Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 641
1.
J Hazard Mater ; 472: 134459, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38691999

Bioaerosols are widely distributed in urban air and can be transmitted across the atmosphere, biosphere, and anthroposphere, resulting in infectious diseases. Automobile air conditioning (AAC) filters can trap airborne microbes. In this study, AAC filters were used to investigate the abundance and pathogenicity of airborne microorganisms in typical Chinese and European cities. Culturable bacteria and fungi concentrations were determined using microbial culturing. High-throughput sequencing was employed to analyze microbial community structures. The levels of culturable bioaerosols in Chinese and European cities exhibited disparities (Analysis of Variance, P < 0.01). The most dominant pathogenic bacteria and fungi were similar in Chinese (Mycobacterium: 18.2-18.9 %; Cladosporium: 23.0-30.2 %) and European cities (Mycobacterium: 15.4-37.7 %; Cladosporium: 18.1-29.3 %). Bartonella, Bordetella, Alternaria, and Aspergillus were also widely identified. BugBase analysis showed that microbiomes in China exhibited higher abundances of mobile genetic elements (MGEs) and biofilm formation capacity than those in Europe, indicating higher health risks. Through co-occurrence network analysis, heavy metals such as zinc were found to correlate with microorganism abundance; most bacteria were inversely associated, while fungi exhibited greater tolerance, indicating that heavy metals affect the growth and reproduction of bioaerosol microorganisms. This study elucidates the influence of social and environmental factors on shaping microbial community structures, offering practical insights for preventing and controlling regional bioaerosol pollution.


Air Conditioning , Air Microbiology , Automobiles , Bacteria , Cities , Fungi , China , Europe , Bacteria/genetics , Bacteria/isolation & purification , Fungi/isolation & purification , Fungi/pathogenicity , Fungi/genetics , Air Filters/microbiology , Air Pollutants/analysis , Microbiota , Environmental Monitoring
2.
J Occup Environ Hyg ; 21(5): 311-318, 2024 05.
Article En | MEDLINE | ID: mdl-38560887

Improving asthma outcomes for underserved populations can be addressed through interventions to improve indoor air quality (IAQ). New protocol for measuring IAQ and health outcomes are imperative given advances in IAQ monitoring technology and challenges in conducting intervention research in homes. In this pilot study HEPA air purifiers and HEPA vacuum cleaners were provided to five homes with children with asthma. For 6 weeks, eight common components of air quality were measured using a low-cost multi-channel air quality monitoring device, with data conveyed directly from participant homes via Wi-Fi connection. In conjunction with periodic surveys on asthma control, impact of asthma on quality of life and intervention compliance, outcomes compared IAQ, home characteristics, and asthma-related measures. This pilot study demonstrates the feasibility of a protocol to evaluate a dual component intervention to improve IAQ in homes, as measured with a low-cost air quality monitoring device.


Air Pollution, Indoor , Asthma , Environmental Monitoring , Feasibility Studies , Humans , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Environmental Monitoring/instrumentation , Pilot Projects , Child , Housing , Female , Male , Quality of Life , Air Filters
3.
Environ Sci Pollut Res Int ; 31(23): 33212-33222, 2024 May.
Article En | MEDLINE | ID: mdl-38687452

Improvement of indoor air quality is beneficial for human health. However, previous studies have not reached consistent conclusions regarding the effects of indoor air filtration on inflammation and oxidative stress. This study aims to determine the relationship between indoor air filtration and inflammation and oxidative stress biomarkers. We conducted an electronic search that evaluated the association of indoor air filtration with biomarkers of inflammation and oxidative stress in five databases (PubMed, Cochrane Library, EMBASE, Web of Science, and Scopus) from the beginning to April 23, 2023. Outcomes included the following markers: interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), malondialdehyde (MDA), 8-hydroxy-2deoxyguanosine (8-OHdG), and 8-iso-prostaglandinF2α (8-isoPGF2α). We extracted data from the included studies according to the system evaluation and the preferred reporting item for meta-analysis (PRISMA) guidelines and used the Cochrane risk of bias tool to assess bias risk. Our meta-analysis included 15 studies with 678 participants to assess the combined effect size. The meta-analysis demonstrated that indoor air filtration could have a marked reduction in IL-6 (SMD: -0.275, 95% CI: -0.545 to -0.005, p = 0.046) but had no significant effect on other markers of inflammation or oxidative stress. Subgroup analysis results demonstrated a significant reduction in 8-OHdG levels in the subgroup with < 1 day of duration (SMD: -0.916, 95% CI: -1.513 to -0.320; p = 0.003) and using filtrete air filter (SMD: -5.530, 95% CI: -5.962 to -5.099; p < 0.001). Our meta-analysis results depicted that indoor air filtration can significantly reduce levels of inflammation and oxidative stress markers. Considering the adverse effects of air pollution on human health, our study provides powerful evidence for applying indoor air filtration to heavy atmospheric pollution.


