Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 172
1.
Nature ; 626(7999): 643-652, 2024 Feb.
Article En | MEDLINE | ID: mdl-38109937

Thousands of proteins have been validated genetically as therapeutic targets for human diseases1. However, very few have been successfully targeted, and many are considered 'undruggable'. This is particularly true for proteins that function via protein-protein interactions-direct inhibition of binding interfaces is difficult and requires the identification of allosteric sites. However, most proteins have no known allosteric sites, and a comprehensive allosteric map does not exist for any protein. Here we address this shortcoming by charting multiple global atlases of inhibitory allosteric communication in KRAS. We quantified the effects of more than 26,000 mutations on the folding of KRAS and its binding to six interaction partners. Genetic interactions in double mutants enabled us to perform biophysical measurements at scale, inferring more than 22,000 causal free energy changes. These energy landscapes quantify how mutations tune the binding specificity of a signalling protein and map the inhibitory allosteric sites for an important therapeutic target. Allosteric propagation is particularly effective across the central ß-sheet of KRAS, and multiple surface pockets are genetically validated as allosterically active, including a distal pocket in the C-terminal lobe of the protein. Allosteric mutations typically inhibit binding to all tested effectors, but they can also change the binding specificity, revealing the regulatory, evolutionary and therapeutic potential to tune pathway activation. Using the approach described here, it should be possible to rapidly and comprehensively identify allosteric target sites in many proteins.


Allosteric Site , Protein Folding , Proto-Oncogene Proteins p21(ras) , Humans , Allosteric Regulation/drug effects , Allosteric Regulation/genetics , Allosteric Site/drug effects , Allosteric Site/genetics , Mutation , Protein Binding , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Reproducibility of Results , Substrate Specificity/drug effects , Substrate Specificity/genetics , Thermodynamics
2.
Nat Commun ; 13(1): 868, 2022 02 14.
Article En | MEDLINE | ID: mdl-35165285

SARS-CoV-2 infection is a major global public health concern with incompletely understood pathogenesis. The SARS-CoV-2 spike (S) glycoprotein comprises a highly conserved free fatty acid binding pocket (FABP) with unknown function and evolutionary selection advantage1,2. Deciphering FABP impact on COVID-19 progression is challenged by the heterogenous nature and large molecular variability of live virus. Here we create synthetic minimal virions (MiniVs) of wild-type and mutant SARS-CoV-2 with precise molecular composition and programmable complexity by bottom-up assembly. MiniV-based systematic assessment of S free fatty acid (FFA) binding reveals that FABP functions as an allosteric regulatory site enabling adaptation of SARS-CoV-2 immunogenicity to inflammation states via binding of pro-inflammatory FFAs. This is achieved by regulation of the S open-to-close equilibrium and the exposure of both, the receptor binding domain (RBD) and the SARS-CoV-2 RGD motif that is responsible for integrin co-receptor engagement. We find that the FDA-approved drugs vitamin K and dexamethasone modulate S-based cell binding in an FABP-like manner. In inflammatory FFA environments, neutralizing immunoglobulins from human convalescent COVID-19 donors lose neutralization activity. Empowered by our MiniV technology, we suggest a conserved mechanism by which SARS-CoV-2 dynamically couples its immunogenicity to the host immune response.


COVID-19/immunology , Fatty Acids/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Virion/immunology , A549 Cells , Allosteric Site/genetics , Amino Acid Sequence , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites/genetics , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Fatty Acid-Binding Proteins/immunology , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , Humans , MCF-7 Cells , Microscopy, Confocal/methods , Protein Binding , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virion/metabolism , Virion/ultrastructure
3.
J Mol Biol ; 434(2): 167349, 2022 01 30.
Article En | MEDLINE | ID: mdl-34774565

