HFD)-fed mice. OLA reduced body weight and fat mass in obese mice, decreasing insulin resistance (IR), as shown by homeostasis model assessment index, and leptin/adiponectin ratio, a marker of adipocyte dysfunction. OLA improved serum lipid and hepatic profile and the immune/inflammatory pattern of metainflammation. In liver of HFD mice, OLA treatment counteracted glucose and lipid dysmetabolism, restoring insulin signalling (phosphorylation of AKT and AMPK), and reducing mRNAs of key markers of fatty acid accumulation. Furthermore, OLA positively affected AT function deeply altered by HFD by reprogramming of genes involved in thermogenesis of interscapular brown AT (iBAT) and subcutaneous white AT (scWAT), and inducing the beigeing of scWAT. Notably, the NAE mixture reduced inflammation in iBAT and promoted M1-to-M2 macrophage shift in scWAT of obese mice. The tissue and systemic anti-inflammatory effects of OLA and the increased expression of glucose transporter 4 in scWAT contributed to the improvement of gluco-lipid toxicity and insulin sensitivity. In conclusion, we demonstrated that this olive oil-derived NAE mixture is a valid nutritional strategy to counteract IR and obesity acting on liver-AT crosstalk, restoring both hepatic and AT function and metabolism.


Adipocytes , Adipose Tissue , Diet, High-Fat , Ethanolamines , Insulin Resistance , Liver , Mice, Inbred C57BL , Obesity , Animals , Liver/drug effects , Liver/metabolism , Male , Ethanolamines/pharmacology , Adipocytes/drug effects , Adipocytes/metabolism , Obesity/drug therapy , Obesity/metabolism , Mice , Diet, High-Fat/adverse effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Mice, Obese , Lipid Metabolism/drug effects
19.
Biosci Biotechnol Biochem ; 88(6): 679-688, 2024 May 22.
Article En | MEDLINE | ID: mdl-38499443

Recently, it has been suggested that brown and beige adipocytes may ameliorate obesity because these adipocytes express uncoupling protein-1 (UCP-1), which generates heat by consuming lipid. However, obesity-induced inflammation suppresses the expression of UCP-1. To improve such conditions, food components with anti-inflammatory properties are attracting attention. In this study, we developed a modified system to evaluate only the indirect effects of anti-inflammatory food-derived compounds by optimizing the conventional experimental system using conditioned medium. We validated this new system using 6-shogaol and 6-gingerol, which have been reported to show the anti-inflammatory effects and to increase the basal expression of UCP-1 mRNA. In addition, we found that the acetone extract of Sarcodon aspratus, an edible mushroom, showed anti-inflammatory effects and rescued the inflammation-induced suppression of UCP-1 mRNA expression. These findings indicate that the system with conditioned medium is valuable for evaluation of food-derived compounds with anti-inflammatory effects on the inflammation-induced thermogenic adipocyte dysfunction.


Adipocytes , Anti-Inflammatory Agents , Inflammation , Macrophages , RNA, Messenger , Uncoupling Protein 1 , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Animals , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mice , Culture Media, Conditioned/pharmacology , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/genetics , Adipocytes/drug effects , Adipocytes/metabolism , Macrophages/drug effects , Macrophages/metabolism , Cell Line , Gene Expression Regulation/drug effects
20.
FEBS Lett ; 598(8): 945-955, 2024 Apr.
Article En | MEDLINE | ID: mdl-38472156

TG-interacting factor 1 (TGIF1) contributes to the differentiation of murine white preadipocyte and human adipose tissue-derived stem cells; however, its regulation is not well elucidated. Insulin is a component of the adipogenic cocktail that induces ERK signaling. TGIF1 phosphorylation and sustained stability in response to insulin were reduced through the use of specific MEK inhibitor U0126. Mutagenesis at T235 or T239 residue of TGIF1 in preadipocytes led to dephosphorylation of TGIF1. The reduced TGIF1 stability resulted in an increase in p27kip1 expression, a decrease in phosphorylated Rb expression and cellular proliferation, and a reduced accumulation of lipids compared to the TGIF1-overexpressed cells. These findings highlight that insulin/ERK-driven phosphorylation of the T235 or T239 residue at TGIF1 is crucial for adipocyte differentiation.


3T3-L1 Cells , Adipocytes , Adipogenesis , Cell Differentiation , Homeodomain Proteins , Insulin , Animals , Mice , Phosphorylation/drug effects , Insulin/metabolism , Adipocytes/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Cell Differentiation/drug effects , Adipogenesis/drug effects , Adipogenesis/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Humans , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cell Proliferation/drug effects , Butadienes/pharmacology
...