Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 380
1.
Cell ; 187(13): 3303-3318.e18, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38906101

Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.


Cryoelectron Microscopy , Mitochondria , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Mitochondria/metabolism , Gametogenesis , Meiosis , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/chemistry , Electron Microscope Tomography , Coenzyme A Ligases/metabolism , Spores, Fungal/metabolism , Cytoplasm/metabolism , Cell Nucleus/metabolism
2.
Biochemistry ; 63(9): 1075-1088, 2024 May 07.
Article En | MEDLINE | ID: mdl-38602394

Aldehyde dehydrogenase enzymes (ALDHs) are widely studied for their roles in disease propagation and cell metabolism. Their use in biocatalysis applications, for the conversion of aldehydes to carboxylic acids, has also been recognized. Understanding the structural features and functions of both prokaryotic and eukaryotic ALDHs is key to uncovering novel applications of the enzyme and probing its role in disease propagation. The thermostable enzyme ALDHTt originating fromThermus thermophilus, strain HB27, possesses a unique extension of its C-terminus, which has been evolutionarily excluded from mesophilic counterparts and other thermophilic enzymes in the same genus. In this work, the thermophilic adaptation is studied by the expression and optimized purification of mutant ALDHTt-508, with a 22-amino acid truncation of the C-terminus. The mutant shows increased activity throughout production compared to native ALDHTt, indicating an opening of the active site upon C-terminus truncation and giving rationale into the evolutionary exclusion of the C-terminal extension from similar thermophilic and mesophilic ALDH proteins. Additionally, the C-terminus is shown to play a role in controlling substrate specificity of native ALDH, particularly in excluding catalysis of certain large and certain aromatic ortho-substituted aldehydes, as well as modulating the protein's pH tolerance by increasing surface charge. Dynamic light scattering and size-exclusion HPLC methods are used to show the role of the C-terminus in ALDHTt oligomeric stability at the cost of catalytic efficiency. Studying the aggregation rate of ALDHTt with and without a C-terminal extension leads to the conclusion that ALDHTt follows a monomolecular reaction aggregation mechanism.


Aldehyde Dehydrogenase , Enzyme Stability , Thermus thermophilus , Thermus thermophilus/enzymology , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/genetics , Substrate Specificity , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Protein Multimerization , Kinetics , Catalytic Domain , Amino Acid Sequence
3.
Food Chem ; 450: 139323, 2024 Aug 30.
Article En | MEDLINE | ID: mdl-38636386

Radix puerariae thomsonii (RPT) contains many phenolics and exhibits various health benefits. Although the free phenolics in RPT have been identified, the composition and content of bound phenolics, which account for approximately 20% of the total phenolic content, remain unknown. In this study, 12 compounds were isolated and identified from RPT-bound phenolic extracts, of which 2 were novel and 6 were reported first in RPT. ORAC and PSC antioxidant activities of 12 compounds, as well as their effects on alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), α-glucosidase, and α-amylase were evaluated. Genistein exhibited the highest ORAC activity, while daidzin demonstrated superior PSC activity. Five compounds, including two new compounds, exhibited the ability to activate both ADH and ALDH. All the compounds except 4-hydroxyphenylacetic acid methyl ester and 2,4,4'-trihydroxydeoxybenzoin demonstrated inhibitory effects on α-glucosidase and α-amylase. Alkaline hydrolysis and stepwise enzymatic hydrolysis revealed that bound phenolics in RPT mainly exist within starch.


