Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37511251

RESUMEN

This study investigated the effects of the Albizia julibrissin Leaf extracts (AJLE) on adipocytes using 3T3-L1 cells. AJLE inhibited adipogenesis by reducing the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding proteins (C/EBPs) that regulate enzymes involved in fat synthesis and storage, and subsequently reduced intracellular lipid droplets, glycerol-3-phosphate dehydrogenase (GPDH), and triglyceride (TG). AJLE also increased the expression of brown adipocyte markers, such as uncoupling protein-1 (UCP-1), PR/SET domain 16 (PRDM16), and bone morphogenetic protein 7 (BMP7) by inducing the differentiation of brown adipocytes, as shown by a decrease in the lipid droplet sizes and increasing mitochondrial mass. AJLE increased the expression of transcription factor A, mitochondrial (TFAM), mitochondrial DNA (mtDNA) copy number, and UCP-1 protein expression, all of which are key factors in regulating mitochondrial biogenesis. AJLE-induced browning was shown to be regulated by the coordination of AMPK, p38, and SIRT1 signaling pathways. The ability of AJLE to inhibit adipogenesis and induce brown adipocyte differentiation may help treat obesity and related diseases.


Asunto(s)
Adipocitos Blancos , Albizzia , Ratones , Animales , Adipocitos Blancos/metabolismo , Albizzia/genética , Albizzia/metabolismo , Diferenciación Celular , Adipogénesis/genética , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Adipocitos Marrones/metabolismo , ADN Mitocondrial/metabolismo , Células 3T3-L1 , PPAR gamma/metabolismo
2.
Mol Biol Rep ; 48(3): 2619-2628, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33792827

RESUMEN

Fabaceae, the third-largest Angiosperm family, exhibits great morphological diversity with significantly high species diversification rate. Albizia, one of the largest genera of the legume family, possesses high ecological, economical and medicinal application prospects and displays a global distribution. The taxonomic classification among Albizia remains, however, unclear and has been subjected to changes. The resolution of phylogenetic relationships among members of genus Albizia is a priority. Nine Albizia species cultivated in Egypt; Albizia lebbeck, A. julibrissin, A. odoratissima, A. procera, A. anthelmintica, A. guachapele, A. myriophylla, A. richardiana and A. lucida were subjected to molecular classification via DNA fingerprinting techniques viz. Inter Simple Sequence Repeat (ISSR) and Start Codon Targeted polymorphism (SCoT) using ten primers, five for each technique. The total number of bands produced by ISSR and SCoT primers was 28 and 40, respectively. The percentage of polymorphism varied from 64.28% in ISSR to 67.50% in SCoT analysis. Additionally, chemotaxonomic analysis was implemented based on UV spectroscopic profiling and total phenolic content coupled to unsupervised chemometric tools; Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). Interspecific relationships were confirmed via molecular and phytochemical analyses between A. procera and A. guachapele; A. lebbeck and A. odoratissima; and A. julibrissin and A. lucida. The study reveals that chemotaxonomic data can reflect phylogenetic relationships among examined Albizia species and provides insights to the significance of utilizing the strengths of both molecular taxonomy and chemotaxonomy to resolve phylogenetic relationship among this genus which offers baseline for breeding programs. Future strategies to enrich taxonomic classification among Albizia includes extensive morphological characterization, DNA barcoding techniques and metabolomic profiling.


Asunto(s)
Albizzia/clasificación , Albizzia/genética , Filogenia , Fitoquímicos/genética , Fitomejoramiento , Análisis por Conglomerados , Repeticiones de Microsatélite/genética , Análisis Multivariante , Fenoles/análisis , Espectrofotometría Ultravioleta
3.
J Plant Physiol ; 258-259: 153358, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33453433

RESUMEN

Silk tree, Albizia julibrissin Duraz, is an old ornamental plant and extensively cultivated in Asia. Previous works have discovered that the terpenoids were the dominating compounds in the floral VOC of A. julibrissin, however the biosynthesis of these terpenoids was poorly understood so far. Here, 11 terpene synthase genes (TPSs) were identified by transcriptome sequencing that fell into TPS-a, TPS-b and TPS-g subfamilies. The enzymatic activity tests showed that five genes were functional: AjTPS2 was a sesquiterpene synthase and produced α-farnesene and (Z, E)-ß-farnesene; AjTPS5 was able to catalyze the formation of five monoterpenes and nine sesquiterpenes; AjTPS7, AjTPS9 and AjTPS10 were dedicated monoterpene synthases, as AjTPS7 and AjTPS10 formed the single product ß-ocimene and linalool, respectively, and AjTPS9 produced γ-terpinene with other three monoterpenes. More importantly, the main catalytic products of the characterized AjTPSs were consistent with the terpenoids observed in A. julibrissin volatiles. Combining terpene chemistry, TPSs biochemical activities and gene expression analysis, we demonstrate that AjTPS2, AjTPS5, AjTPS7, AjTPS9 and AjTPS10 are responsible for the volatile terpenoids biosynthesis in A. julibrissin.


