Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 14.307
1.
J Phys Chem B ; 128(17): 4076-4086, 2024 May 02.
Article En | MEDLINE | ID: mdl-38642057

In aqueous binary solvents with fluorinated alcohols, 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), and aliphatic alcohols, ethanol (EtOH) and 2-propanol (2-PrOH), the denaturation of hen egg white lysozyme (HEWL) with increasing alcohol mole fraction xA has been investigated in a wide view from the molecular vibration to the secondary and ternary structures. Circular dichroism (CD) measurement showed that the secondary structure of α-helix content of HEWL increases on adding a small amount of the fluorinated alcohol to the aqueous solution, while the ß-sheet content decreases. On the contrary, the secondary structure does not significantly change by the addition of the aliphatic alcohols. Correspondingly, the infrared (IR) spectroscopic measurements revealed that the amide I band red-shifts on the addition of the fluorinated alcohol. However, the band remains unchanged in the aliphatic alcohol systems with increasing alcohol content. To observe the ternary structure of HEWL, small-angle neutron scattering (SANS) experiments with H/D substitution technique have been applied to the HEWL solutions. The SANS experiments were successful in revealing the details of how the geometry of the HEWL changes as a function of xA. The SANS profiles indicated the spherical structure of HEWL in all of the alcohol systems in the xA range examined. The mean radius of HEWL in the two fluorinated alcohol systems increases from ∼16 to ∼18 Å during the change in the secondary structure against the increase in the fluorinated alcohol content. On contrast, the radius does not significantly change in both aliphatic alcohol systems below xA = 0.3 but expands to ∼19 Å as the alcohol content is close to the limitation of the HEWL solubility. According to the present results, together with our knowledge of the alcohol cluster formation and the interaction of the trifluoromethyl (CF3) groups with the hydrophobic moieties of biomolecules, the effects of alcohols on the denaturation of the protein have been discussed on a molecular scale.


Circular Dichroism , Muramidase , Protein Denaturation , Scattering, Small Angle , Muramidase/chemistry , Muramidase/metabolism , Animals , Neutron Diffraction , Spectrophotometry, Infrared , Chickens , Alcohols/chemistry
2.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38673827

We report a study on the hydrogen bonding mechanisms of three aliphatic alcohols (2-propanol, methanol, and ethanol) and one diol (ethylene glycol) in water solution using a time-domain ellipsometer in the THz region. The dielectric response of the pure liquids is nicely modeled by the generalized Debye-Lorentz equation. For binary mixtures, we analyze the data using a modified effective Debye model, which considers H-bond rupture and reformation dynamics and the motion of the alkyl chains and of the OH groups. We focus on the properties of the water-rich region, finding anomalous behavior in the absorption properties at very low solute molar concentrations. These results, first observed in the THz region, are in line with previous findings from different experiments and can be explained by taking into account the amphiphilic nature of the alcohol molecules.


Alcohols , Hydrogen Bonding , Water , Water/chemistry , Alcohols/chemistry , Terahertz Spectroscopy/methods , Ethanol/chemistry , 2-Propanol/chemistry
3.
Molecules ; 29(7)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38611800

4-Chloroisocoumarin compounds have broad inhibitory properties against serine proteases. Here, we show that selected 3-alkoxy-4-chloroisocoumarins preferentially inhibit the activity of the conserved serine protease High-temperature requirement A of Chlamydia trachomatis. The synthesis of a new series of isocoumarin-based scaffolds has been developed, and their anti-chlamydial properties were investigated. The structure of the alkoxy substituent was found to influence the potency of the compounds against High-temperature requirement A, and modifications to the C-7 position of the 3-alkoxy-4-chloroisocoumarin structure attenuate anti-chlamydial properties.