Phenols , Plant Extracts , Pueraria , alpha-Amylases , alpha-Glucosidases , Pueraria/chemistry , Phenols/chemistry , Phenols/pharmacology , alpha-Amylases/chemistry , alpha-Amylases/metabolism , alpha-Amylases/antagonists & inhibitors , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Binding Sites , Alcohol Dehydrogenase/chemistry , Alcohol Dehydrogenase/metabolism , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Plant Roots/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Molecular Structure , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology
4.
Chem Biol Interact ; 394: 110993, 2024 May 01.
Article En | MEDLINE | ID: mdl-38604394

Aldehyde dehydrogenase 7A1 (ALDH7A1) catalyzes a step of lysine catabolism. Certain missense mutations in the ALDH7A1 gene cause pyridoxine dependent epilepsy (PDE), a rare autosomal neurometabolic disorder with recessive inheritance that affects almost 1:65,000 live births and is classically characterized by recurrent seizures from the neonatal period. We report a biochemical, structural, and computational study of two novel ALDH7A1 missense mutations that were identified in a child with rare recurrent seizures from the third month of life. The mutations affect two residues in the oligomer interfaces of ALDH7A1, Arg134 and Arg441 (Arg162 and Arg469 in the HGVS nomenclature). The corresponding enzyme variants R134S and R441C (p.Arg162Ser and p.Arg469Cys in the HGVS nomenclature) were expressed in Escherichia coli and purified. R134S and R441C have 10,000- and 50-fold lower catalytic efficiency than wild-type ALDH7A1, respectively. Sedimentation velocity analytical ultracentrifugation shows that R134S is defective in tetramerization, remaining locked in a dimeric state even in the presence of the tetramer-inducing coenzyme NAD+. Because the tetramer is the active form of ALDH7A1, the defect in oligomerization explains the very low catalytic activity of R134S. In contrast, R441C exhibits wild-type oligomerization behavior, and the 2.0 Å resolution crystal structure of R441C complexed with NAD+ revealed no obvious structural perturbations when compared to the wild-type enzyme structure. Molecular dynamics simulations suggest that the mutation of Arg441 to Cys may increase intersubunit ion pairs and alter the dynamics of the active site gate. Our biochemical, structural, and computational data on two novel clinical variants of ALDH7A1 add to the complexity of the molecular determinants underlying pyridoxine dependent epilepsy.


Aldehyde Dehydrogenase , Mutation, Missense , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/metabolism , Humans , Molecular Dynamics Simulation , Crystallography, X-Ray , Models, Molecular , Epilepsy/genetics , Infant , Male
5.
Org Biomol Chem ; 22(6): 1269-1278, 2024 02 07.
Article En | MEDLINE | ID: mdl-38258380

Biocatalytic oxidation is one of the most important and indispensable organic reactions for the development of green and sustainable biomanufacturing processes. NAD(P)+-dependent aldehyde dehydrogenase (ALDH) catalyzes the oxidation of aldehydes to carboxylic acids. Here, two ALDHs, SpALDH1 and SpALDH2, were identified from Sphingobium sp. SYK-6. They belong to different ALDH families and share only 32.30% amino acid identity. Interestingly, SpALDH1 and SpALDH2 exhibit significantly different enzymatic properties and substrate profiles. SpALDH2 has better thermostability than SpALDH1. SpALDH1 is a metalloenzyme and is activated by potassium ions, while SpALDH2 is not metallic-dependent. Compared with SpALDH1, SpALDH2 has a relatively broad substrate spectrum toward aromatic aldehydes. Based on homology modeling and molecular docking analysis, mechanisms underlying the substrate specificity of ALDHs were elucidated. For both ALDHs, hydrophobicity of substrate binding pockets is important for the catalytic properties, especially substrate specificity. Notably, optimization of the flexible loop 444-457 reforms a hydrogen bond between pyridine substrates and SpALDH1, contributing to the high catalytic activity. Finally, a coupling reaction catalyzed by ALDHs and NOX was constructed for efficient production of aromatic carboxylic acids.


