Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 33.652
1.
Adipocyte ; 13(1): 2339418, 2024 Dec.
Article En | MEDLINE | ID: mdl-38706095

A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10), is involved in several metabolic and inflammatory pathways. We speculated that ADAM10 plays a modulatory role in adipose tissue inflammation and metabolism. To this end, we studied adipose tissue-specific ADAM10 knock-out mice (aKO). While young, regular chow diet-fed aKO mice showed increased insulin sensitivity, following prolonged (33 weeks) high-fat diet (HFD) exposure, aKO mice developed obesity and insulin resistance. Compared to controls, aKO mice showed less inflammatory adipokine profile despite the significant increase in adiposity. In brown adipose tissue, aKO mice on HFD had changes in CD8+ T cell populations indicating a lesser inflammatory pattern. Following HFD, both aKO and control littermates demonstrated decreased adipose tissue pro-inflammatory macrophages, and increased anti-inflammatory accumulation, without differences between the genotypes. Collectively, our observations indicate that selective deletion of ADAM10 in adipocytes results in a mitigated inflammatory response, leading to increased insulin sensitivity in young mice fed with regular diet. This state of insulin sensitivity, following prolonged HFD, facilitates energy storage resulting in increased fat accumulation which ultimately leads to the development of a phenotype of obesity and insulin resistance. In conclusion, the data indicate that ADAM10 has a modulatory effect of inflammation and whole-body energy metabolism.


ADAM10 Protein , Adipose Tissue , Diet, High-Fat , Mice, Knockout , Animals , Male , Mice , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Adipocytes/metabolism , Adipose Tissue/metabolism , Amyloid Precursor Protein Secretases/metabolism , Diet, High-Fat/adverse effects , Inflammation/metabolism , Insulin Resistance , Membrane Proteins/metabolism , Membrane Proteins/genetics , Obesity/metabolism , Obesity/etiology , Phenotype
2.
Cells ; 13(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38727260

Bone marrow (BM) acts as a dynamic organ within the bone cavity, responsible for hematopoiesis, skeletal remodeling, and immune system control. Bone marrow adipose tissue (BMAT) was long simply considered a filler of space, but now it is known that it instead constitutes an essential element of the BM microenvironment that participates in homeostasis, influences bone health and bone remodeling, alters hematopoietic stem cell functions, contributes to the commitment of mesenchymal stem cells, provides effects to immune homeostasis and defense against infections, and participates in energy metabolism and inflammation. BMAT has emerged as a significant contributor to the development and progression of various diseases, shedding light on its complex relationship with health. Notably, BMAT has been implicated in metabolic disorders, hematological malignancies, and skeletal conditions. BMAT has been shown to support the proliferation of tumor cells in acute myeloid leukemia and niche adipocytes have been found to protect cancer cells against chemotherapy, contributing to treatment resistance. Moreover, BMAT's impact on bone density and remodeling can lead to conditions like osteoporosis, where high levels of BMAT are inversely correlated with bone mineral density, increasing the risk of fractures. BMAT has also been associated with diabetes, obesity, and anorexia nervosa, with varying effects on individuals depending on their weight and health status. Understanding the interaction between adipocytes and different diseases may lead to new therapeutic strategies.


Adipose Tissue , Bone Marrow , Humans , Adipose Tissue/metabolism , Bone Marrow/pathology , Bone Marrow/metabolism , Animals
3.
Sci Rep ; 14(1): 10631, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724633

Higher fat-to-muscle mass ratio (FMR) is reported to be a risk factor for various diseases, including type 2 diabetes and cardiovascular diseases, and mortality. Although this association suggests that reducing FMR may help to prevent certain diseases and mortality, the relationship between FMR and lifestyle factors is unclear. Therefore, we performed a cross-sectional study with the aim to elucidate this relationship. This cross-sectional study included 1518 healthy Japanese adults aged 30 to 64 years. We measured FMR in the whole body, arms, legs, and trunk and assessed various lifestyle factors. Then, we performed forced entry multiple regression analyses for FMR with the following variables: sex, age, physical activity, dietary intake, sleep quality, cigarette smoking, stress levels, and body mass index. As a result, whole-body and regional FMRs were correlated with female sex (ß = 0.71); age (ß = 0.06); physical activity (ß = - 0.07); dietary intake of protein (ß = - 0.12), carbohydrate (ß = 0.04), sodium (ß = 0.13), and fiber (ß = - 0.16); and body mass index (ß = 0.70). The results suggest that in the Japanese middle-aged population, low FMR is associated with certain lifestyle factors, i.e. higher physical activity and a diet with higher protein and fiber and lower carbohydrate and sodium, independent of age, sex, and body mass index.