Alcohols , Chlamydia trachomatis , Protease Inhibitors , Protease Inhibitors/pharmacology , Enzyme Therapy , Isocoumarins , Serine Endopeptidases , Serine Proteases
4.
Food Res Int ; 182: 114077, 2024 Apr.
Article En | MEDLINE | ID: mdl-38519167

Fruits flavor deterioration is extremely likely to occur during post-harvest storage, which not only damages quality but also seriously affects its market value. This work focuses on the study of fruits deterioration odorants during storage by describing their chemical compositions (i.e., alcohols, aldehydes, acids, and sulfur-containing compounds). Besides, the specific flavor deterioration mechanisms (i.e., fermentation metabolism, lipid oxidation, and amino acid degradation) inducing by factors (temperature, oxygen, microorganisms, ethylene) are summarized. Moreover, quality control strategies to mitigate fruits flavor deterioration by physical (temperature control, hypobaric treatment, UV-C, CA) and chemical (1-MCP, MT, NO, MeJA) techniques are also proposed. This review will provide useful references for fruits flavor control technologies development.


Fruit , Odorants , Fruit/chemistry , Aldehydes/analysis , Alcohols/analysis , Fermentation
5.
Food Res Int ; 182: 114187, 2024 Apr.
Article En | MEDLINE | ID: mdl-38519195

The flavor profiles of fresh and aged fermented peppers obtained from four varieties were thoroughly compared in this study. A total of 385 volatile compounds in fermented pepper samples were detected by flavoromics (two-dimensional gas chromatography-time-of-flight mass spectrometry). As fermentation progressed, both the number and the total concentration of volatile compounds changed, with esters, alcohols, acids, terpenoids, sulfur compounds, and funans increasing, whereas hydrocarbons and benzenes decreased. In contrast to the fresh fermented peppers, the aged fermented samples exhibited lower values of pH, total sugars, and capsaicinoids but higher contents of organic acids and free amino acids. Furthermore, the specific differences and characteristic aroma substances among aged fermented peppers were unveiled by multivariate statistical analysis. Overall, 64 volatiles were screened as differential compounds. In addition, Huanggongjiao samples possessed the most abundant differential volatiles and compounds with odor activity values > 1, which were flavored with fruity, floral, and slightly phenolic odors. Correlation analysis demonstrated that the levels of 23 key aroma compounds (e.g., ethyl 2-methylbutyrate, 1-butanol, and ethyl valerate) showed a significantly positive correlation with Asp, Glu and 5 organic acids. By contrast, there is a negative association between the pH value and total sugar. Overall, aging contributed significantly to the flavor attributes of fermented peppers.


Fruit , Piper nigrum , Fruit/chemistry , Odorants/analysis , Gas Chromatography-Mass Spectrometry/methods , Alcohols/analysis , Fermentation , Acids/analysis
6.
Plant Signal Behav ; 19(1): 2331894, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38516998

A bacterium growing on infected leaves of Hydrocotyle umbellata, commonly known as dollarweed, was isolated and identified as Pantoea ananatis. An ethyl acetate extract of tryptic soy broth (TSB) liquid culture filtrate of the bacterium was subjected to silica gel chromatography to isolate bioactive molecules. Indole was isolated as the major compound that gave a distinct, foul odor to the extract, together with phenethyl alcohol, phenol, tryptophol, N-acyl-homoserine lactone, 3-(methylthio)-1-propanol, cyclo(L-pro-L-tyr), and cyclo(dehydroAla-L-Leu). This is the first report of the isolation of cyclo(dehydroAla-L-Leu) from a Pantoea species. Even though tryptophol is an intermediate in the indoleacetic acid (IAA) pathway, we were unable to detect or isolate IAA. We investigated the effect of P. ananatis inoculum on the growth of plants. Treatment of Lemna paucicostata Hegelm plants with 4 × 109 colony forming units of P. ananatis stimulated their growth by ca. five-fold after 13 days. After 13 days of treatment, some control plants were browning, but treated plants were greener and no plants were browning. The growth of both Cucumis sativus (cucumber) and Sorghum bicolor (sorghum) plants was increased by ca. 20 to 40%, depending on the growth parameter and species, when the rhizosphere was treated with the bacterium after germination at the same concentration. Plant growth promotion by Pantoea ananatis could be due to the provision of the IAA precursor indole.