Air Pollution, Indoor , Biomarkers , Inflammation , Oxidative Stress , Humans , Randomized Controlled Trials as Topic , Air Filters , Filtration , Interleukin-6
4.
Trials ; 25(1): 197, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38504367

BACKGROUND: Acute viral bronchiolitis is the most common reason for hospitalization of infants in the USA. Infants hospitalized for bronchiolitis are at high risk for recurrent respiratory symptoms and wheeze in the subsequent year, and longer-term adverse respiratory outcomes such as persistent childhood asthma. There are no effective secondary prevention strategies. Multiple factors, including air pollutant exposure, contribute to risk of adverse respiratory outcomes in these infants. Improvement in indoor air quality following hospitalization for bronchiolitis may be a prevention opportunity to reduce symptom burden. Use of stand-alone high efficiency particulate air (HEPA) filtration units is a simple method to reduce particulate matter ≤ 2.5 µm in diameter (PM2.5), a common component of household air pollution that is strongly linked to health effects. METHODS: BREATHE is a multi-center, parallel, double-blind, randomized controlled clinical trial. Two hundred twenty-eight children < 12 months of age hospitalized for the first time with bronchiolitis will participate. Children will be randomized 1:1 to receive a 24-week home intervention with filtration units containing HEPA and carbon filters (in the child's sleep space and a common room) or to a control group with units that do not contain HEPA and carbon filters. The primary objective is to determine if use of HEPA filtration units reduces respiratory symptom burden for 24 weeks compared to use of control units. Secondary objectives are to assess the efficacy of the HEPA intervention relative to control on (1) number of unscheduled healthcare visits for respiratory complaints, (2) child quality of life, and (3) average PM2.5 levels in the home. DISCUSSION: We propose to test the use of HEPA filtration to improve indoor air quality as a strategy to reduce post-bronchiolitis respiratory symptom burden in at-risk infants with severe bronchiolitis. If the intervention proves successful, this trial will support use of HEPA filtration for children with bronchiolitis to reduce respiratory symptom burden following hospitalization. TRIAL REGISTRATION: NCT05615870. Registered on November 14, 2022.


Air Filters , Air Pollution, Indoor , Asthma , Bronchiolitis , Child , Infant , Humans , Quality of Life , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/prevention & control , Particulate Matter/adverse effects , Dust , Bronchiolitis/diagnosis , Bronchiolitis/prevention & control , Carbon , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
5.
Int J Circumpolar Health ; 83(1): 2335702, 2024 Dec.
Article En | MEDLINE | ID: mdl-38546171

Alaska Native and American Indian children experience frequent respiratory illness. Indoor air quality is associated with the severity and frequency of respiratory infections in children. High efficiency particulate air (HEPA) purifiers effectively improve indoor air quality and may protect respiratory health. In 2019, the Yukon-Kuskokwim Health Corporation implemented a pilot programme that provided education and HEPA purifiers to households of children with chronic lung conditions. The team evaluated HEPA purifier acceptability and use by interviewing representatives from 11 households that participated in the pilot programme. All interviewees reported improvement in their child's health, and some believed that the health of other household members was also improved because of the HEPA purifier. Interviewees reported that the HEPA purifiers were easy to use, quiet, and not expensive to run. Five of 11 households were still using the HEPA purifier at the time of the interview, which was about three years after receipt of the unit. The most common reasons for discontinuing use were equipment failure and lack of replacement filter, suggesting that programme support could increase sustainability. Our evaluation suggests that HEPA purifiers are acceptable and feasible for use in rural Alaska Native households.