Dietary Carbohydrates , Dietary Fiber , Dietary Proteins , Exercise , Humans , Male , Female , Cross-Sectional Studies , Middle Aged , Adult , Exercise/physiology , Dietary Fiber/administration & dosage , Dietary Proteins/administration & dosage , Dietary Carbohydrates/administration & dosage , Body Mass Index , Japan , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Sodium, Dietary/administration & dosage , Adipose Tissue/metabolism , Body Composition , Life Style
4.
Sci Rep ; 14(1): 10652, 2024 05 09.
Article En | MEDLINE | ID: mdl-38730110

The recessive T allele of the missense polymorphism rs709596309 C > T of the leptin receptor gene is associated with intramuscular fat. However, its overall impact on pork production is still partial. In this work, we investigated the all-round effects of the TT genotype on lean growth efficiency and carcass, meat and fat quality using data from an experiment that compared the performance of 48 TT and 48 C- (24 CT and 24 CC) Duroc barrows. The TT pigs were less efficient for lean growth than the C- pigs. Although heavier, their carcasses had less lean content, were shorter and had lighter loins. Apart from increasing marbling and saturated fatty acid content, changes caused by the TT genotype in meat and fat quality are likely not enough to be perceived by consumers. The effect on visual marbling score exceeded that on intramuscular fat content, which suggests a direct influence of the T allele on the pattern of fat distribution in muscle. With current low-protein diets, the T allele is expected to be cost-effective only in niche markets where a very high level of marbling is critical.


Receptors, Leptin , Animals , Receptors, Leptin/genetics , Swine/genetics , Genotype , Alleles , Meat/analysis , Polymorphism, Single Nucleotide , Adipose Tissue/metabolism , Male , Muscle, Skeletal/metabolism , Phenotype
5.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731880

Adipose tissue is a multifunctional organ that regulates many physiological processes such as energy homeostasis, nutrition, the regulation of insulin sensitivity, body temperature, and immune response. In this review, we highlight the relevance of the different mediators that control adipose tissue activity through a systematic review of the main players present in white and brown adipose tissues. Among them, inflammatory mediators secreted by the adipose tissue, such as classical adipokines and more recent ones, elements of the immune system infiltrated into the adipose tissue (certain cell types and interleukins), as well as the role of intestinal microbiota and derived metabolites, have been reviewed. Furthermore, anti-obesity mediators that promote the activation of beige adipose tissue, e.g., myokines, thyroid hormones, amino acids, and both long and micro RNAs, are exhaustively examined. Finally, we also analyze therapeutic strategies based on those mediators that have been described to date. In conclusion, novel regulators of obesity, such as microRNAs or microbiota, are being characterized and are promising tools to treat obesity in the future.


Adipose Tissue , Obesity , Humans , Animals , Obesity/metabolism , Adipose Tissue/metabolism , Adipokines/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Gastrointestinal Microbiome , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Inflammation Mediators/metabolism , Energy Metabolism
6.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731977

Mesenchymal stem cells (MSCs) isolated from Wharton's jelly (WJ-MSCs) and adipose tissue (AD-MSCs) are alternative sources for bone marrow-derived MSCs. Owing to their multiple functions in angiogenesis, immune modulation, proliferation, migration, and nerve regeneration, MSC-derived exosomes can be applied in "cell-free cell therapy". Here, we investigated the functional protein components between the exosomes from WJ-MSCs and AD-MSCs to explain their distinct functions. Proteins of WJ-MSC and AD-MSC exosomes were collected and compared based on iTRAQ gel-free proteomics data. Results: In total, 1695 proteins were detected in exosomes. Of these, 315 were more abundant (>1.25-fold) in AD-MSC exosomes and 362 kept higher levels in WJ-MSC exosomes, including fibrinogen proteins. Pathway enrichment analysis suggested that WJ-MSC exosomes had higher potential for wound healing than AD-MSC exosomes. Therefore, we treated keratinocyte cells with exosomes and the recombinant protein of fibrinogen beta chain (FGB). It turned out that WJ-MSC exosomes better promoted keratinocyte growth and migration than AD-MSC exosomes. In addition, FGB treatment had similar results to WJ-MSC exosomes. The fact that WJ-MSC exosomes promoted keratinocyte growth and migration better than AD-MSC exosomes can be explained by their higher FGB abundance. Exploring the various components of AD-MSC and WJ-MSC exosomes can aid in their different clinical applications.