Alcohols , Centella , Indoles , Pantoea , Pantoea/chemistry , Pantoea/metabolism , Plants/microbiology
7.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article En | MEDLINE | ID: mdl-38542218

This study addresses the pressing issues of energy production and consumption, in line with global sustainable development goals. Focusing on the potential of alcohols as "green" alternatives to traditional fossil fuels, especially in biofuel applications, we investigate the thermochemical properties of three alcohols (n-propanol, n-butanol, n-pentanol) blended with sunflower oil. The calorimetric analysis allows for the experimental determination of excess enthalpies in pseudo-binary mixtures at 303.15 K, revealing similarities in the trends of the curves (dependence on concentrations) but with different values for the excess enthalpies for each mixture. Despite the structural differences of the alcohols studied, the molar excess enthalpy values exhibit uniformity, suggesting consistent mixing behavior. The peak values of excess enthalpies for systems with sunflower oil and n-propanol, n-butanol and n-pentanol are, respectively, 3255.2 J/mole, 3297.4 J/mole and 3150.1 J/mole. Both the NRTL and Redlich-Kister equations show satisfactory agreement with the obtained values.


Alcohols , Biofuels , Pentanols , Alcohols/chemistry , Sunflower Oil , 1-Propanol , 1-Butanol
8.
J Agric Food Chem ; 72(11): 5766-5776, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38447044

The aromatic amino acids tryptophan, phenylalanine, and tyrosine are targets for oxidation during food processing. We investigated whether S. cerevisiae can use nonproteinogenic aromatic amino acids as substrates for degradation via the Ehrlich pathway. The metabolic fate of seven amino acids (p-, o-, m-tyrosine, 3,4-dihydroxyphenylalanine (DOPA), 3-nitrotyrosine, 3-chlorotyrosine, and dityrosine) in the presence of S. cerevisiae was assessed. All investigated amino acids except dityrosine were metabolized by yeast. The amino acids 3-nitrotyrosine and o-tyrosine were removed from the medium as fast as p-tyrosine, and m-tyrosine, 3-chlorotyrosine, and DOPA more slowly. In summary, 11 metabolites were identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). DOPA, 3-nitrotyrosine, and p-tyrosine were metabolized predominantly to the Ehrlich alcohols, whereas o-tyrosine and m-tyrosine were metabolized predominantly to α-hydroxy acids. Our results indicate that nonproteinogenic aromatic amino acids can be taken up and transaminated by S. cerevisiae quite effectively but that decarboxylation and reduction to Ehrlich alcohols as the final metabolites is hampered by hydroxyl groups in the o- or m-positions of the phenyl ring. The data on amino acid metabolism were substantiated by the analysis of five commercial beer samples, which revealed the presence of hydroxytyrosol (ca. 0.01-0.1 mg/L) in beer for the first time.


Amino Acids, Aromatic , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Amino Acids, Aromatic/metabolism , Tandem Mass Spectrometry , Tyrosine/metabolism , Amino Acids/metabolism , Dihydroxyphenylalanine/metabolism , Alcohols/metabolism
9.
Nat Commun ; 15(1): 2523, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38514642

Prostaglandins have garnered significant attention from synthetic chemists due to their exceptional biological activities. In this report, we present a concise chemoenzymatic synthesis method for several representative prostaglandins, achieved in 5 to 7 steps. Notably, the common intermediate bromohydrin, a radical equivalent of Corey lactone, is chemoenzymatically synthesized in only two steps, which allows us to complete the synthesis of prostaglandin F2α in five steps on a 10-gram scale. The chiral cyclopentane core is introduced with high enantioselectivity, while the lipid chains are sequentially incorporated through a cost-effective process involving bromohydrin formation, nickel-catalyzed cross-couplings, and Wittig reactions. This cost-efficient synthesis route for prostaglandins holds the potential to make prostaglandin-related drugs more affordable and facilitate easier access to their analogues.