Aldehyde Dehydrogenase , Aldehydes , Humans , Molecular Docking Simulation , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/metabolism , Aldehydes/chemistry , Catalysis , Carboxylic Acids , Substrate Specificity
6.
Commun Biol ; 5(1): 895, 2022 09 01.
Article En | MEDLINE | ID: mdl-36050388

Glioblastoma (GBM) is the most aggressive primary brain tumour for which both effective treatments and efficient tools for an early-stage diagnosis are lacking. Herein, we present curcumin-based fluorescent probes that are able to bind to aldehyde dehydrogenase 1A3 (ALDH1A3), an enzyme overexpressed in glioma stem cells (GSCs) and associated with stemness and invasiveness of GBM. Two compounds are selective versus ALDH1A3, without showing any appreciable interaction with other ALDH1A isoenzymes. Indeed, their fluorescent signal is detectable only in our positive controls in vitro and absent in cells that lack ALDH1A3. Remarkably, in vivo, our Probe selectively accumulate in glioblastoma cells, allowing the identification of the growing tumour mass. The significant specificity of our compounds is the necessary premise for their further development into glioblastoma cells detecting probes to be possibly used during neurosurgical operations.


Aldehyde Oxidoreductases , Brain Neoplasms , Curcumin , Glioblastoma , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/metabolism , Aldehyde Oxidoreductases/chemistry , Aldehyde Oxidoreductases/metabolism , Brain Neoplasms/diagnosis , Brain Neoplasms/metabolism , Brain Neoplasms/surgery , Curcumin/metabolism , Curcumin/pharmacology , Early Diagnosis , Fluorescent Dyes/metabolism , Glioblastoma/diagnosis , Glioblastoma/metabolism , Glioblastoma/surgery , Humans , Neoplastic Stem Cells/metabolism
7.
Biochem Biophys Res Commun ; 628: 141-146, 2022 11 05.
Article En | MEDLINE | ID: mdl-36084552

Aldehyde dehydrogenase 1A1 (ALDH1A1) is an enzyme that catalyzes the NAD+-dependent oxidation of aldehydes to carboxylic acids, participating in various metabolic processes. Currently, only structures from human and Ovis aries have been reported. Here we show a 2.89 Å resolution structure of ALDH1A1 from mice using X-ray crystallography. We performed a detailed analysis of the structure and compared it with ALDH1A1 structures from two other species, highlighting the significance of the differences. Structural superimposition reveals that the tetrameric molecule is asymmetrical, and the NAD+-binding domain exhibits a certain rotation. In addition, the noticeable structural differences were detected, including the unique contact between Ser461 and Asp148, as well as the side chain orientations of three amino acids residues, Asn474, Met471 and Phe466. This study helps to expand the structural diversity of the ALDH family.


Aldehyde Dehydrogenase 1 Family , Aldehyde Dehydrogenase , NAD , Retinal Dehydrogenase , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase 1 Family/chemistry , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehydes/metabolism , Amino Acids , Animals , Carboxylic Acids , Crystallography, X-Ray , Mice , NAD/metabolism , Retinal Dehydrogenase/chemistry , Retinal Dehydrogenase/metabolism
8.
Nat Chem Biol ; 18(10): 1065-1075, 2022 10.
Article En | MEDLINE | ID: mdl-35788181

Aldehyde dehydrogenases (ALDHs) are promising cancer drug targets, as certain isoforms are required for the survival of stem-like tumor cells. We have discovered selective inhibitors of ALDH1B1, a mitochondrial enzyme that promotes colorectal and pancreatic cancer. We describe bicyclic imidazoliums and guanidines that target the ALDH1B1 active site with comparable molecular interactions and potencies. Both pharmacophores abrogate ALDH1B1 function in cells; however, the guanidines circumvent an off-target mitochondrial toxicity exhibited by the imidazoliums. Our lead isoform-selective guanidinyl antagonists of ALDHs exhibit proteome-wide target specificity, and they selectively block the growth of colon cancer spheroids and organoids. Finally, we have used genetic and chemical perturbations to elucidate the ALDH1B1-dependent transcriptome, which includes genes that regulate mitochondrial metabolism and ribosomal function. Our findings support an essential role for ALDH1B1 in colorectal cancer, provide molecular probes for studying ALDH1B1 functions and yield leads for developing ALDH1B1-targeting therapies.