Air Filters , Air Pollution, Indoor , Alaska Natives , Lung Diseases , Child , Humans , Air Pollution, Indoor/analysis , Family Characteristics
6.
BMC Oral Health ; 24(1): 199, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38326811

BACKGROUND: The SARS-CoV-2 pandemic has raised awareness of the importance of air quality. This pilot study arose from the need to reduce the concentration of particulate matter in the dental office during orthodontic procedures. To evaluate the efficacy of using an air purifier during orthodontic care in the dental office to reduce the concentration of ambient particulate matter. RESULTS: Significant reductions in particle numbers were obtained for all particle sizes except the largest particles counted (10 µm) through use of the air filter. A marked association between higher humidity levels and higher particle counts was also observed. CONCLUSIONS: Using an air purifier during dental care achieves a significant reduction in the concentration of ambient particles in the dental office. There is a correlation between higher relative humidity and higher particle concentration. The probability of obtaining a maximum particulate concentration level of 0.3 and 0.5 µm is 1000 times lower when using an air purifier.


Air Filters , Air Pollutants , Humans , Air Pollutants/analysis , Pilot Projects , Particulate Matter/analysis , Particle Size
7.
J Hazard Mater ; 468: 133770, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38401212

Recently, the demand for healthcare products especially wearable smart masks is increasing. The biosafety and degradability of smart masks are crucial for human health and environmental protection. However, the development of biodegradable and biocompatible fibrous membranes with high filtration efficiency and low pressure drop is still a challenge. How to realize the collaborative improvement between air filtration efficiency and pressure drop of the nanofibrous membrane is still a challenge. Here, a tribo-charge enhanced and biodegradable nanofibrous membranes (TCB NFMs) with highly fluffy structure for air filtration and self-powered respiration monitoring systems is reported for the first time. The filtration efficiency and pressure drop of the prepared membranes for 0.3 µm NaCl particulates is 99.971% and 41.67 Pa. The TCB NFMs based smart mask possesses a series of satisfactory and excellent characteristics, such as self-powered, biodegradable, biocompatible, high filtration efficiency, and low pressure drop, which is highly promising for application in air filtration systems and intelligent wearable respiration monitoring systems.


Air Filters , Nanofibers , Humans , Cellulose , Conservation of Natural Resources , Respiration
8.
Macromol Rapid Commun ; 45(9): e2300685, 2024 May.
Article En | MEDLINE | ID: mdl-38339795

The air filtration materials with high efficiency, low resistance, and extra antibacterial property are crucial for personal health protection. Herein, a tree-like polyvinylidene fluoride (PVDF) nanofibrous membrane with hierarchical structure (trunk fiber of 447 nm, branched fiber of 24.7 nm) and high filtration capacity is demonstrated. Specifically, 2-hydroxypropyl trimethyl ammonium chloride terminated hyperbranched polymer (HBP-HTC) with near-spherical three-dimensional molecular structure and adjustable terminal positive groups is synthesized as an additive for PVDF electrospinning to enhance the jet splitting and promote the formation of branched ultrafine nanofibers, achieving a coverage rate of branched nanofibers over 90% that is superior than small molecular quaternary ammonium salts. The branched nanofibers network enhances mechanical properties and filtration efficiency (99.995% for 0.26 µm sodium chloride particles) of the PVDF/HBP-HTC membrane, which demonstrates reduced pressure drop (122.4 Pa) and a quality factor up to 0.083 Pa-1 on a 40 µm-thick sample. More importantly, the numerous quaternary ammonium salt groups of HBP-HTC deliver excellent antibacterial properties to the PVDF membranes. Bacterial inhibitive rate of 99.9% against both S. aureus and E. coli is demonstrated in a membrane with 3.0 wt% HBP-HTC. This work provides a new strategy for development of high-efficiency and antibacterial protection products.