Cell Movement , Cell Proliferation , Exosomes , Keratinocytes , Mesenchymal Stem Cells , Wharton Jelly , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Wharton Jelly/cytology , Wharton Jelly/metabolism , Keratinocytes/metabolism , Keratinocytes/cytology , Fibrinogen/metabolism , Proteomics/methods , Adipose Tissue/cytology , Adipose Tissue/metabolism , Cells, Cultured , Wound Healing , Proteome/metabolism
7.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732001

Lipodystrophies (LDs) are rare, complex disorders of the adipose tissue characterized by selective fat loss, altered adipokine profile and metabolic impairment. Sirtuins (SIRTs) are class III NAD+-dependent histone deacetylases linked to fat metabolism. SIRT1 plays a critical role in metabolic health by deacetylating target proteins in tissue types including liver, muscle, and adipose. Circulating SIRT1 levels have been found to be reduced in obesity and increased in anorexia nervosa and patients experiencing weight loss. We evaluated circulating SIRT1 levels in relation to fat levels in 32 lipodystrophic patients affected by congenital or acquired LDs compared to non-LD subjects (24 with anorexia nervosa, 22 normal weight, and 24 with obesity). SIRT1 serum levels were higher in LDs than normal weight subjects (mean ± SEM 4.18 ± 0.48 vs. 2.59 ± 0.20 ng/mL) and subjects with obesity (1.7 ± 0.39 ng/mL), whereas they were close to those measured in anorexia nervosa (3.44 ± 0.46 ng/mL). Our findings show that within the LD group, there was no relationship between SIRT1 levels and the amount of body fat. The mechanisms responsible for secretion and regulation of SIRT1 in LD deserve further investigation.


Lipodystrophy , Sirtuin 1 , Humans , Sirtuin 1/blood , Sirtuin 1/metabolism , Female , Adult , Male , Lipodystrophy/blood , Lipodystrophy/metabolism , Adipose Tissue/metabolism , Obesity/blood , Obesity/metabolism , Young Adult , Adolescent , Middle Aged , Anorexia Nervosa/blood , Anorexia Nervosa/metabolism
8.
J Nanobiotechnology ; 22(1): 219, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698419

BACKGROUND: Adipose-derived stem cells (ASCs) represent the most advantageous choice for soft tissue regeneration. Studies proved the recruitment of ASCs post tissue injury was mediated by chemokine CXCL12, but the mechanism by which CXCL12 is generated after tissue injury remains unclear. Migrasomes are newly discovered membrane-bound organelles that could deliver CXCL12 spatially and temporally in vivo. In this study, we sought to investigate whether migrasomes participate ASC-mediated tissue regeneration. METHODS: Discrepant and asymmetrical soft tissue regeneration mice model were established, in which HE staining, immunofluorescent staining, western blot and qPCR were conducted to confirm the role of CXCL12 and migrasomes in ASC-mediated tissue regeneration. Characterization of ASC-derived migrasomes were carried out by confocal microscopy, scanning electron microscopy, transmission electron microscopy as well as western blot analysis. The function and mechanism of migrasomes were further testified by assisting tissue regeneration with isolated migrasomes in vivo and by in vitro transwell combined with co-culture system. RESULTS: Here, we show for the first time that migrasomes participate in soft tissue regeneration. ASCs generate migrasomes enriched with CXCL12 to mediate tissue regeneration. Migrasomes from ASCs could promote stem cells migration by activating CXCR4/RhoA signaling in vivo and in vitro. Chemoattracted ASCs facilitate regeneration, as demonstrated by the upregulation of an adipogenesis-associated protein. This positive feed-back-loop creates a favorable microenvironment for soft tissue regeneration. Thus, migrasomes represent a new therapeutic target for ASC-mediated tissue regeneration. CONCLUSIONS: Our findings reveal a previously unknown function of ASCs in mediating tissue regeneration by generating migrasomes. The ASC-derived migrasomes can restore tissue regeneration by recruiting stem cells, which highlighting the potential application of ASC-derived migrasomes in regenerative medicine.