Colonic Neoplasms , Colorectal Neoplasms , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase 1 Family , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Aldehydes , Colonic Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Guanidines , Humans , Molecular Probes , Proteome/genetics
9.
Int J Mol Sci ; 23(1)2022 Jan 01.
Article En | MEDLINE | ID: mdl-35008903

Aluminum (Al) toxicity is the main factor limiting plant growth and the yield of cereal crops in acidic soils. Al-induced oxidative stress could lead to the excessive accumulation of reactive oxygen species (ROS) and aldehydes in plants. Aldehyde dehydrogenase (ALDH) genes, which play an important role in detoxification of aldehydes when exposed to abiotic stress, have been identified in most species. However, little is known about the function of this gene family in the response to Al stress. Here, we identified an ALDH gene in maize, ZmALDH, involved in protection against Al-induced oxidative stress. Al stress up-regulated ZmALDH expression in both the roots and leaves. The expression of ZmALDH only responded to Al toxicity but not to other stresses including low pH and other metals. The heterologous overexpression of ZmALDH in Arabidopsis increased Al tolerance by promoting the ascorbate-glutathione cycle, increasing the transcript levels of antioxidant enzyme genes as well as the activities of their products, reducing MDA, and increasing free proline synthesis. The overexpression of ZmALDH also reduced Al accumulation in roots. Taken together, these findings suggest that ZmALDH participates in Al-induced oxidative stress and Al accumulation in roots, conferring Al tolerance in transgenic Arabidopsis.


Adaptation, Physiological/genetics , Aldehyde Dehydrogenase/genetics , Aluminum/toxicity , Arabidopsis/genetics , Arabidopsis/physiology , Genes, Plant , Zea mays/genetics , Adaptation, Physiological/drug effects , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/metabolism , Amino Acid Sequence , Antioxidants/metabolism , Arabidopsis/drug effects , Ascorbate Peroxidases/metabolism , Ascorbic Acid/metabolism , Cloning, Molecular , Gene Expression Regulation, Plant/drug effects , Glutathione/metabolism , Glutathione Reductase/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Phylogeny , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plants, Genetically Modified , Proline/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Subcellular Fractions/metabolism , Superoxides/metabolism , Nicotiana/metabolism
10.
Chem Biol Interact ; 351: 109671, 2022 Jan 05.
Article En | MEDLINE | ID: mdl-34599912

At least 19 human aldehyde dehydrogenase (ALDH) genes and enzymes have been studied among vertebrate organisms. BLAT and BLAST analyses were undertaken of Xenopus tropicalis (western clawed frog) and Xenopus laevis (African clawed frog) genomes which are related diploid (N = 20) and allotetraploid (N = 36) species, respectively. The corresponding ALDH genes and proteins within these Xenopus genomes were identified and studied. Evidence is presented for tetraploid copies of 10 Xenopus laevis ALDH genes, whereas another 7 identified ALDH genes were diploid in nature. Xenopus laevis and Xenopus tropicalis ALDH amino acid sequences were highly homologous with the human enzymes, with the exception of the mitochondrial signal peptide sequences. Amino acids performing catalytic and structural roles were conserved and identified based on previous reports of 3D structures for the corresponding mammalian enzymes.