Asunto(s)
Albizzia/genética , Transferasas Alquil y Aril/genética , Proteínas de Plantas/genética , Terpenos/metabolismo , Albizzia/enzimología , Albizzia/metabolismo , Transferasas Alquil y Aril/metabolismo , Proteínas de Plantas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
4.
Zhongguo Zhong Yao Za Zhi ; 39(12): 2164-8, 2014 Jun.
Artículo en Chino | MEDLINE | ID: mdl-25244737

RESUMEN

The ITS2 barcode was used to accurately identify Albiziae Cortex, Albiziae Flos and their adulterants in this study. A total of46 samples from Albiziae Cortex, Albiziae Flos and their adulterants were collected. The ITS2 regions were amplified and sequenced. Sequences were assembled using the CodonCode Aligner. The genetic distances of ITS2 region were calculated using MEGA 5.0. BLAST1, nearest distance and phylogenetic tree (NJ-tree) methods were used to assess the identification efficiency of the ITS2 barcode. The results revealed that the intraspecific genetic distances of Albizia julibrissin were lower than the interspecific genetic distances between A. julibrissin and its adulterants. The identification efficiency of ITS2 barcode using BLAST1 was 100%. The NJ-tree showed that A. julibrissin and their adulterants can be easily differentiated according to their monophyly. The ITS2 barcode is suitable to be as a barcode to identify Albiziae Cortex, Albiziae Flos and their adulterants.


Asunto(s)
Albizzia/clasificación , Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , ADN Espaciador Ribosómico/genética , Medicamentos Herbarios Chinos/clasificación , Albizzia/genética , Medicamentos Herbarios Chinos/química , Flores/clasificación , Flores/genética , Datos de Secuencia Molecular , Filogenia , Control de Calidad
6.
Heredity (Edinb) ; 94(4): 418-25, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15714221

RESUMEN

We estimate gene flow and patterns of genetic diversity in Albizia lebbeck, an invasive leguminous tree in the dry forest of southwestern Puerto Rico. Genetic diversity estimates calculated for 10 populations of 24 trees each indicated that these populations may have been formed from multiple introductions. The presence of unique genotypes in the northernmost populations suggests that novel genotypes are still immigrating into the area. This combination of individuals from disparate locations led to high estimates of genetic diversity (He = 0.266, P = 0.67). Indirect estimates of gene flow indicate that only 0.69 migrants per generation move between populations, suggesting that genetic diversity within populations should decrease due to genetic drift. Since migration-drift equilibrium was not found, however, this estimate needs to be viewed with caution. The regular production of pods in this outcrossing species (tm = 0.979) indicates that sufficient outcross pollen is received to insure successful reproduction. Direct estimates of gene flow indicate that between 44 and 100% of pollen received by trees in four small stands of trees (n < 11) was foreign. The role of gene flow in facilitating the spread of this invasive plant species is discussed.


Asunto(s)
Albizzia/genética , ADN de Plantas/genética , Flujo Genético , Variación Genética , Sitios de Carácter Cuantitativo/genética , Genética de Población , Genotipo , Puerto Rico
7.
Heredity (Edinb) ; 90(2): 187-94, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12634826

RESUMEN

Studies of pollen movement in plant populations are often limited to a single reproductive event, despite concerns about the adequacy of single-year measures for perennial organisms. In this study, we estimate the effective number of pollen donors per tree from a multiyear study of Albizia julibrissin Durazz (mimosa, Fabaceae), an outcrossing, insect-pollinated tree. We determined 40 seedling genotypes for each of 15 seed trees during 4 successive years. A molecular analysis of variance of the pollen gametes fertilizing the sampled seeds was used to partition variation in pollen pools among seed trees, among years, and within single tree-year collections. Using these variance components, we demonstrate significant male gametic variability among years for individual trees. However, results indicate that yearly variation in the 'global pollen pool', averaged over all 15 seed trees for these 4 years, is effectively zero. We estimate the effective number of pollen donors for a single mimosa tree (N(ep)) to be 2.87. Single season analyses yield N(ep) approximately 2.05, which is 40% less than the value of N(ep) estimated from 4 years of data. We discuss optimal sampling for future studies designed to estimate N(ep). Studies should include more trees, each sampled over at least a few years, with fewer seeds per tree per year than are needed for a traditional parentage study.


Asunto(s)
Albizzia/fisiología , Polen , Albizzia/genética , Variación Genética , Polen/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA