Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.289
1.
Molecules ; 29(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731459

Terpenoid alkaloids are recognized as a class of compounds with limited numbers but potent biological activities, primarily derived from plants, with a minor proportion originating from animals and microorganisms. These alkaloids are synthesized from the same prenyl unit that forms the terpene skeleton, with the nitrogen atom introduced through ß-aminoethanol, ethylamine, or methylamine, leading to a range of complex and diverse structures. Based on their skeleton type, they can be categorized into monoterpenes, sesquiterpenes, diterpenes, and triterpene alkaloids. To date, 289 natural terpenoid alkaloids, excluding triterpene alkaloids, have been identified in studies published between 2019 and 2024. These compounds demonstrate a spectrum of biological activities, including anti-inflammatory, antitumor, antibacterial, analgesic, and cardioprotective effects, making them promising candidates for further development. This review provides an overview of the sources, chemical structures, and biological activities of natural terpenoid alkaloids, serving as a reference for future research and applications in this area.


Alkaloids , Terpenes , Alkaloids/chemistry , Alkaloids/pharmacology , Terpenes/chemistry , Terpenes/pharmacology , Humans , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Molecular Structure
2.
Molecules ; 29(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38731603

A new quinazolinone alkaloid named peniquinazolinone A (1), as well as eleven known compounds, 2-(2-hydroxy-3-phenylpropionamido)-N-methylbenzamide (2), viridicatin (3), viridicatol (4), (±)-cyclopeptin (5a/5b), dehydrocyclopeptin (6), cyclopenin (7), cyclopenol (8), methyl-indole-3-carboxylate (9), 2,5-dihydroxyphenyl acetate (10), methyl m-hydroxyphenylacetate (11), and conidiogenone B (12), were isolated from the endophytic Penicillium sp. HJT-A-6. The chemical structures of all the compounds were elucidated by comprehensive spectroscopic analysis, including 1D and 2D NMR and HRESIMS. The absolute configuration at C-13 of peniquinazolinone A (1) was established by applying the modified Mosher's method. Compounds 2, 3, and 7 exhibited an optimal promoting effect on the seed germination of Rhodiola tibetica at a concentration of 0.01 mg/mL, while the optimal concentration for compounds 4 and 9 to promote Rhodiola tibetica seed germination was 0.001 mg/mL. Compound 12 showed optimal seed-germination-promoting activity at a concentration of 0.1 mg/mL. Compared with the positive drug 6-benzyladenine (6-BA), compounds 2, 3, 4, 7, 9, and 12 could extend the seed germination period of Rhodiola tibetica up to the 11th day.


Alkaloids , Penicillium , Quinazolinones , Rhodiola , Seeds , Penicillium/chemistry , Quinazolinones/chemistry , Quinazolinones/pharmacology , Rhodiola/chemistry , Rhodiola/microbiology , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Germination/drug effects , Molecular Structure , Endophytes/chemistry
3.
Nat Prod Res ; 38(11): 1864-1873, 2024 Jun.
Article En | MEDLINE | ID: mdl-38739563

Phytochemical studies of the stems and leaves of Stephania dielsiana Y.C.Wu yielded two new aporphine alkaloids (1 and 5), along with six known alkaloids (2-4 and 6-8). Their structures were characterised based on analyses of spectroscopic data, including one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and high-resolution electrospray ionisation mass spectrometry (HR-ESI-MS). The cytotoxic activities of the isolated compounds against a small panel of tumour cell lines were assessed by MTS assay. Interestingly, compound 2 exhibited particularly strong cytotoxic activities against HepG2, MCF7 and OVCAR8 cancer cell lines, with IC50 values of 3.20 ± 0.18, 3.10 ± 0.06 and 3.40 ± 0.007 µM, respectively. Furthermore, molecular docking simulations were carried out to explore the interactions and binding mechanisms of the most active compound (compound 2) with proteins. Our results contribute to understanding the secondary metabolites produced by S. dielsiana and provide a scientific rationale for further investigations of cytotoxicity of this valuable medicinal plant.


Alkaloids , Antineoplastic Agents, Phytogenic , Aporphines , Molecular Docking Simulation , Plant Leaves , Plant Stems , Stephania , Aporphines/chemistry , Aporphines/pharmacology , Humans , Plant Leaves/chemistry , Plant Stems/chemistry , Alkaloids/chemistry , Alkaloids/pharmacology , Stephania/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Molecular Structure , Cell Line, Tumor , Hep G2 Cells , MCF-7 Cells , Drug Screening Assays, Antitumor , Magnetic Resonance Spectroscopy , Plants, Medicinal/chemistry
4.
Chirality ; 36(5): e23679, 2024 May.
Article En | MEDLINE | ID: mdl-38752268

Each year, new psychoactive substances appear on the global drug market leading to constant changes. Most of these compounds with stimulating effect possess a chiral center, thus leading to two enantiomers with presumably different pharmacological properties. Among them, synthetic cathinones, often misleadingly traded as "bath salts," play an important role. There is little knowledge about the distinct effect of the enantiomers. The aim of this study was to test a commercially available Lux® i-Amylose-3 column by HPLC-UV for enantiorecognition of cathinone derivatives. Overall, 80 compounds were tested in normal phase mode, where 75 substances were separated under initial conditions. After method optimization, at least partial separation was achieved for the remaining compounds. The same set of substances was measured in polar-organic mode, where 63 analytes were resolved into their enantiomers under initial conditions with very short retention times. Both modes showed complementary results for the individual compounds. Furthermore, the tested methods proved to be suitable for differentiation of positional isomers, which can be useful for drug checking programs. All measurements were carried out under isocratic conditions, and intraday and interday repeatability tests were performed.


Alkaloids , Stereoisomerism , Chromatography, High Pressure Liquid/methods , Alkaloids/chemistry , Alkaloids/isolation & purification , Amylose/chemistry , Amylose/analogs & derivatives , Pyrrolidines
5.
J Agric Food Chem ; 72(19): 10970-10980, 2024 May 15.
Article En | MEDLINE | ID: mdl-38708787

Eleven alkaloids (1-11) including seven new ones, 1-7, were isolated from the solid fermentation of Aspergillus fumigatus VDL36, an endophytic fungus isolated from the leaves of Vaccinium dunalianum Wight (Ericaceae), a perennial evergreen shrub distributed across the Southwest regions of China, Myanmar, and Vietnam. Their structures were elucidated on the basis of extensive spectroscopic methods. The isolates were evaluated for in vitro antifungal activities against five phytopathogenic fungi (Fusarium oxysporum, Coriolus versicolor, Fusarium solani, Botrytis cinerea, Fusarium graminearum). As a result, the new compounds fumigaclavine I (1), 13-ethoxycyclotryprostatin A (5), 13-dehydroxycyclotryprostatin A (6), and 12ß-hydroxy-13-oxofumitremorgin C (7) exhibited antifungal activities with MIC values of 7.8-62.5 µg/mL which were comparable to the two positive controls ketoconazole (MIC = 7.8-31.25 µg/mL) and carbendazim (MIC = 1.95-7.8 µg/mL). Furthermore, compounds 1 and 5 demonstrated potent protective and curative effects against the tomato gray mold in vivo. Preliminary structure-activity relationships of the tested indole diketopiperazine alkaloids indicate that the introduction of a substituent group at position C-13 enhances their biological activities.


Alkaloids , Aspergillus fumigatus , Endophytes , Alkaloids/pharmacology , Alkaloids/chemistry , Aspergillus fumigatus/drug effects , Endophytes/chemistry , Molecular Structure , Fusarium/drug effects , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Plant Leaves/microbiology , Plant Leaves/chemistry , Microbial Sensitivity Tests , China , Plant Diseases/microbiology
6.
J Org Chem ; 89(10): 7255-7262, 2024 May 17.
Article En | MEDLINE | ID: mdl-38718382

Juglanaloids A and B are recently isolated natural products characterized by an unprecedented spiro bicyclic isobenzofuranone-tetrahydrobenzazepinone framework and a promising antiamyloid activity. Here reported is a straightforward convergent total synthesis of these natural products, which were obtained in high enantiomeric purity (94% and >99% ee for juglanaloids A and B, respectively) through an eight-step longest linear sequence, based on an efficient and reliable enantioselective phase-transfer-catalyzed alkylation step. Considering the interesting biological activity of juglanaloids, this convenient, highly enantioselective, flexible, and predictable synthetic strategy promises to be a powerful tool for accessing potentially bioactive spiro bicyclic phthalide-tetrahydrobenzazepinone derivatives.


Alkaloids , Alzheimer Disease , Spiro Compounds , Stereoisomerism , Alzheimer Disease/drug therapy , Spiro Compounds/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacology , Alkaloids/chemistry , Alkaloids/chemical synthesis , Alkaloids/pharmacology , Molecular Structure , Benzofurans/chemistry , Benzofurans/chemical synthesis , Benzofurans/pharmacology
7.
Sci Rep ; 14(1): 10424, 2024 05 07.
Article En | MEDLINE | ID: mdl-38710752

The storage process has a significant impact on tea quality. Few is known about effect of storage on quality of oolong tea. This study aimed to assess the effect of different storage times on the key chemical components of oolong tea by measuring changes in catechin, free amino acid, and alkaloid content. Variation in the main substances was determined by principal component analysis and heat map analysis. The results revealed notable effects of the storage process on the levels of theanine, epigallocatechin gallate (EGCG), and glutamine. These findings suggest that these compounds could serve as indicators for monitoring changes in oolong tea quality during storage. Additionally, the study observed an increase in the antibacterial ability of tea over time. Correlation analysis indicated that the antibacterial ability against Micrococcus tetragenus and Escherichia coli was influenced by metabolites such as aspartic acid, threonine, serine, gamma-aminobutyric acid, ornithine, alanine, arginine, and EGCG. Overall, this study presents an approach for identifying key metabolites to monitor tea quality effectively with relatively limited data.


Alkaloids , Amino Acids , Anti-Bacterial Agents , Catechin , Tea , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Catechin/analysis , Tea/chemistry , Amino Acids/analysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Alkaloids/pharmacology , Alkaloids/analysis , Alkaloids/chemistry , Food Storage/methods , Escherichia coli/drug effects , Camellia sinensis/chemistry
8.
Sci Rep ; 14(1): 11561, 2024 05 21.
Article En | MEDLINE | ID: mdl-38773300

Mitochondrial diseases are mainly caused by dysfunction of mitochondrial respiratory chain complexes and have a variety of genetic variants or phenotypes. There are only a few approved treatments, and fundamental therapies are yet to be developed. Leigh syndrome (LS) is the most severe type of progressive encephalopathy. We previously reported that apomorphine, an anti- "off" agent for Parkinson's disease, has cell-protective activity in patient-derived skin fibroblasts in addition to strong dopamine agonist effect. We obtained 26 apomorphine analogs, synthesized 20 apomorphine derivatives, and determined their anti-cell death effect, dopamine agonist activity, and effects on the mitochondrial function. We found three novel apomorphine derivatives with an active hydroxy group at position 11 of the aporphine framework, with a high anti-cell death effect without emetic dopamine agonist activity. These synthetic aporphine alkaloids are potent therapeutics for mitochondrial diseases without emetic side effects and have the potential to overcome the low bioavailability of apomorphine. Moreover, they have high anti-ferroptotic activity and therefore have potential as a therapeutic agent for diseases related to ferroptosis.


Aporphines , Leigh Disease , Mitochondria , Leigh Disease/drug therapy , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Aporphines/pharmacology , Aporphines/chemistry , Aporphines/chemical synthesis , Aporphines/therapeutic use , Fibroblasts/drug effects , Fibroblasts/metabolism , Apomorphine/pharmacology , Apomorphine/therapeutic use , Apomorphine/analogs & derivatives , Dopamine Agonists/pharmacology , Dopamine Agonists/therapeutic use , Dopamine Agonists/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/therapeutic use
9.
Int J Mol Sci ; 25(9)2024 May 05.
Article En | MEDLINE | ID: mdl-38732250

One previously undescribed alkaloid, named penifuranone A (1), and three known compounds (2-4) were isolated from the mangrove endophytic fungus Penicillium crustosum SCNU-F0006. The structure of the new alkaloid (1) was elucidated based on extensive spectroscopic data analysis and single-crystal X-ray diffraction analysis. Four natural isolates and one new synthetic derivative of penifuranone A, compound 1a, were screened for their antimicrobial, antioxidant, and anti-inflammatory activities. Bioassays revealed that penifuranone A (1) exhibited strong anti-inflammatory activity in vitro by inhibiting nitric oxide (NO) production in lipopolysaccharide-activated RAW264.7 cells with an IC50 value of 42.2 µM. The docking study revealed that compound 1 exhibited an ideal fit within the active site of the murine inducible nitric oxide synthase (iNOS), establishing characteristic hydrogen bonds.


Alkaloids , Nitric Oxide , Penicillium , Penicillium/chemistry , Penicillium/metabolism , Mice , Animals , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , RAW 264.7 Cells , Nitric Oxide/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Nitric Oxide Synthase Type II/metabolism , Molecular Docking Simulation , Lipopolysaccharides , Antioxidants/pharmacology , Antioxidants/chemistry , Molecular Structure
10.
Chirality ; 36(6): e23680, 2024 Jun.
Article En | MEDLINE | ID: mdl-38771563

Truxillines are a group of tropane alkaloids present in coca leaves that are formed by photochemical dimerization of cinnamoylcocaine(s). Proportion of different truxilline forms present in cocaine serves as its geographical, manufacture, and storage "fingerprint"; thus, the quantitative determination of truxilline content represents one of the powerful methods of analysis and characterization of cocaine samples. Contrary to the statements repeatedly presented in the literature, namely, that there exist exactly 11 truxillines and that every single truxilline is diastereomer of any other, here we show that, in fact, a total of 15 truxillines exist, which can be divided in two structurally isomeric groups-five mutually diastereomeric truxillates and 10 mutually diastereomeric truxinates.


Tropanes , Stereoisomerism , Tropanes/chemistry , Cocaine/chemistry , Cocaine/analysis , Alkaloids/chemistry
11.
Mar Drugs ; 22(5)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38786582

Marine-derived Penicillium fungi are productive sources of structurally unique and diverse bioactive secondary metabolites, representing a hot topic in natural product research. This review describes structural diversity, bioactivities and statistical research of 452 new natural products from marine-derived Penicillium fungi covering 2021 to 2023. Sediments are the main sources of marine-derived Penicillium fungi for producing nearly 56% new natural products. Polyketides, alkaloids, and terpenoids displayed diverse biological activities and are the major contributors to antibacterial activity, cytotoxicity, anti-inflammatory and enzyme inhibitory capacities. Polyketides had higher proportions of new bioactive compounds in new compounds than other chemical classes. The characteristics of studies in recent years are presented.


Aquatic Organisms , Biological Products , Penicillium , Penicillium/chemistry , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Humans , Animals , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification
12.
Mar Drugs ; 22(5)2024 May 09.
Article En | MEDLINE | ID: mdl-38786605

Chemical investigation of marine fungus Nigrospora oryzae SYSU-MS0024 cultured on solid-rice medium led to the isolation of three new alkaloids, including a pair of epimers, nigrosporines A (1) and B (2), and a pair of enantiomers, (+)-nigrosporine C (+)-3, and (-)-nigrosporine C (-)-3, together with eight known compounds (4-11). Their structures were elucidated based on extensive mass spectrometry (MS) and 1D/2D nuclear magnetic resonance (NMR) spectroscopic analyses and compared with data in the literature. The absolute configurations of compounds 1-3 were determined by a combination of electronic circular dichroism (ECD) calculations, Mosher's method, and X-ray single-crystal diffraction technique using Cu Kα radiation. In bioassays, compound 2 exhibited moderate inhibition on NO accumulation induced by lipopolysaccharide (LPS) on BV-2 cells in a dose-dependent manner at 20, 50, and 100 µmol/L and without cytotoxicity in a concentration of 100.0 µmol/L. Moreover, compound 2 also showed moderate acetylcholinesterase (AChE) inhibitory activities with IC50 values of 103.7 µmol/L. Compound 5 exhibited moderate antioxidant activity with EC50 values of 167.0 µmol/L.


Alkaloids , Ascomycota , Cholinesterase Inhibitors , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Animals , Mice , Ascomycota/chemistry , Cell Line , Nitric Oxide/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Molecular Structure , Acetylcholinesterase/metabolism , Magnetic Resonance Spectroscopy/methods , Lipopolysaccharides/pharmacology
13.
Mar Drugs ; 22(5)2024 May 20.
Article En | MEDLINE | ID: mdl-38786622

Five new sulfated arylpyrrole and arylpyrrolone alkaloids, denigrins H-L (1-5), along with two known compounds, dictyodendrin B and denigrin G, were isolated from an extract of a New Zealand Dictyodendrilla c.f. dendyi marine sponge. Denigrins H-L represent the first examples of sulfated denigrins, with denigrins H and I (1-2), as derivatives of denigrin D, containing a pyrrolone core, and denigrins J-L (3-5), as derivatives of denigrin E (6), containing a pyrrole core. Their structures were elucidated by interpretation of 1D and 2D NMR spectroscopic data, ESI, and HR-ESI-MS spectrometric data, as well as comparison with literature data. Compounds 1-5, along with six known compounds previously isolated from the same extract, showed minimal cytotoxicity against the HeLa cervical cancer cell line.


Alkaloids , Porifera , Pyrroles , Animals , Porifera/chemistry , Humans , New Zealand , Pyrroles/pharmacology , Pyrroles/chemistry , Pyrroles/isolation & purification , HeLa Cells , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Sulfates/chemistry , Sulfates/pharmacology , Molecular Structure , Magnetic Resonance Spectroscopy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification
14.
Antimicrob Agents Chemother ; 68(5): e0161223, 2024 May 02.
Article En | MEDLINE | ID: mdl-38602413

Mycetoma is a devastating neglected tropical infection of the subcutaneous tissues. It is caused by fungal and bacterial pathogens recognized as eumycetoma and actinomycetoma, respectively. Mycetoma treatment involves diagnosing the causative microorganism as a prerequisite to prescribing a proper medication. Current therapy of fungal eumycetoma causative agents, such as Madurella mycetomatis, consists of long-term antifungal medication with itraconazole followed by surgery, yet with usually unsatisfactory clinical outcomes. Actinomycetoma, on the contrary, usually responds to treatment with co-trimoxazole and amikacin. Therefore, there is a pressing need to discover novel broad-spectrum antimicrobial agents to circumvent the time-consuming and costly diagnosis. Using the resazurin assay, a series of 23 naphthylisoquinoline (NIQ) alkaloids and related naphthoquinones were subjected to in vitro screening against two fungal strains of M. mycetomatis and three bacterial strains of Actinomadura madurae and A. syzygii. Seven NIQs, mostly dimers, showed promising in vitro activities against at least one strain of the mycetoma-causative pathogens, while the naphthoquinones did not show any activity. A synthetic NIQ dimer, 8,8'''-O,O-dimethylmichellamine A (18), inhibited all tested fungal and bacterial strains (IC50 = 2.81-12.07 µg/mL). One of the dimeric NIQs, michellamine B (14), inhibited a strain of M. mycetomatis and significantly enhanced the survival rate of Galleria mellonella larvae infected with M. mycetomatis at concentrations of 1 and 4 µg/mL, without being toxic to the uninfected larvae. As a result, broad-spectrum dimeric NIQs like 14 and 18 with antimicrobial activity are considered hit compounds that could be worth further optimization to develop novel lead antimycetomal agents.


Alkaloids , Antifungal Agents , Madurella , Microbial Sensitivity Tests , Mycetoma , Mycetoma/drug therapy , Mycetoma/microbiology , Antifungal Agents/pharmacology , Animals , Alkaloids/pharmacology , Alkaloids/chemistry , Madurella/drug effects , Isoquinolines/pharmacology , Actinomadura/drug effects , Naphthoquinones/pharmacology , Larva/microbiology , Larva/drug effects , Moths/microbiology
15.
J Ethnopharmacol ; 330: 118218, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38677570

ETHNOPHARMACOLOGY RELEVANCE: Zanthoxylum bungeanum Maxim. (Z. bungeanum), a member of the Rutaceae family, has a rich history of traditional use in Asia for treating arthritis and toothache conditions. As characteristic chemical components, numerous kinds of alkaloids have been extracted from plants and their diverse biological activities have been reported. However, research on the isoquinoline alkaloid, a specific type of alkaloids, in Z. bungeanum was scarce. AIM OF THE STUDY: The study aimed to isolate a novel isoquinoline alkaloid from Z. bungeanum and explore its pharmacological activity in vitro and analgesic activity in vivo. MATERIALS AND METHODS: Isoquinoline alkaloid isolation and identification from Z. bungeanum were conducted using chromatographic and spectroscopic methods. The whole-cell patch-clamp technique was applied to assess its impact on neuronal excitability, and endogenous voltage-gated potassium (Kv) and sodium (Nav) currents in acutely isolated mouse small-diameter dorsal root ganglion (DRG) neurons. Its inhibitory impacts on channels were further validated with HEK293 cells stably expressing Nav1.7 and Nav1.8, and Chinese hamster ovary (CHO) cells transiently expressing Kv2.1. The formalin inflammatory pain model was utilized to evaluate the potential analgesic activity in vivo. RESULTS: A novel isoquinoline alkaloid named HJ-69 (N-13-(3-methoxyprop-1-yl)rutaecarpine) was isolated and identified from Z. bungeanum for the first time. HJ-69 significantly suppressed the firing frequency and amplitudes of action potentials in DRG neurons. Consistently, it state-dependently inhibited endogenous Nav currents of DRG neurons, with half maximal inhibitory concentration (IC50) values of 13.06 ± 2.06 µM and 30.19 ± 2.07 µM for the inactivated and resting states, respectively. HJ-69 significantly suppressed potassium currents in DRG neurons, which notably inhibited the delayed rectifier potassium (IK) currents (IC50 = 6.95 ± 1.29 µM) and slightly affected the transient outward potassium (IA) currents (IC50 = 523.50 ± 39.16 µM). Furtherly, HJ-69 exhibited similar potencies on heterologously expressed Nav1.7, Nav1.8, and Kv2.1 channels, which correspondingly represent the main components in neurons. Notably, intraperitoneal administration of 30 mg/kg and 100 mg/kg HJ-69 significantly alleviated pain behaviors in the mouse inflammatory pain model induced by formalin. CONCLUSION: The study concluded that HJ-69 is a novel and active isoquinoline alkaloid, and the inhibition of Nav and Kv channels contributes to its analgesic activity. HJ-69 may be a promising prototype for future analgesic drug discovery based on the isoquinoline alkaloid.


Analgesics , Ganglia, Spinal , Pain , Zanthoxylum , Animals , Zanthoxylum/chemistry , Humans , HEK293 Cells , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/isolation & purification , Analgesics/therapeutic use , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Mice , Male , Pain/drug therapy , Isoquinolines/pharmacology , Isoquinolines/isolation & purification , Isoquinolines/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Alkaloids/chemistry , Alkaloids/therapeutic use , Potassium Channel Blockers/pharmacology , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Inflammation/drug therapy , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channel Blockers/isolation & purification , Potassium Channels, Voltage-Gated/metabolism , Potassium Channels, Voltage-Gated/drug effects , Neurons/drug effects , Neurons/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Mice, Inbred C57BL , Cricetulus
16.
J Nat Prod ; 87(5): 1407-1415, 2024 May 24.
Article En | MEDLINE | ID: mdl-38662578

Alkaloids with a phenylhydrazone architecture are rarely found in nature. Four unusual phenylhydrazone alkaloids named talarohydrazones A-D (1-4) were isolated from the deep-sea cold seep derived fungus Talaromyces amestolkiae HDN21-0307 using the one strain-many compounds (OSMAC) approach and MS/MS-based molecular networking (MN) combined with network annotation propagation (NAP) and the unsupervised substructure annotation method MS2LDA. Their structures were elucidated by spectroscopic data analysis, single-crystal X-ray diffraction, and quantum chemical calculations. Talarohydrazone A (1) possessed an unusual skeleton combining 2,4-pyridinedione and phenylhydrazone. Talarohydrazone B (2) represents the first natural phenylhydrazone-bearing azadophilone. Bioactivity evaluation revealed that compound 1 exhibited cytotoxic activity against NCI-H446 cells with an IC50 value of 4.1 µM. In addition, compound 1 displayed weak antibacterial activity toward Staphylococcus aureus with an MIC value of 32 µg/mL.


Alkaloids , Hydrazones , Microbial Sensitivity Tests , Staphylococcus aureus , Talaromyces , Talaromyces/chemistry , Hydrazones/pharmacology , Hydrazones/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Molecular Structure , Staphylococcus aureus/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Drug Screening Assays, Antitumor , Crystallography, X-Ray
17.
Int J Biol Macromol ; 268(Pt 1): 131777, 2024 May.
Article En | MEDLINE | ID: mdl-38663710

In this study, a new carrier for loading piperine was prepared using pepper starch, and its interaction mechanism was investigated. The porous pepper starch-piperine complex (PPS-PIP) showed higher loading efficiency (76.15 %) compared to the porous corn starch-piperine complex (PCS-PIP (52.34 %)). This may be ascribed to the hemispherical shell structure of porous pepper starch (PPS) compared to the porous structure of porous corn starch (PCS) based on the SEM result. PPS-PIP had smaller particle size (10.53 µm), higher relative crystallinity (38.95 %), and better thermal stability (87.45 °C) than PCS-PIP (17.37 µm, 32.17 %, 74.35 °C). Fourier transform infrared spectroscopy (FTIR) results implied that piperine not only forms a complex with amylose but may also be physically present in porous starch. This was demonstrated by the short-range order and X-ray type. Molecular dynamics simulations confirmed that hydrogen bonding is the primary interaction between amylose and piperine. Besides the formation of the amylose-piperine complex, some of the piperine is also present in physical form.


Alkaloids , Benzodioxoles , Piperidines , Polyunsaturated Alkamides , Starch , Piperidines/chemistry , Benzodioxoles/chemistry , Alkaloids/chemistry , Starch/chemistry , Polyunsaturated Alkamides/chemistry , Porosity , Amylose/chemistry , Molecular Dynamics Simulation , Hydrogen Bonding , Particle Size , Spectroscopy, Fourier Transform Infrared , Capsicum/chemistry
18.
Phytochemistry ; 222: 114093, 2024 Jun.
Article En | MEDLINE | ID: mdl-38615927

Nine 3-arylisoquinoline alkaloids including five undescribed ones, hypectumines A-E (1-5), were isolated from the whole herb of Hypecoum erectum L. with the guidance of 1H-NMR. Their structures were established by a combination of 1D, 2D NMR, and HRESIMS spectrometry. Among them, hypectumines A and B possessed rare urea moieties while hypectumines C and D were characterized by 3-(methylamino)propanoic acid scaffolds. Biological assay demonstrated that alkaloids hypectumine B and 2,3-dimethoxy-N-formylcorydamine had anti-inflammatory effects by inhibiting NO production on LPS-induced RAW264.7 cells with IC50 values of 24.4 and 44.2 µM, respectively. Furthermore, hypectumine B could reduce the expression of pro-inflammatory cytokines TNF-α and IL-6, suggesting it might be a potential candidate for treating inflammatory disease.


Alkaloids , Lipopolysaccharides , Animals , Mice , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , RAW 264.7 Cells , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Isoquinolines/pharmacology , Isoquinolines/chemistry , Isoquinolines/isolation & purification , Nitric Oxide/biosynthesis , Nitric Oxide/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Structure-Activity Relationship , Interleukin-6/metabolism , Dose-Response Relationship, Drug , Proton Magnetic Resonance Spectroscopy
19.
J Agric Food Chem ; 72(14): 8225-8236, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38557068

As a continuous flow investigation of novel pesticides from natural quinolizidine alkaloids, the chemical compositions of the seeds of Sophora alopecuroides were thoroughly researched. Fifteen new aloperine-type alkaloids (1-15) as well as six known aloperine-type alkaloids (16-21) were obtained from the extract of S. alopecuroides. The structures of 1-21 were confirmed via HRESIMS, NMR, UV, IR, ECD calculations, and X-ray diffraction. The antiviral activities of 1-21 against tobacco mosaic virus (TMV) were detected following the improved method of half-leaf. Compared with ningnanmycin (protective: 69.7% and curative: 64.3%), 15 exhibited excellent protective (71.7%) and curative (64.6%) activities against TMV. Further biological studies illustrated that 15 significantly inhibited the transcription of the TMV-CP gene and increased the activities of polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD), and phenylalanine ammonia-lyase (PAL). The antifungal activities of 1-21 against Phytophythora capsica, Botrytis cinerea, Alternaria alternata, and Gibberella zeae were screened according to a mycelial inhibition test. Compound 13 displayed excellent antifungal activity against B. cinerea (EC50: 7.38 µg/mL). Moreover, in vitro antifungal mechanism studies displayed that 13 causes accumulation of reactive oxygen species and finally leads to mycelia cell membrane damage and cell death in vitro.


Alkaloids , Quinolizidines , Sophora , Tobacco Mosaic Virus , Antifungal Agents , Sophora/chemistry , Alkaloids/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Seeds/chemistry
20.
J Org Chem ; 89(9): 5977-5987, 2024 May 03.
Article En | MEDLINE | ID: mdl-38557022

Mellpaladines A-C (1-3) and dopargimine (4) are dopamine-derived guanidine alkaloids isolated from a specimen of Palauan Didemnidae tunicate as possible modulators of neuronal receptors. In this study, we isolated the dopargimine derivative 1-carboxydopargimine (5), three additional mellpaladines D-F (6-8), and serotodopalgimine (9), along with a dimer of serotonin, 5,5'-dihydroxy-4,4'-bistryptamine (10). The structures of these compounds were determined based on spectrometric and spectroscopic analyses. Compound 4 and its congeners dopargine (11), nordopargimine (15), and 2-(6,7-dimethoxy-3,4-dihydroisoquinolin-1-yl)ethan-1-amine (16) were synthetically prepared for biological evaluations. The biological activities of all isolated compounds were evaluated in comparison with those of 1-4 using a mouse behavioral assay upon intracerebroventricular injection, revealing key functional groups in the dopargimines and mellpaladines for in vivo behavioral toxicity. Interestingly, these alkaloids also emerged during a screen of our marine natural product library aimed at identifying antiviral activities against dengue virus, SARS-CoV-2, and vesicular stomatitis Indiana virus (VSV) pseudotyped with Ebola virus glycoprotein (VSV-ZGP).


Alkaloids , Dopamine , Urochordata , Animals , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Alkaloids/chemical synthesis , Urochordata/chemistry , Mice , Dopamine/chemistry , Dopamine/pharmacology , Molecular Structure , Guanidine/chemistry , Guanidine/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/chemical synthesis , Guanidines/chemistry , Guanidines/pharmacology , Guanidines/isolation & purification , SARS-CoV-2/drug effects , Humans
...