Aldehyde Dehydrogenase/genetics , Diploidy , Tetraploidy , Xenopus laevis/genetics , Aldehyde Dehydrogenase/chemistry , Amino Acid Sequence , Animals , Evolution, Molecular , Humans , Phylogeny , Protein Sorting Signals/genetics , Sequence Alignment , Sequence Homology, Amino Acid
11.
Cells ; 10(12)2021 12 14.
Article En | MEDLINE | ID: mdl-34944041

Aldehyde dehydrogenases (ALDH), found in all kingdoms of life, form a superfamily of enzymes that primarily catalyse the oxidation of aldehydes to form carboxylic acid products, while utilising the cofactor NAD(P)+. Some superfamily members can also act as esterases using p-nitrophenyl esters as substrates. The ALDHTt from Thermus thermophilus was recombinantly expressed in E. coli and purified to obtain high yields (approximately 15-20 mg/L) and purity utilising an efficient heat treatment step coupled with IMAC and gel filtration chromatography. The use of the heat treatment step proved critical, in its absence decreased yield of 40% was observed. Characterisation of the thermophilic ALDHTt led to optimum enzymatic working conditions of 50 °C, and a pH of 8. ALDHTt possesses dual enzymatic activity, with the ability to act as a dehydrogenase and an esterase. ALDHTt possesses broad substrate specificity, displaying activity for a range of aldehydes, most notably hexanal and the synthetic dialdehyde, terephthalaldehyde. Interestingly, para-substituted benzaldehydes could be processed efficiently, but ortho-substitution resulted in no catalytic activity. Similarly, ALDHTt displayed activity for two different esterase substrates, p-nitrophenyl acetate and p-nitrophenyl butyrate, but with activities of 22.9% and 8.9%, respectively, compared to the activity towards hexanal.


Aldehyde Dehydrogenase/isolation & purification , Esterases/metabolism , Thermus thermophilus/enzymology , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/metabolism , Kinetics , Molecular Weight , NAD/metabolism , Recombinant Proteins/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substrate Specificity
12.
PLoS Genet ; 17(7): e1009635, 2021 07.
Article En | MEDLINE | ID: mdl-34237064

The intracellular level of fatty aldehydes is tightly regulated by aldehyde dehydrogenases to minimize the formation of toxic lipid and protein adducts. Importantly, the dysregulation of aldehyde dehydrogenases has been implicated in neurologic disorder and cancer in humans. However, cellular responses to unresolved, elevated fatty aldehyde levels are poorly understood. Here, we report that ALH-4 is a C. elegans aldehyde dehydrogenase that specifically associates with the endoplasmic reticulum, mitochondria and peroxisomes. Based on lipidomic and imaging analysis, we show that the loss of ALH-4 increases fatty aldehyde levels and reduces fat storage. ALH-4 deficiency in the intestine, cell-nonautonomously induces NHR-49/NHR-79-dependent hypodermal peroxisome proliferation. This is accompanied by the upregulation of catalases and fatty acid catabolic enzymes, as indicated by RNA sequencing. Such a response is required to counteract ALH-4 deficiency since alh-4; nhr-49 double mutant animals are sterile. Our work reveals unexpected inter-tissue communication of fatty aldehyde levels and suggests pharmacological modulation of peroxisome proliferation as a therapeutic strategy to tackle pathology related to excess fatty aldehydes.


Aldehyde Dehydrogenase/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Peroxisomes/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Gene Expression Regulation , Lipase/genetics , Lipase/metabolism , Lipid Droplets/metabolism , Lipolysis/genetics , Mutation , Peroxisomes/genetics , Receptors, Cytoplasmic and Nuclear/genetics
13.
BMC Biotechnol ; 21(1): 18, 2021 03 01.
Article En | MEDLINE | ID: mdl-33648490