Anti-Bacterial Agents , Escherichia coli , Nanofibers , Polymers , Polyvinyls , Staphylococcus aureus , Nanofibers/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Polyvinyls/chemistry , Polymers/chemistry , Polymers/pharmacology , Polymers/chemical synthesis , Membranes, Artificial , Microbial Sensitivity Tests , Air Filters , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Filtration/methods , Particle Size , Fluorocarbon Polymers
9.
Folia Microbiol (Praha) ; 69(2): 459-464, 2024 Apr.
Article En | MEDLINE | ID: mdl-38353790

Portable household air purifiers are widely used devices designed to maintain a high-quality level of indoor air. Portable air purifiers equipped with the high-efficiency air (HEPA) filter served 100 h in a household space occupied by two adults without any symptoms of respiratory tract infection. The main objective of the study was to determine microbial contamination on the HEPA filter and to investigate if the selected nanotextile monolayer made of polyamide 6 (PA6) nanofibers can capture potential microorganisms when installed downstream of the HEPA filter as the final filtration medium. Samples were taken from the inlet and outlet surfaces. Samples from the nanotextile were collected in the same manner as from the HEPA filter. QIAStat DX® 1.0 Analyzer using the Respiratory SARS CoV-2 Panel multiplex PCR detection system was selected for microorganism detection. Adenovirus was detected on the inlet surface of the HEPA filter. The outlet surface of the filter contained no viruses included in the Respiratory SARS CoV-2 Panel portfolio. The nanotextile monolayer was replaced twice during the 100 h of operation, so three pieces were used and all contained coronavirus 229 E. Coronavirus 229 E was then detected in the nasopharynx of one of the members of the household as well. It may be assumed that the selected nanotextile is capable of capturing a virus of a small size.


Air Filters , Severe Acute Respiratory Syndrome , Humans , Pilot Projects , Filtration , SARS-CoV-2
10.
ACS Nano ; 18(8): 6387-6397, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38364103

Air pollution by particulate matter (PM) and airborne pathogens causes severe health problems in the human body. Presently, popular disposable air filters yield huge waste and have a fatal impact on the environment. Postuse cleaning of air filters also leads to secondary air and water pollution. Here, we report a sunlight-driven self-cleaning PM filter by coupling a full-solar-spectrum-active photocatalyst comprising up-conversion nanoparticles (UCNPs) decorated with semiconductor iron(III) oxide (UCNP@α-Fe2O3) shells stabilized upon graphene functionalized borosilicate fibrous membrane (rGO-BF). While rGO-BF ensures high PM adsorption, UCNP@α-Fe2O3 (NP) enables self-photodegradation of adsorbed PM under abundant sunlight and subsequent membrane regeneration, while preventing secondary air or water pollution. Rational surface chemistry and optimal microstructure enable our filters to remove >99% of PM2.5 under deplorable air-quality conditions. Moreover, our filter shows excellent antibacterial activity toward E. coli and S. aureus, demonstrating its potential for practical utilization in face masks, air filtering devices, and protective medical wear. This work successfully suggests an intriguing design platform for self-sustainable zero-waste air filter membranes.


Air Filters , Particulate Matter , Humans , Particulate Matter/chemistry , Escherichia coli , Ferric Compounds , Staphylococcus aureus
11.
Thorax ; 79(6): 495-507, 2024 May 20.
Article En | MEDLINE | ID: mdl-38388489

INTRODUCTION: Elevated particulate matter (PM) concentrations of anthropogenic and/or desert dust origin are associated with increased morbidity among children with asthma. OBJECTIVE: The Mitigating the Health Effects of Desert Dust Storms Using Exposure-Reduction Approaches randomised controlled trial assessed the impact of exposure reduction recommendations, including indoor air filtration, on childhood asthma control during high desert dust storms (DDS) season in Cyprus and Greece. DESIGN, PARTICIPANTS, INTERVENTIONS AND SETTING: Primary school children with asthma were randomised into three parallel groups: (a) no intervention (controls); (b) outdoor intervention (early alerts notifications, recommendations to stay indoors and limit outdoor physical activity during DDS) and (c) combined intervention (same as (b) combined with indoor air purification with high efficiency particulate air filters in children's homes and school classrooms. Asthma symptom control was assessed using the childhood Asthma Control Test (c-ACT), spirometry (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC)) and fractional exhaled nitric oxide (FeNO). RESULTS: In total, 182 children with asthma (age; mean=9.5, SD=1.63) were evaluated during 2019 and 2021. After three follow-up months, the combined intervention group demonstrated a significant improvement in c-ACT in comparison to controls (ß=2.63, 95% CI 0.72 to 4.54, p=0.007), which was more profound among atopic children (ß=3.56, 95% CI 0.04 to 7.07, p=0.047). Similarly, FEV1% predicted (ß=4.26, 95% CI 0.54 to 7.99, p=0.025), the need for any asthma medication and unscheduled clinician visits, but not FVC% and FeNO, were significantly improved in the combined intervention compared with controls. CONCLUSION: Recommendations to reduce exposure and use of indoor air filtration in areas with high PM pollution may improve symptom control and lung function in children with asthma. TRIAL REGISTRATION NUMBER: NCT03503812.