Adipose Tissue , Chemokine CXCL12 , Receptors, CXCR4 , Regeneration , Stem Cells , rhoA GTP-Binding Protein , Chemokine CXCL12/metabolism , Animals , Receptors, CXCR4/metabolism , Mice , Adipose Tissue/cytology , Adipose Tissue/metabolism , rhoA GTP-Binding Protein/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Mice, Inbred C57BL , Feedback, Physiological , Cell Movement , Cells, Cultured , Male , Signal Transduction
9.
Endocrinology ; 165(6)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38712392

Long-term ß-adrenoceptor (ß-AR) stimulation is a pathological mechanism associated with cardiovascular diseases resulting in endothelial and perivascular adipose tissue (PVAT) dysfunction. In this study, we aimed to identify whether ß-adrenergic signaling has a direct effect on PVAT. Thoracic aorta PVAT was obtained from male Wistar rats and cultured ex vivo with the ß-AR agonist isoproterenol (Iso; 1 µM) or vehicle for 24 hours. Conditioned culture medium (CCM) from Iso-treated PVAT induced a marked increase in aorta contractile response, induced oxidative stress, and reduced nitric oxide production in PVAT compared to vehicle. In addition, Iso-treated PVAT and PVAT-derived differentiated adipocytes exhibited higher corticosterone release and protein expression of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), an enzyme responsible for de novo synthesis of corticosterone. Macrophages exposed to Iso also exhibited increased corticosterone release in response to ß-AR stimulation. Incubation of Iso-treated PVAT and PVAT-derived differentiated adipocytes with ß3-AR antagonist restored aorta contractile function modulated by Iso-CCM and normalized 11ß-HSD1 protein expression. These results show that ß3-AR signaling leads to upregulation of 11ß-HSD1 in PVAT, thus increasing corticosterone release and contributing to impair the anticontractile function of this tissue.


11-beta-Hydroxysteroid Dehydrogenase Type 1 , Corticosterone , Isoproterenol , Rats, Wistar , Animals , Male , Rats , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Isoproterenol/pharmacology , Corticosterone/metabolism , Adrenergic beta-Agonists/pharmacology , Adipose Tissue/metabolism , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Adipocytes/metabolism , Adipocytes/drug effects , Receptors, Adrenergic, beta/metabolism , Oxidative Stress/drug effects , Nitric Oxide/metabolism , Culture Media, Conditioned/pharmacology
10.
Stem Cell Res Ther ; 15(1): 137, 2024 May 12.
Article En | MEDLINE | ID: mdl-38735979

Scar tissue is the inevitable result of repairing human skin after it has been subjected to external destructive stimuli. It leads to localized damage to the appearance of the skin, accompanied by symptoms such as itching and pain, which reduces the quality of life of the patient and causes serious medical burdens. With the continuous development of economy and society, there is an increasing demand for beauty. People are looking forward to a safer and more effective method to eliminate pathological scarring. In recent years, adipose-derived stem cells (ADSCs) have received increasing attention from researchers. It can effectively improve pathological scarring by mediating inflammation, regulating fibroblast proliferation and activation, and vascular reconstruction. This review focuses on the pathophysiological mechanisms of hypertrophic scarring, summarizing the therapeutic effects of in vitro, in vivo, and clinical studies on the therapeutic effects of ADSCs in the field of hypertrophic scarring prevention and treatment, the latest application techniques, such as cell-free therapies utilizing ADSCs, and discussing the advantages and limitations of ADSCs. Through this review, we hope to further understand the characterization of ADSC and clarify the effectiveness of its application in hypertrophic scarring treatment, so as to provide clinical guidance.


Adipose Tissue , Cicatrix, Hypertrophic , Humans , Cicatrix, Hypertrophic/therapy , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Secretome/metabolism , Animals , Stem Cell Transplantation/methods
11.
Rev Invest Clin ; 76(2): 65-79, 2024.
Article En | MEDLINE | ID: mdl-38718804

UNASSIGNED: Excess body weight has become a global epidemic and a significant risk factor for developing chronic diseases, which are the leading causes of worldwide morbidities. Adipose tissue (AT), primarily composed of adipocytes, stores substantial amounts of energy and plays a crucial role in maintaining whole-body glucose and lipid metabolism. This helps prevent excessive body fat accumulation and lipotoxicity in peripheral tissues. In addition, AT contains endothelial cells and a substantial population of immune cells (constituting 60-70% of non-adipocyte cells), including macrophages, T and B lymphocytes, and natural killer cells. These resident immune cells engage in crosstalk with adipocytes, contributing to the maintenance of metabolic and immune homeostasis in AT. An exacerbated inflammatory response or inadequate immune resolution can lead to chronic systemic low-grade inflammation, triggering the development of metabolic alterations and the onset of chronic diseases. This review aims to elucidate the regulatory mechanisms through which immune cells influence AT function and energy homeostasis. We also focus on the interactions and functional dynamics of immune cell populations, highlighting their role in maintaining the delicate balance between metabolic health and obesity-related inflammation. Finally, understanding immunometabolism is crucial for unraveling the pathogenesis of metabolic diseases and developing targeted immunotherapeutic strategies. These strategies may offer innovative avenues in the rapidly evolving field of immunometabolism. (Rev Invest Clin. 2024;76(2):65-79).