BACKGROUND: Aldehyde dehydrogenases are vital for aerobic hydrocarbon degradation and is involved in the last step of catalysing the oxidation of aldehydes to carboxylic acids. With the global increase in hydrocarbon pollution of different environments, these enzymes have the potential to be used in enzymatic bioremediation applications. RESULTS: Fifteen fosmid clones with hydrocarbon degrading potential were functionally screened to identify dehydrogenase enzymes. Accordingly, the fosmid insert of the positive clones were sequenced using PacBio next generation sequencing platform and de novo assembled using CLC Genomic Work Bench. The 1233 bp long open reading frame (ORF) for DHY-SC-VUT5 was found to share a protein sequence similarity of 97.7% to short-chain dehydrogenase from E. coli. The 1470 bp long ORF for DHY-G-VUT7 was found to share a protein sequence similarity of 23.9% to glycine dehydrogenase (decarboxylating) (EC 1.4.4.2) from Caulobacter vibrioides (strain NA1000 / CB15N) (Caulobacter crescentus). The in silico analyses and blast against UNIPROT protein database with the stated similarity show that the two dehydrogenases are novel. Biochemical characterization revealed, that the highest relative activity was observed at substrate concentrations of 150 mM and 50 mM for DHY-SC-VUT5 and DHY-G-VUT7, respectively. The Km values were found to be 13.77 mM with a Vmax of 0.009135 µmol.min- 1 and 2.832 mM with a Vmax of 0.005886 µmol.min- 1 for DHY-SC-VUT5 and DHY-G-VUT7, respectively. Thus, a potent and efficient enzyme for alkyl aldehyde conversion to carboxylic acid. CONCLUSION: The microorganisms overexpressing the novel aldehyde dehydrogenases could be used to make up microbial cocktails for biodegradation of alkanes. Moreover, since the discovered enzymes are novel it would be interesting to solve their structures by crystallography and explore the downstream applications.


Aldehyde Dehydrogenase/metabolism , Bacteria/enzymology , Bacterial Proteins/metabolism , Hydrocarbons/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biodegradation, Environmental , Enzyme Stability , High-Throughput Nucleotide Sequencing , Hydrocarbons/chemistry , Kinetics , Metagenome , Metagenomics , Soil Pollutants/chemistry
14.
Biochimie ; 183: 49-54, 2021 Apr.
Article En | MEDLINE | ID: mdl-32956737

Certain mutations in the ALDH7A1 gene cause pyridoxine-dependent epilepsy (PDE), an autosomal recessive metabolic disease characterized by seizures, and in some cases, intellectual disability. The mutational spectrum of PDE is vast and includes over 70 missense mutations. This review summarizes the current state of biochemical and biophysical research on the impact of PDE missense mutations on the structure and catalytic activity of ALDH7A1. Paradoxically, some mutations that target active site residues have a relatively modest impact on structure and function, while those remote from the active site can have profound effects. For example, missense mutations targeting remote residues in oligomer interfaces tend to strongly impact catalytic function by inhibiting formation of the active tetramer. These results shows that it remains very difficult to predict the impact of missense mutations, even when the structure of the wild-type enzyme is known. Additional biophysical analyses of many more disease-causing mutations are needed to develop the rules for predicting the impact of genetic mutations on enzyme structure and catalytic function.


Aldehyde Dehydrogenase , Epilepsy , Genetic Diseases, Inborn , Mutation, Missense , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Amino Acid Substitution , Catalytic Domain , Epilepsy/enzymology , Epilepsy/genetics , Genetic Diseases, Inborn/enzymology , Genetic Diseases, Inborn/genetics , Humans
15.
J Biol Chem ; 295(40): 13914-13926, 2020 10 02.
Article En | MEDLINE | ID: mdl-32796031

Aldehyde dehydrogenases are versatile enzymes that serve a range of biochemical functions. Although traditionally considered metabolic housekeeping enzymes because of their ability to detoxify reactive aldehydes, like those generated from lipid peroxidation damage, the contributions of these enzymes to other biological processes are widespread. For example, the plant pathogen Pseudomonas syringae strain PtoDC3000 uses an indole-3-acetaldehyde dehydrogenase to synthesize the phytohormone indole-3-acetic acid to elude host responses. Here we investigate the biochemical function of AldC from PtoDC3000. Analysis of the substrate profile of AldC suggests that this enzyme functions as a long-chain aliphatic aldehyde dehydrogenase. The 2.5 Å resolution X-ray crystal of the AldC C291A mutant in a dead-end complex with octanal and NAD+ reveals an apolar binding site primed for aliphatic aldehyde substrate recognition. Functional characterization of site-directed mutants targeting the substrate- and NAD(H)-binding sites identifies key residues in the active site for ligand interactions, including those in the "aromatic box" that define the aldehyde-binding site. Overall, this study provides molecular insight for understanding the evolution of the prokaryotic aldehyde dehydrogenase superfamily and their diversity of function.