Asthma , Dust , Humans , Asthma/prevention & control , Child , Male , Female , Cyprus , Particulate Matter/analysis , Particulate Matter/adverse effects , Air Pollution/adverse effects , Air Pollution/analysis , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , Greece , Air Filters , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/prevention & control , Nitric Oxide/analysis , Air Pollutants/analysis , Air Pollutants/adverse effects , Forced Expiratory Volume
13.
Toxicol Ind Health ; 40(3): 117-124, 2024 Mar.
Article En | MEDLINE | ID: mdl-38225731

Electret technology was widely used to prevent the airborne transmission of bioaerosols during the COVID-19 pandemic and improve the filtration efficiency of masks and high-efficiency particulate air (HEPA) filters. As alcohol disinfectants are widely used in medical and welfare institutions, concerns about alcohol exposure inactivating electret exist. However, comprehensive alcohol exposure tests have not been conducted on masks and HEPA filters distributed in Japan. Twenty-five types of masks and five types of HEPA filters were subjected to a discharging process according to ISO 16890 to quantitatively elucidate the resistance to alcohol exposure. Measurements of changes in filtration efficiency and pressure drop before and after discharge show that 17 masks (68%) and four HEPA filters (80%) exhibited a significant decrease in filtration efficiency, confirming their vulnerability to alcohol. In addition, a survey (n = 500 Japanese adults, including 30 healthcare professionals) revealed that ∼90% of the general public were unaware that alcohol exposure could degrade masks and air purifiers. Furthermore, 36% of the surveyed healthcare professionals had sprayed alcohol directly onto their masks. The effectiveness of user warnings through product labels and instructions was investigated from the perspective of ensuring the safety of patients and healthcare professionals. Results revealed that the best approach was to describe the extent and duration of the adverse effects caused by disregarding precautions. Increase in awareness of healthcare professionals and general public by authorities and manufacturers through guidelines and warning labels would reduce the risk of inhaling bioaerosols caused by unintentional electret inactivation.


Air Filters , Adult , Humans , Pandemics , Masks , Filtration/methods , Hospitals , Dust , Ethanol , Communication
14.
ACS Appl Mater Interfaces ; 16(3): 3955-3965, 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38195426

The indoor air quality should be better controlled and improved to avoid numerous health issues. Even if different devices are developed for air filtration, the proliferation of microorganisms under certain conditions must be controlled. For this purpose, a silver nanocluster/silica composite coating was deposited via a cosputtering technique onto fiber glass and polymeric based substrates. The aim of this work is focused on the evaluation of the antibacterial and antiviral effects of the developed coating. The preliminary results of the compositional and morphological tests showed an evenly distributed coating on filters surfaces. Several antibacterial tests were performed, confirming strong effect both in qualitative and quantitative methods, against S. epidermidis and E. coli. To understand if the coating can stop the proliferation of bacteria colonies spread on it, simulation of everyday usage of filters was performed, nebulizing bacteria solution with high colonies concentration and evaluating the inhibition of bacteria growth. Additionally, a deep understanding of the virucidal action and mechanism of Ag nanoclusters of the coating was performed. The effect of the coating both in aqueous medium and in dry methods was evaluated, in comparison with analysis on ions release. The virucidal performances are assessed against the human coronavirus OC43 strain (HCoV-OC43).