Alcohols , Prostaglandins , Prostaglandins/chemical synthesis
10.
Helicobacter ; 29(2): e13064, 2024.
Article En | MEDLINE | ID: mdl-38459689

BACKGROUND: Helicobacter pylori (H. pylori) infection is the most extensively studied risk factor for gastric cancer. As with any bacteria, H. pylori will release distinctive odors that result from an emission of volatile metabolic byproducts in unique combinations and proportions. Effectively capturing and identifying these volatiles can pave the way for the development of innovative and non-invasive diagnostic methods for determining infection. Here we characterize the H. pylori volatilomic signature, pinpoint potential biomarkers of its presence, and evaluate the variability of volatilomic signatures between different H. pylori isolates. MATERIALS AND METHODS: Using needle trap extraction, volatiles in the headspace above H. pylori cultures were collected and, following thermal desorption at 290°C in a splitless mode, were analyzed using gas chromatography-mass spectrometry. The resulting volatilomic signatures of H. pylori cultures were compared to those obtained from an analysis of the volatiles in the headspace above the cultivating medium only. RESULTS: Amongst the volatiles detected, 21 showed consistent differences between the bacteria cultures and the cultivation medium, with 11 compounds being elevated and 10 showing decreased levels in the culture's headspace. The 11 elevated volatiles are four ketones (2-pentanone, 5-methyl-3-heptanone, 2-heptanone, and 2-nonanone), three alcohols (2-methyl-1-propanol, 3-methyl-1-butanol, and 1 butanol), one aromatic (styrene), one aldehyde (2-ethyl-hexanal), one hydrocarbon (n-octane), and one sulfur compound (dimethyl disulfide). The 10 volatiles with lower levels in the headspace of the cultures are four aldehydes (2-methylpropanal, benzaldehyde, 3-methylbutanal, and butanal), two heterocyclic compounds (2-ethylfuran and 2-pentylfuran), one ketone (2-butanone), one aromatic (benzene), one alcohol (2-butanol) and bromodichloromethane. Of the volatile species showing increased levels, the highest emissions are found to be for 3-methyl-1-butanol, 1-butanol and dimethyl disulfide. Qualitative variations in their emissions from the different isolates was observed. CONCLUSIONS: The volatiles emitted by H. pylori provide a characteristic volatilome signature that has the potential of being developed as a tool for monitoring infections caused by this pathogen. Furthermore, using the volatilome signature, we are able to differentiate different isolates of H. pylori. However, the volatiles also represent potential confounders for the recognition of gastric cancer volatile markers.


Disulfides , Helicobacter Infections , Helicobacter pylori , Pentanols , Stomach Neoplasms , Humans , Alcohols
11.
Chem Pharm Bull (Tokyo) ; 72(3): 303-308, 2024.
Article En | MEDLINE | ID: mdl-38479853

Amine-free phosphorylation of various alcohols was developed with 4-methylpyridine N-oxide in the presence of 4 Å molecular sieves at room temperature. This mild method gave various phosphorylated products in high yield and could be applied to acid- or base-sensitive substrates. Furthermore, this method was also effective for the chemoselective phosphorylation of diols or polyols.


Alcohols , Oxides , Picolines , Amines , Phosphorylation , Catalysis
12.
Chem Soc Rev ; 53(9): 4607-4647, 2024 May 07.
Article En | MEDLINE | ID: mdl-38525675

Alcohol is ubiquitous with unparalleled structural diversity and thus has wide applications as a native functional group in organic synthesis. It is highly prevalent among biomolecules and offers promising opportunities for the development of chemical libraries. Over the last decade, alcohol has been extensively used as an environmentally friendly chemical for numerous organic transformations. In this review, we collectively discuss the utilisation of alcohol from 2015 to 2023 in various organic transformations and their application toward intermediates of drugs, drug derivatives and natural product-like molecules. Notable features discussed are as follows: (i) sustainable approaches for C-X alkylation (X = C, N, or O) including O-phosphorylation of alcohols, (ii) newer strategies using methanol as a methylating reagent, (iii) allylation of alkenes and alkynes including allylic trifluoromethylations, (iv) alkenylation of N-heterocycles, ketones, sulfones, and ylides towards the synthesis of drug-like molecules, (v) cyclisation and annulation to pharmaceutically active molecules, and (vi) coupling of alcohols with aryl halides or triflates, aryl cyanide and olefins to access drug-like molecules. We summarise the synthesis of over 100 drugs via several approaches, where alcohol was used as one of the potential coupling partners. Additionally, a library of molecules consisting over 60 fatty acids or steroid motifs is documented for late-stage functionalisation including the challenges and opportunities for harnessing alcohols as renewable resources.


Alcohols , Alcohols/chemistry , Alcohols/chemical synthesis , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/chemical synthesis , Biological Products/chemistry , Biological Products/chemical synthesis , Indicators and Reagents/chemistry , Alkylation , Molecular Structure , Alkenes/chemistry , Alkenes/chemical synthesis , Green Chemistry Technology
13.
New Phytol ; 242(5): 2251-2269, 2024 Jun.
Article En | MEDLINE | ID: mdl-38501480

The plant cuticle is a hydrophobic barrier, which seals the epidermal surface of most aboveground organs. While the cuticle biosynthesis of angiosperms has been intensively studied, knowledge about its existence and composition in nonvascular plants is scarce. Here, we identified and characterized homologs of Arabidopsis thaliana fatty acyl-CoA reductase (FAR) ECERIFERUM 4 (AtCER4) and bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase 1 (AtWSD1) in the liverwort Marchantia polymorpha (MpFAR2 and MpWSD1) and the moss Physcomitrium patens (PpFAR2A, PpFAR2B, and PpWSD1). Although bryophyte harbor similar compound classes as described for angiosperm cuticles, their biosynthesis may not be fully conserved between the bryophytes M. polymorpha and P. patens or between these bryophytes and angiosperms. While PpFAR2A and PpFAR2B contribute to the production of primary alcohols in P. patens, loss of MpFAR2 function does not affect the wax profile of M. polymorpha. By contrast, MpWSD1 acts as the major wax ester-producing enzyme in M. polymorpha, whereas mutations of PpWSD1 do not affect the wax ester levels of P. patens. Our results suggest that the biosynthetic enzymes involved in primary alcohol and wax ester formation in land plants have either evolved multiple times independently or undergone pronounced radiation followed by the formation of lineage-specific toolkits.


Waxes , Waxes/metabolism , Alcohols/metabolism , Phylogeny , Marchantia/genetics , Marchantia/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Bryopsida/genetics , Bryopsida/metabolism , Bryophyta/genetics , Bryophyta/metabolism , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , Biosynthetic Pathways/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Acyltransferases/metabolism , Acyltransferases/genetics , Biological Evolution , Arabidopsis/genetics , Arabidopsis/metabolism , Mutation/genetics
14.
Bioresour Technol ; 400: 130646, 2024 May.
Article En | MEDLINE | ID: mdl-38556063

The present study evaluated the production potential of CH4, carboxylic acids and alcohols from a mixed culture enriched using synthetic syngas. The influence of syngas concentration on the microbial community and products productivity and selectivity was investigated. The results demonstrated the enrichment of a mesophilic mixed culture capable of converting CO and H2 mainly to CH4 and acetate, along with butyrate. The selectivity values showed that acetate production was enhanced during the first cycle in all conditions tested (up to 20 %), while CH4 was the main product generated during following cycles. Concretely, CH4 selectivity remained unaffected by syngas concentration, reaching a stable value of 41.6 ± 2.0 %. On the other hand, butyrate selectivity was only representative at the highest syngas concentration and lower pH values (26.1 ± 5.8 %), where the H2 consumption was completely inhibited. Thus, pH was identified as a key parameter for both butyrate synthesis and the development of hydrogenotrophic activity.


Fatty Acids, Volatile , Methane , Methane/metabolism , Fatty Acids, Volatile/metabolism , Hydrogen-Ion Concentration , Hydrogen/metabolism , Gases/metabolism , Bioreactors , Alcohols/metabolism , Acetates/metabolism , Butyrates/metabolism
15.
J Am Chem Soc ; 146(8): 5067-5073, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38365186

The replacement of a functional group with its corresponding bioisostere is a widely employed tactic during drug discovery campaigns that allows medicinal chemists to improve the ADME properties of candidates while maintaining potency. However, the incorporation of bioisosteres typically requires lengthy de novo resynthesis of potential candidates, which represents a bottleneck in their broader evaluation. An alternative would be to directly convert a functional group into its corresponding bioisostere at a late stage. Herein, we report the realization of this approach through the conversion of aliphatic alcohols into the corresponding difluoromethylated analogues via the merger of benzoxazolium-mediated deoxygenation and copper-mediated C(sp3)-CF2H bond formation. The utility of this method is showcased in a variety of complex alcohols and drug compounds.


Drug Discovery , Alcohols/chemistry
16.
Chem Biodivers ; 21(4): e202400218, 2024 Apr.
Article En | MEDLINE | ID: mdl-38381590

Certain 2-amino-6-alkoxy-4-arylpyridine-3,5-dicyanide 1a-e were prepared via a straightforward process using microwave technology rather than conventional methods. This involved reaction of arylidenemalononitrile thru propanedinitrile in the occurrence of sodium alkoxide under MW. While, their positional isomer 4-amino-6-alkoxy-2-arylpyridine-3,5-dicyanide 3a-j have been separated from the reaction of aryl aldehydes with 2-aminoprop-1-ene-1,1,3-tricarbonitrile 2 in the presence of sodium alkoxide using microwave technic. Furthermore, the insecticidal properties of all synthesized compounds were observed with respect to Cotton aphid nymphs and adults. Neonicotinoid pesticides are indicated as the most effective pesticides toward aphids and many other pests. Many insecticides are discovered as novelties. As a result, several pyridine compounds were chemical method synthesized to serve as equivalents of neonicotinoids, a broad class of insecticides. With LC50 value of 0.03 mg/L, components 3g exhibit the highest insecticidal bioactivity. This work discusses how to find new chemicals that could be used as insecticidal agents in the future.


Alcohols , Aphids , Insecticides , Animals , Insecticides/chemistry , Microwaves , Neonicotinoids/pharmacology , Sodium/pharmacology
17.
Nature ; 628(8006): 104-109, 2024 Apr.
Article En | MEDLINE | ID: mdl-38350601

The development of bimolecular homolytic substitution (SH2) catalysis has expanded cross-coupling chemistries by enabling the selective combination of any primary radical with any secondary or tertiary radical through a radical sorting mechanism1-8. Biomimetic9,10 SH2 catalysis can be used to merge common feedstock chemicals-such as alcohols, acids and halides-in various permutations for the construction of a single C(sp3)-C(sp3) bond. The ability to sort these two distinct radicals across commercially available alkenes in a three-component manner would enable the simultaneous construction of two C(sp3)-C(sp3) bonds, greatly accelerating access to complex molecules and drug-like chemical space11. However, the simultaneous in situ formation of electrophilic and primary nucleophilic radicals in the presence of unactivated alkenes is problematic, typically leading to statistical radical recombination, hydrogen atom transfer, disproportionation and other deleterious pathways12,13. Here we report the use of bimolecular homolytic substitution catalysis to sort an electrophilic radical and a nucleophilic radical across an unactivated alkene. This reaction involves the in situ formation of three distinct radical species, which are then differentiated by size and electronics, allowing for regioselective formation of the desired dialkylated products. This work accelerates access to pharmaceutically relevant C(sp3)-rich molecules and defines a distinct mechanistic approach for alkene dialkylation.


Alkenes , Catalysis , Hydrogen , Acids/chemistry , Alcohols/chemistry , Alkenes/chemistry , Biomimetics , Hydrogen/chemistry , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/chemistry
18.
J Chem Ecol ; 50(3-4): 110-121, 2024 Apr.
Article En | MEDLINE | ID: mdl-38374478