Aldehyde Dehydrogenase/chemistry , Bacterial Proteins/chemistry , Plant Diseases/microbiology , Pseudomonas syringae/enzymology , Aldehyde Dehydrogenase/genetics , Bacterial Proteins/genetics , Crystallography, X-Ray , Pseudomonas syringae/genetics
16.
Biosci Biotechnol Biochem ; 84(11): 2390-2400, 2020 Nov.
Article En | MEDLINE | ID: mdl-32729393

Maltol derivatives are used in a variety of fields due to their metal-chelating abilities. In the previous study, it was found that cytochrome P450 monooxygenase, P450nov, which has the ability to effectively convert the 2-methyl group in a maltol derivative, transformed 3-benzyloxy-2-methyl-4-pyrone (BMAL) to 2-(hydroxymethyl)-3-(phenylmethoxy)-4H-pyran-4-one (BMAL-OH) and slightly to 3-benzyloxy-4-oxo-4 H-pyran-2-carboxaldehyde (BMAL-CHO). We isolated Pseudomonas nitroreducens SB32154 with the ability to convert BMAL-CHO to BMAL-COOH from soil. The enzyme responsible for aldehyde oxidation, a BMAL-CHO dehydrogenase, was purified from P. nitroreducens SB32154 and characterized. The purified BMAL-CHO dehydrogenase was found to be a xanthine oxidase family enzyme with unique structure of heterodimer composed of 75 and 15 kDa subunits containing a molybdenum cofactor and [Fe-S] clusters, respectively. The enzyme showed broad substrate specificity toward benzaldehyde derivatives. Furthermore, one-pot conversion of BMAL to BMAL-COOH via BMAL-CHO by the combination of the BMAL-CHO dehydrogenase with P450nov was achieved.


Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/metabolism , Molybdenum , Pseudomonas/chemistry , Pyrones/metabolism , Biocatalysis , Oxidation-Reduction
17.
Arch Biochem Biophys ; 691: 108477, 2020 09 30.
Article En | MEDLINE | ID: mdl-32717224

Aldehyde dehydrogenase 9A1 (ALDH9A1) is a human enzyme that catalyzes the NAD+-dependent oxidation of the carnitine precursor 4-trimethylaminobutyraldehyde to 4-N-trimethylaminobutyrate. Here we show that the broad-spectrum ALDH inhibitor diethylaminobenzaldehyde (DEAB) reversibly inhibits ALDH9A1 in a time-dependent manner. Possible mechanisms of inhibition include covalent reversible inactivation involving the thiohemiacetal intermediate and slow, tight-binding inhibition. Two crystal structures of ALDH9A1 are reported, including the first of the enzyme complexed with NAD+. One of the structures reveals the active conformation of the enzyme, in which the Rossmann dinucleotide-binding domain is fully ordered and the inter-domain linker adopts the canonical ß-hairpin observed in other ALDH structures. The oligomeric structure of ALDH9A1 was investigated using analytical ultracentrifugation, small-angle X-ray scattering, and negative stain electron microscopy. These data show that ALDH9A1 forms the classic ALDH superfamily dimer-of-dimers tetramer in solution. Our results suggest that the presence of an aldehyde substrate and NAD+ promotes isomerization of the enzyme into the active conformation.