Air Filters , Silver , Humans , Silver/pharmacology , Silver/chemistry , Silicon Dioxide/pharmacology , Silicon Dioxide/chemistry , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antiviral Agents/pharmacology
15.
Nano Lett ; 24(4): 1385-1391, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38230986

Particulate matter pollution has become a serious public health issue, especially with the outbreak of new infectious diseases. However, most existing air filtration materials face challenges such as being too bulky, having high resistance, and a trade-off between filtration efficiency and air permeability. Here, a unique electro-blown spinning technique is used to prepare an air filter made of biomimetic nanoscaled tendril nonwovens (Nano-TN). The introduction of an airflow field significantly increases the whipping frequency and the strain mismatch of composite jets, achieving large-scale and highly efficient preparation of Nano-TN. The resultant Nano-TN has an ultrahigh porosity (97%) and a small pore size (2.9 µm). At the same filtration level, its air resistance is 37% lower than that of traditional straight nanofibrous nonwovens and has a higher dust-holding capacity. Moreover, compared with traditional three-dimensional air filters, the Nano-TN filter is thinner, offering tremendous application prospects in various environmental purification and personal protection fields.


Air Filters , Biomimetics , Filtration/methods , Particulate Matter
16.
Environ Res ; 248: 118223, 2024 May 01.
Article En | MEDLINE | ID: mdl-38286254

Dust is a sink for flame retardants, which are added to a myriad of consumer products in residential spaces. Organophosphate esters (OPEs) and brominated flame retardants (BFRs) are two classes of flame retardants that are frequently used in consumer products and consequently found in dust. In this present work, a novel solvent-limited microextraction technique, which we detailed in a companion study, was applied for the determination of four OPEs and two BFRs with limits of quantitation at the ng/g level by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry from n = 47 air filter dust samples collected from forced air HVAC systems. Levels of the BFRs, including tetrabromobisphenol-A and its derivative tribromobisphenol-A, were found at levels <4 µg/g and not frequently detected. Conversely, all four OPEs were detected in all air filter dust samples. Total OPE load was dominated by tris(2,4-di-tert-butylphenyl) phosphate, T24DtBPP, a novel OPE not widely examined in the literature. Comparison of individual and total OPE concentrations to residential characteristics revealed statistically significant relationships to location of the home and dominant flooring type. Overall, this study motivates future work in examining the whole house exposome using air filter dust as a passive sampling regime with more examination of T24DtBPP loads within other indoor spaces.


Air Filters , Air Pollution, Indoor , Exposome , Flame Retardants , Flame Retardants/analysis , Dust/analysis , Organophosphates/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Esters/analysis
17.
Environ Res ; 247: 118284, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38253196

Ambient fine particulate matter (PM2.5) is a leading environmental risk factor globally, and over half of the associated disease burden are caused by cardiovascular disease. Numerous randomized controlled trials (RCT) have investigated the short-term cardiovascular benefits of indoor air purifiers (IAPs), but major knowledge gaps remain on their longer-term benefits. In this 1-year, randomized, double-blinded, parallel controlled trial of 47 elderly (ntrue-purification = 24; nsham-purification = 23) aged ≥70 years, true-purification reduced household PM2.5 levels by 28% and maintained lower exposure throughout the year compared to the sham-purification group. After 12 months of intervention, a significant reduction of diastolic blood pressure was found in the true-purification versus sham-purification group (-4.62 [95% CI: -7.28, -1.96] mmHg) compared to baseline measurement prior to the intervention, whereas systolic blood pressure showed directionally consistent but statistically non-significant effect (-2.49 [95% CI: -9.25, 4.28] mmHg). Qualitatively similar patterns of associations were observed for pulse pressure (-2.30 [95% CI: -6.57, 1.96] mmHg) and carotid intima-media thickness (-10.0% [95% CI: -24.8%, 4.7%]), but these were not statistically significant. Overall, we found suggestive evidence of cardiovascular benefits of long-term IAPs use, particularly on diastolic blood pressure. Evidence on other longer-term cardiovascular traits is less clear. Further trials with larger sample sizes and long-term follow-up are needed across diverse populations to evaluate the cardiovascular benefits of IAPs.