In most species of moths, the female produces and releases a volatile sex pheromone from a specific gland to attract a mate. Biosynthesis of the most common type of moth sex pheromone component (Type 1) involves de novo synthesis of hexadecanoate (16:Acyl), followed by modification to various fatty acyl intermediates, then reduction to a primary alcohol, which may be acetylated or oxidized to produce an acetate ester or aldehyde, respectively. Our previous work on the moth Chloridea virescens (Noctuidae) showed that females produce 90% of the major pheromone component, (Z)-11-hexadecenal (Z11-16:Ald), via a direct and rapid route of de novo biosynthesis with highly labile intermediates, and ca. 10% from an indirect route that likely mobilizes a pre-synthesized 16-carbon skeleton, possibly, (Z)-11-hexadecenoate (Z11-16:Acyl) or hexadecanoate (16:Acyl). In this paper, we use stable isotope tracer/tracee techniques to study the dynamics of the precursor alcohol (Z)-11-hexadecenol (Z11-16:OH) and stores of Z11-16:Acyl and 16:Acyl to determine their roles in biosynthesis of Z11-16:Ald. We found: (i) that intracellular Z11-16:OH is synthesized at roughly the same rate as Z11-16:Ald, indicating that translocation and oxidation of this moiety does not rate limit biosynthesis of Z11-16:Ald, (ii) intracellular Z11-16:OH consists of two pools, a highly labile one rapidly translocated out of the cell and converted to Z11-16:Ald, and a less labile one that mostly remains in gland cells, (iii) during pheromone biosynthesis, net stores of Z11-16:Acyl increase, suggesting it is not the source of Z11-16:Ald produced by the indirect route, and (iv) no evidence for the gland synthesizing stored 16:Acyl prior to (up to 2 days before eclosion), or after, synthesis of pheromone commenced, suggesting the bulk of this stored moiety is synthesized elsewhere and transported to the gland prior to gland maturation. Thus, the pheromone gland of C. virescens produces very little stored fat over its functional lifetime, being optimized to produce sex pheromone.


Aldehydes , Fatty Acids , Moths , Sex Attractants , Sex Attractants/biosynthesis , Sex Attractants/metabolism , Animals , Moths/metabolism , Female , Aldehydes/metabolism , Aldehydes/chemistry , Fatty Acids/metabolism , Alcohols/metabolism , Alcohols/chemistry
19.
Chem Pharm Bull (Tokyo) ; 72(2): 234-239, 2024.
Article En | MEDLINE | ID: mdl-38417869

The first lactam-type 2-iodobenzamide catalysts, 8-iodoisoquinolinones 8 (IB-lactam) and 9 (MeO-IB-lactam), were developed. These catalysts have a conformationally rigid 6/6 bicyclic lactam structure and are more reactive than the previously reported catalysts 2-iodobenzamides 4 (IBamide) and 5 (MeO-IBamide) for the oxidation of alcohols. The lactam structure could form an efficient intramolecular I---O interaction, depending on the size of the lactam ring.


Iodine , Alcohols/chemistry , Catalysis , Iodine/chemistry , Lactams , Oxidation-Reduction , Benzamides/chemistry
20.
Int J Mol Sci ; 25(4)2024 Feb 12.
Article En | MEDLINE | ID: mdl-38396889

A potential strain, Paenibacillus sp. JNUCC32, was isolated and subjected to whole-genome sequencing. Genome functional annotation revealed its active metabolic capabilities. This study aimed to investigate the pivotal secondary metabolites in the biological system. Fermentation and extraction were performed, resulting in the isolation of seven known compounds: tryptophol (1), 3-(4-hydroxyphenyl)propionic acid (2), ferulic acid (3), maculosin (4), brevianamide F (5), indole-3-acetic acid (6), and butyric acid (7). Tryptophol exhibited favorable pharmacokinetic properties and demonstrated certain tyrosinase inhibitory activity (IC50 = 999 µM). For further analysis of its inhibition mechanism through molecular docking and molecular dynamics (MD) simulation, tryptophol formed three hydrogen bonds and a pro-Michaelis complex with tyrosinase (binding energy = -5.3 kcal/mol). The MD simulation indicated favorable stability for the tryptophol-mushroom tyrosinase complex, primarily governed by hydrogen bond interactions. The crucial residues VAL-283 and HIS-263 in the docking were also validated. This study suggests tryptophol as a potential candidate for antibrowning agents and dermatological research.


Alcohols , Indoles , Molecular Dynamics Simulation , Monophenol Monooxygenase , Molecular Docking Simulation , Monophenol Monooxygenase/metabolism , Enzyme Inhibitors/pharmacology
...