Adipose Tissue , Inflammation , Metabolic Diseases , Obesity , Humans , Adipose Tissue/metabolism , Adipose Tissue/immunology , Obesity/immunology , Obesity/metabolism , Inflammation/immunology , Inflammation/metabolism , Metabolic Diseases/immunology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Energy Metabolism/physiology , Adipocytes/metabolism , Adipocytes/immunology , Lipid Metabolism/physiology , Animals , Homeostasis
12.
Clin Epigenetics ; 16(1): 61, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715048

BACKGROUND: Diabetes in pregnancy is associated with increased risk of long-term metabolic disease in the offspring, potentially mediated by in utero epigenetic variation. Previously, we identified multiple differentially methylated single CpG sites in offspring of women with gestational diabetes mellitus (GDM), but whether stretches of differentially methylated regions (DMRs) can also be identified in adolescent GDM offspring is unknown. Here, we investigate which DNA regions in adolescent offspring are differentially methylated in blood by exposure to diabetes in pregnancy. The secondary aim was to characterize the RNA expression of the identified DMR, which contained the nc886 non-coding RNA. METHODS: To identify DMRs, we employed the bump hunter method in samples from young (9-16 yr, n = 92) offspring of women with GDM (O-GDM) and control offspring (n = 94). Validation by pyrosequencing was performed in an adult offspring cohort (age 28-33 years) consisting of O-GDM (n = 82), offspring exposed to maternal type 1 diabetes (O-T1D, n = 67) and control offspring (O-BP, n = 57). RNA-expression was measured using RT-qPCR in subcutaneous adipose tissue and skeletal muscle. RESULTS: One significant DMR represented by 10 CpGs with a bimodal methylation pattern was identified, located in the nc886/VTRNA2-1 non-coding RNA gene. Low methylation status across all CpGs of the nc886 in the young offspring was associated with maternal GDM. While low methylation degree in adult offspring in blood, adipose tissue, and skeletal muscle was not associated with maternal GDM, adipose tissue nc886 expression was increased in O-GDM compared to O-BP, but not in O-T1D. In addition, adipose tissue nc886 expression levels were positively associated with maternal pre-pregnancy BMI (p = 0.006), but not with the offspring's own adiposity. CONCLUSIONS: Our results highlight that nc886 is a metastable epiallele, whose methylation in young offspring is negatively correlated with maternal obesity and GDM status. The physiological effect of nc886 may be more important in adipose tissue than in skeletal muscle. Further research should aim to investigate how nc886 regulation in adipose tissue by exposure to GDM may contribute to development of metabolic disease.


Adipose Tissue , DNA Methylation , Diabetes, Gestational , Epigenesis, Genetic , Muscle, Skeletal , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Female , Diabetes, Gestational/genetics , Epigenesis, Genetic/genetics , Adult , DNA Methylation/genetics , Muscle, Skeletal/metabolism , Adolescent , Adipose Tissue/metabolism , Male , Prenatal Exposure Delayed Effects/genetics , Child , Diabetes Mellitus, Type 1/genetics , RNA, Untranslated/genetics , RNA, Untranslated/blood , RNA, Long Noncoding/genetics , CpG Islands/genetics
13.
JCI Insight ; 9(9)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38716728

The importance of the proper localization of most receptors at the cell surface is often underestimated, although this feature is essential for optimal receptor response. Endospanin 1 (Endo1) (also known as OBRGRP or LEPROT) is a protein generated from the same gene as the human leptin receptor and regulates the trafficking of proteins to the surface, including the leptin receptor. The systemic role of Endo1 on whole-body metabolism has not been studied so far. Here, we report that general Endo1-KO mice fed a high-fat diet develop metabolically healthy obesity with lipid repartitioning in organs and preferential accumulation of fat in adipose tissue, limited systematic inflammation, and better controlled glucose homeostasis. Mechanistically, Endo1 interacts with the lipid translocase CD36, thus regulating its surface abundance and lipid uptake in adipocytes. In humans, the level of Endo1 transcripts is increased in the adipose tissue of patients with obesity, but low levels rather correlate with a profile of metabolically healthy obesity. We suggest here that Endo1, most likely by controlling CD36 cell surface abundance and lipid uptake in adipocytes, dissociates obesity from diabetes and that its absence participates in metabolically healthy obesity.