Air Filters , Air Pollutants , Air Pollution, Indoor , Air Pollution , Cardiovascular Diseases , Cardiovascular System , Aged , Humans , Air Pollution, Indoor/prevention & control , Air Pollution, Indoor/analysis , Hong Kong , Particulate Matter/analysis , Cardiovascular Diseases/prevention & control , Air Pollutants/analysis , Air Pollution/analysis , Randomized Controlled Trials as Topic
18.
ACS Nano ; 18(2): 1371-1380, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38060408

Respiratory masks are the primary and most effective means of protecting individuals from airborne hazards such as droplets and particulate matter during public engagements. However, conventional electrostatically charged melt-blown microfiber masks typically require thick and dense membranes to achieve high filtration efficiency, which in turn cause a significant pressure drop and reduce breathability. In this study, we have developed a multielectrospinning system to address this issue by manipulating the pore structure of nanofiber networks, including the use of uniaxially aligned nanofibers created via an electric-field-guided electrospinning apparatus. In contrast to the common randomly collected microfiber membranes, partially aligned dual-nanofiber membranes, which are fabricated via electrospinning of a random 150 nm nanofiber base layer and a uniaxially aligned 450 nm nanofiber spacer layer on a roll-to-roll collector, offer an efficient way to modulate nanofiber membrane pore structures. Notably, the dual-nanofiber configuration with submicron pore structure exhibits increased fiber density and decreased volume density, resulting in an enhanced filtration efficiency of over 97% and a 50% reduction in pressure drop. This leads to the highest quality factor of 0.0781. Moreover, the submicron pore structure within the nanofiber networks introduces an additional sieving filtration mechanism, ensuring superior filtration efficiency under highly humid conditions and even after washing with a 70% ethanol solution. The nanofiber mask provides a sustainable solution for safeguarding the human respiratory system, as it effectively filters and inactivates human coronaviruses while utilizing 130 times fewer polymeric materials than melt-blown filters. This reusability of our filters and their minimum usage of polymeric materials would significantly reduce plastic waste for a sustainable global society.


Air Filters , Nanofibers , Humans , Nanofibers/chemistry , Filtration , Polymers
19.
Am J Respir Crit Care Med ; 209(2): 175-184, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-37917367

Rationale: Air pollution caused by wildfire smoke is linked to adverse health outcomes, especially for people living with asthma. Objectives: To evaluate whether government rebates for high-efficiency particulate air (HEPA) filters, which reduce concentrations of smoke particles indoors, are cost effective in managing asthma and preventing exacerbations in British Columbia (BC), Canada. Methods: We used a Markov model to analyze health states for asthma control, exacerbation severity, and death over a retrospective time horizon of 5 years (2018-2022). Concentrations of wildfire smoke-derived particulate matter with an aerodynamic diameter ⩽2.5 µm (PM2.5) from the Canadian Optimized Statistical Smoke Exposure Model and relevant literature informed the model. The base-case analysis assumed continuous use of a HEPA filter. Costs and quality-adjusted life-years (QALYs) resulting from varying rebates were computed for each Health Service Delivery Area (HSDA). Measurements and Main Results: In the base-case analysis, HEPA filter use resulted in increased costs of $83.34 (SE, $1.03) and increased QALYs of 0.0011 (SE, 0.0001) per person. The average incremental cost-effectiveness ratio among BC HSDAs was $74,652/QALY (SE, $3,517), with incremental cost-effectiveness ratios ranging from $40,509 to $89,206 per QALY in HSDAs. Across the province, the intervention was projected to prevent 4,418 exacerbations requiring systemic corticosteroids, 643 emergency department visits, and 425 hospitalizations during the 5-year time horizon. A full rebate was cost effective in 1 of the 16 HSDAs across BC. The probability of cost-effectiveness ranged from 0.1% to 74.8% across HSDAs. A $100 rebate was cost effective in most HSDAs. Conclusions: The cost-effectiveness of HEPA filters in managing wildfire smoke-related asthma issues in BC varies by region. Government rebates up to two-thirds of the filter cost are generally cost effective, with a full rebate being cost effective only in Kootenay Boundary.


Air Filters , Air Pollutants , Air Pollution , Asthma , Wildfires , Humans , Cost-Benefit Analysis , Air Filters/adverse effects , Retrospective Studies , Asthma/etiology , Particulate Matter/adverse effects , Particulate Matter/analysis , Air Pollution/adverse effects , Air Pollution/prevention & control , Air Pollution/analysis , Dust , British Columbia , Air Pollutants/adverse effects
...