Aldehyde Dehydrogenase/antagonists & inhibitors , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/metabolism , Benzaldehydes/chemistry , Catalysis , Catalytic Domain , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Humans , Kinetics , NAD/metabolism , Protein Binding , Protein Structure, Quaternary
18.
Biol Open ; 9(4)2020 04 28.
Article En | MEDLINE | ID: mdl-32295831

Previously, we have developed an extramitochondrial assembly system, where mitochondrial targeting signal (MTS) can be removed from a given mitochondrial enzyme, which could be used to characterize the regulatory factors involved in enzyme assembly/disassembly in vivo Here, we demonstrate that addition of exogenous acetaldehyde can quickly induce the supramolecular assembly of MTS-deleted aldehyde dehydrogenase Ald4p in yeast cytoplasm. Also, by using PCR-based modification of the yeast genome, cytoplasmically targeted Ald4p cannot polymerize into long filaments when key functional amino acid residues are substituted, as shown by N192D, S269A, E290K and C324A mutations. This study has confirmed that extramitochondrial assembly could be a powerful external system for studying mitochondrial enzyme assembly, and its regulatory factors outside the mitochondria. In addition, we propose that mitochondrial enzyme assembly/disassembly is coupled to the regulation of a given mitochondrial enzyme activity.


Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/metabolism , Models, Molecular , Protein Conformation , Aldehyde Dehydrogenase/genetics , Amino Acid Sequence , Binding Sites , Catalytic Domain , Enzyme Activation , Fluorescent Antibody Technique , Mitochondria/enzymology , Protein Binding , Recombinant Fusion Proteins , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Structure-Activity Relationship
19.
ACS Synth Biol ; 9(4): 920-929, 2020 04 17.
Article En | MEDLINE | ID: mdl-32208678

The aldehyde dehydrogenase from Thermoplasma acidophilum was previously implemented as a key enzyme in a synthetic cell-free reaction cascade for the production of alcohols. In order to engineer the enzyme's cofactor specificity from NADP+ to NAD+, we identified selectivity-determining residues with the CSR-SALAD tool and investigated further positions based on the crystal structure. Stepwise combination of the initially discovered six point mutations allowed us to monitor the cross effects of each mutation, resulting in a final variant with reduced KM for the non-native cofactor NAD+ (from 18 to 0.6 mM) and an increased activity for the desired substrate d-glyceraldehyde (from 0.4 to 1.5 U/mg). Saturation mutagenesis of the residues at the entrance of the substrate pocket could eliminate substrate inhibition. Molecular dynamics simulations showed a significant gain of flexibility at the cofactor binding site for the final variant. The concomitant increase in stability against isobutanol and only a minor reduction in its temperature stability render the final variant a promising candidate for future optimization of our synthetic cell-free enzymatic cascade.


Aldehyde Dehydrogenase , Binding Sites/genetics , Molecular Dynamics Simulation , NAD/metabolism , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Coenzymes/chemistry , Coenzymes/metabolism , NAD/chemistry , Protein Engineering
20.
Dalton Trans ; 49(6): 1742-1746, 2020 Feb 11.
Article En | MEDLINE | ID: mdl-31967142

The reactivity of the previously reported peroxo-adduct [FeIII2(µ-O)(µ-1,2-O2)(IndH)2(solv)2]2+ (1) (IndH = 1,3-bis(2-pyridyl-imino)isoindoline) has been investigated in nucleophilic (e.g., deformylation of alkyl and aryl alkyl aldehydes) and electrophilic (e.g. oxidation of phenols) stoichiometric reactions as biomimics of ribonucleotide reductase (RNR-R2) and aldehyde deformylating oxygenase (ADO) enzymes. Based on detailed kinetic and mechanistic studies, we have found further evidence for the ambiphilic behaviour of the peroxo intermediates proposed for diferric oxidoreductase enzymes.


Aldehyde Dehydrogenase/chemistry , Biomimetic Materials/chemistry , Ferric Compounds/chemistry , Oxygen/chemistry , Ribonucleotide Reductases/chemistry , Aldehydes/chemistry , Kinetics , Oxidation-Reduction , Phenols/chemistry
...