Adipose Tissue , CD36 Antigens , Diet, High-Fat , Mice, Knockout , Obesity , Animals , Female , Humans , Male , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , CD36 Antigens/metabolism , CD36 Antigens/genetics , Diet, High-Fat/adverse effects , Glucose/metabolism , Lipid Metabolism/genetics , Mice, Inbred C57BL , Obesity/metabolism , Obesity/genetics
14.
Sci Rep ; 14(1): 10094, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698200

Intramuscular fat (IMF) and backfat thickness (BFT) are critical economic traits impacting meat quality. However, the genetic variants controlling these traits need to be better understood. To advance knowledge in this area, we integrated RNA-seq and single nucleotide polymorphisms (SNPs) identified in genomic and transcriptomic data to generate a linkage disequilibrium filtered panel of 553,581 variants. Expression quantitative trait loci (eQTL) analysis revealed 36,916 cis-eQTLs and 14,408 trans-eQTLs. Association analysis resulted in three eQTLs associated with BFT and 24 with IMF. Functional enrichment analysis of genes regulated by these 27 eQTLs revealed noteworthy pathways that can play a fundamental role in lipid metabolism and fat deposition, such as immune response, cytoskeleton remodeling, iron transport, and phospholipid metabolism. We next used ATAC-Seq assay to identify and overlap eQTL and open chromatin regions. Six eQTLs were in regulatory regions, four in predicted insulators and possible CCCTC-binding factor DNA binding sites, one in an active enhancer region, and the last in a low signal region. Our results provided novel insights into the transcriptional regulation of IMF and BFT, unraveling putative regulatory variants.


Chromatin , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Cattle , Chromatin/genetics , Chromatin/metabolism , Adipose Tissue/metabolism , Mutation , Linkage Disequilibrium , Genome-Wide Association Study , Gene Expression Regulation , Lipid Metabolism/genetics
15.
PeerJ ; 12: e17267, 2024.
Article En | MEDLINE | ID: mdl-38699186

Exercise has many beneficial effects that provide health and metabolic benefits. Signaling molecules are released from organs and tissues in response to exercise stimuli and are widely termed exerkines, which exert influence on a multitude of intricate multi-tissue processes, such as muscle, adipose tissue, pancreas, liver, cardiovascular tissue, kidney, and bone. For the metabolic effect, exerkines regulate the metabolic homeostasis of organisms by increasing glucose uptake and improving fat synthesis. For the anti-inflammatory effect, exerkines positively influence various chronic inflammation-related diseases, such as type 2 diabetes and atherosclerosis. This review highlights the prospective contribution of exerkines in regulating metabolism, augmenting the anti-inflammatory effects, and providing additional advantages associated with exercise. Moreover, a comprehensive overview and analysis of recent advancements are provided in this review, in addition to predicting future applications used as a potential biomarker or therapeutic target to benefit patients with chronic diseases.


Exercise , Inflammation , Humans , Inflammation/metabolism , Exercise/physiology , Diabetes Mellitus, Type 2/metabolism , Muscle, Skeletal/metabolism , Adipose Tissue/metabolism , Adipose Tissue/immunology
16.
Physiol Rep ; 12(9): e16042, 2024 May.
Article En | MEDLINE | ID: mdl-38705872

Myosteatosis, or the infiltration of fatty deposits into skeletal muscle, occurs with advancing age and contributes to the health and functional decline of older adults. Myosteatosis and its inflammatory milieu play a larger role in adipose tissue dysfunction, muscle tissue dysfunction, and increased passive muscle stiffness. Combined with the age-related decline of sex hormones and development of anabolic resistance, myosteatosis also contributes to insulin resistance, impaired muscle mechanics, loss of force production from the muscle, and increased risk of chronic disease. Due to its highly inflammatory secretome and the downstream negative effects on muscle metabolism and mechanics, myosteatosis has become an area of interest for aging researchers and clinicians. Thus far, myosteatosis treatments have had limited success, as many lack the potency to completely rescue the metabolic and physical consequences of myosteatosis. Future research is encouraged for the development of reliable assessment methods for myosteatosis, as well as the continued exploration of pharmacological, nutritional, and exercise-related interventions that may lead to the success in attenuating myosteatosis and its clinical consequences within the aging population.


Aging , Muscle, Skeletal , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Aging/physiology , Aged , Adipose Tissue/metabolism , Adipose Tissue/physiopathology
17.
PeerJ ; 12: e17071, 2024.
Article En | MEDLINE | ID: mdl-38711623

Adipose tissue in the human body occurs in various forms with different functions. It is an energy store, a complex endocrine organ, and a source of cells used in medicine. Many molecular analyses require the isolation of nucleic acids, which can cause some difficulties connected with the large amount of lipids in adipocytes. Ribonucleic acid isolation is particularly challenging due to its low stability and easy degradation by ribonucleases. The study aimed to compare and evaluate five RNA and DNA isolation methods from adipose tissue. The tested material was subcutaneous porcine adipose tissue subjected to different homogenization methods and RNA or DNA purification. A mortar and liquid nitrogen or ceramic beads were used for homogenization. The organic extraction (TriPure Reagent), spin columns with silica-membrane (RNeasy Mini Kit or High Pure PCR Template Preparation Kit), and the automatic MagNA Pure system were used for the purification. Five combinations were compared for RNA and DNA isolation. Obtained samples were evaluated for quantity and quality. The methods were compared in terms of yield (according to tissue mass), purity (A260/280 and A260/230), and nucleic acid degradation (RNA Integrity Number, RIN; DNA Integrity Number, DIN). The results were analyzed statistically. The average RNA yield was highest in method I, which used homogenization with ceramic beads and organic extraction. Low RNA concentration didn't allow us to measure degradation for all samples in method III (homogenization with ceramic beads and spin-column purification). The highest RNA quality was achieved with method IV using homogenization in liquid nitrogen and spin column purification, which makes it the most effective for RNA isolation from adipose tissue. Required values of DNA yield, purity, and integrity were achieved only with spin column-based methods (III and IV). The most effective method for DNA isolation from adipose tissue is method III, using spin-columns without additional homogenization.


Adipose Tissue , DNA , RNA , Animals , RNA/isolation & purification , RNA/genetics , Swine , DNA/isolation & purification , DNA/genetics , Adipose Tissue/metabolism
18.
Sci Rep ; 14(1): 9960, 2024 04 30.
Article En | MEDLINE | ID: mdl-38693222

The pathogenesis of aortic dissection (AD), an aortic disease associated with high mortality, involves significant vascular inflammatory infiltration. However, the precise relationship between perivascular adipose tissue (PVAT) and aortic dissection remains incompletely understood. The objective of this study is to investigate the role of PVAT inflammation in the pathogenesis of aortic dissection and identify novel therapeutic targets for this disease. The mouse model of aortic dissection was established in this study through intraperitoneal injection of Ang II and administration of BAPN in drinking water. Additionally, control groups were established at different time points including the 2-week group, 3-week group, and 4-week group. qPCR and immunohistochemistry techniques were employed to detect the expression of inflammatory markers and RUNX1 in PVAT surrounding the thoracic aorta in mice. Additionally, an aortic dissection model was established using RUNX1 knockout mice, and the aforementioned indicators were assessed. The 3T3-L1 cells were induced to differentiate into mature adipocytes in vitro, followed by lentivirus transfection for the knockdown or overexpression of RUNX1. The study aimed to investigate the potential cell-to-cell interactions by co-culturing 3T3-L1 cells with A7r5 or RAW264.7 cells. Subsequently, human aortic PVAT samples were obtained through clinical surgery and the aforementioned indicators were detected. In comparison to the control group, the aortic dissection model group exhibited decreased expression of MMP-2 and NF-κB in PVAT, while TNF-α and RUNX1 expression increased. Suppression of RUNX1 expression resulted in increased MMP-2 and NF-κB expression in PVAT, along with decreased TNF-α expression. Overexpression of RUNX1 upregulated the expression levels of NF-Κb, MMP-2, and TNF-α in adipocytes, whereas knockdown of RUNX1 exerted an opposite effect. Macrophages co-cultured with adipocytes overexpressing RUNX1 exhibited enhanced CD86 expression, while vascular smooth muscle cells co-cultured with these adipocytes showed reduced α-SMA expression. In human samples, there was an increase in both RUNX1 and MMP-2 expression levels, accompanied by a decrease in TNF-α and NF-Κb expression. The presence of aortic dissection is accompanied by evident inflammatory alterations in the PVAT, and this phenomenon appears to be associated with the involvement of RUNX1. It is plausible that the regulation of PVAT's inflammatory changes by RUNX1/NF-κB signaling pathway plays a role in the pathogenesis of aortic dissection.


Adipose Tissue , Aortic Dissection , Core Binding Factor Alpha 2 Subunit , Disease Models, Animal , Inflammation , NF-kappa B , Animals , Humans , Male , Mice , 3T3-L1 Cells , Adipose Tissue/metabolism , Adipose Tissue/pathology , Aortic Dissection/metabolism , Aortic Dissection/pathology , Aortic Dissection/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Inflammation/metabolism , Inflammation/pathology , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , RAW 264.7 Cells , Signal Transduction
19.
Nutrients ; 16(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38732514

To assess the correlation between vitamin D status and body composition variables in adult women of childbearing age, a cross-sectional study was conducted involving women aged 20-49 years. The participants were categorized based on their vitamin D status and further divided according to body mass index (BMI). Anthropometric and biochemical data were collected to compute body composition indices, specifically body fat and muscle mass. The sample included 124 women, with 63.70% exhibiting vitamin D inadequacy. Women with inadequate vitamin D status demonstrated a higher waist-to-height ratio (WHtR) and body adiposity index (BAI), along with a lower BMI-adjusted muscle mass index (SMI BMI), compared to those with adequate levels of vitamin D (p = 0.021; p = 0.019; and p = 0.039, respectively). A positive correlation was observed between circulating concentrations of 25(OH)D and SMI BMI, while a negative correlation existed between circulating concentrations of 25(OH)D and waist circumference (WC), WHtR, conicity index (CI), fat mass index (FMI), body fat percentage (% BF), and fat-to-muscle ratio (FMR). These findings suggest that inadequate vitamin D status may impact muscle tissue and contribute to higher body adiposity, including visceral adiposity. It is recommended that these variables be incorporated into clinical practice, with a particular emphasis on WHtR and SMI BMI, to mitigate potential metabolic consequences associated with vitamin D inadequacy.


Adipose Tissue , Adiposity , Body Composition , Body Mass Index , Muscle, Skeletal , Vitamin D Deficiency , Vitamin D , Humans , Female , Adult , Cross-Sectional Studies , Middle Aged , Vitamin D/blood , Vitamin D/analogs & derivatives , Young Adult , Vitamin D Deficiency/blood , Adipose Tissue/metabolism , Muscle, Skeletal/metabolism , Waist Circumference , Nutritional Status
20.
Nutrients ; 16(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732558

Polyunsaturated fatty acids (PUFAs) can alter adipose tissue function; however, the relative effects of plant and marine n3-PUFAs are less clear. Our objective was to directly compare the n3-PUFAs, plant-based α-linolenic acid (ALA) in flaxseed oil, and marine-based eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) in high-purity oils versus n6-PUFA containing linoleic acid (LA) for their effects on the adipose tissue and oral glucose tolerance of obese rats. Male fa/fa Zucker rats were assigned to faALA, faEPA, faDHA, and faLA groups and compared to baseline fa/fa rats (faBASE) and lean Zucker rats (lnLA). After 8 weeks, faEPA and faDHA had 11-14% lower body weight than faLA. The oral glucose tolerance and total body fat were unchanged, but faEPA had less mesenteric fat. faEPA and faDHA had fewer large adipocytes compared to faLA and faALA. EPA reduced macrophages in the adipose tissue of fa/fa rats compared to ALA and DHA, while faLA had the greatest macrophage infiltration. DHA decreased (~10-fold) T-cell infiltration compared to faBASE and faEPA, whereas faALA and faLA had an ~40% increase. The n3-PUFA diets attenuated tumour necrosis factor-α in adipose tissue compared to faBASE, while it was increased by LA in both genotypes. In conclusion, EPA and DHA target different aspects of inflammation in adipose tissue.


Adipose Tissue , Docosahexaenoic Acids , Eicosapentaenoic Acid , Macrophages , Obesity , Rats, Zucker , Animals , Eicosapentaenoic Acid/pharmacology , Docosahexaenoic Acids/pharmacology , Obesity/metabolism , Male , Macrophages/metabolism , Macrophages/drug effects , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Rats , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , alpha-Linolenic Acid/pharmacology , Mesentery
...