Imatinib is an ATP-competitive inhibitor of Bcr-Abl kinase and the first drug approved for chronic myelogenous leukemia (CML) treatment. Here we show that imatinib binds to a secondary, allosteric site located in the myristoyl pocket of Abl to function as an activator of the kinase activity. Abl transitions between an assembled, inhibited state and an extended, activated state. The equilibrium is regulated by the conformation of the αΙ helix, which is located nearby the allosteric pocket. Imatinib binding to the allosteric pocket elicits an αΙ helix conformation that is not compatible with the assembled state, thereby promoting the extended state and stimulating the kinase activity. Although in wild-type Abl the catalytic pocket has a much higher affinity for imatinib than the allosteric pocket does, the two binding affinities are comparable in Abl variants carrying imatinib-resistant mutations in the catalytic site. A previously isolated imatinib-resistant mutation in patients appears to be mediating its function by increasing the affinity of imatinib for the allosteric pocket, providing a hitherto unknown mechanism of drug resistance. Our results highlight the benefit of combining imatinib with allosteric inhibitors to maximize their inhibitory effect on Bcr-Abl.


Allosteric Site , Imatinib Mesylate/chemistry , Imatinib Mesylate/pharmacology , Allosteric Regulation/drug effects , Allosteric Site/genetics , Antineoplastic Agents/pharmacology , Catalytic Domain , Drug Resistance, Neoplasm/drug effects , Humans , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Models, Molecular , Mutation , Protein Kinase Inhibitors/pharmacology
4.
Biochemistry ; 60(51): 3856-3867, 2021 12 28.
Article En | MEDLINE | ID: mdl-34910875

The T-cell protein tyrosine phosphatase (TCPTP/PTPN2) targets a broad variety of substrates across different subcellular compartments. In spite of that, the structural basis for the regulation of TCPTP's activity remains elusive. Here, we investigated whether the activity of TCPTP is regulated by a potential allosteric site in a comparable manner to its most similar PTP family member (PTP1B/PTPN1). We determined two crystal structures of TCPTP at 1.7 and 1.9 Å resolutions that include helix α7 at the TCPTP C-terminus. Helix α7 has been functionally characterized in PTP1B and was identified as its allosteric switch. However, its function is unknown in TCPTP. Here, we demonstrate that truncation or deletion of helix α7 reduced the catalytic efficiency of TCPTP by ∼4-fold. Collectively, our data supports an allosteric role of helix α7 in regulation of TCPTP's activity, similar to its function in PTP1B, and highlights that the coordination of helix α7 with the core catalytic domain is essential for the efficient catalytic function of TCPTP.


Protein Tyrosine Phosphatase, Non-Receptor Type 2/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Allosteric Regulation , Allosteric Site/genetics , Amino Acid Sequence , Amino Acid Substitution , Biophysical Phenomena , Catalytic Domain/genetics , Crystallography, X-Ray , Humans , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation, alpha-Helical , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction
5.
Cell Death Differ ; 28(12): 3270-3281, 2021 12.
Article En | MEDLINE | ID: mdl-34135480

The conformational changes converting BAX from an inert cytosolic monomer into the homo-oligomers that permeabilize the mitochondrial outer membrane (MOM) are crucial steps toward apoptosis. Here, we have explored the potential role of the BAX α1-α2 loop in this process by three mutagenic approaches: replacing loop segments with cognate loop regions from closely related proteins, alanine scanning and analysis of BAX α1-α2 loop missense mutations observed in tumours. Responsiveness to a death signal, such as tBID, was reduced by mutations in the N-terminal but not C-terminal half of the loop. N-terminal loop variants, which were enriched in tumours, impaired MOM integration by allosterically reducing exposure of the BAX α9 transmembrane anchor. Most C-terminal loop variants reduced BAX stability, leading to increased BAX apoptotic function in some variants. Thus, our systematic mutagenesis suggests that the two halves of the α1-α2 loop have distinct functions. We show that the N-terminal half of the loop (its first nine residues) comprises an important allosteric regulator of BAX activation by setting the proportion of MOM-integrated BAX following a death signal. The enrichment of N-terminal loop mutations in tumours indicates that they may promote tumour cell survival and underscore the loop as a target for therapeutic manipulation of BAX function.


Allosteric Site/genetics , Mitochondria/metabolism , bcl-2-Associated X Protein/genetics , Animals , Humans , Mice , Models, Molecular , Transfection
6.
Elife ; 102021 06 16.
Article En | MEDLINE | ID: mdl-34132193

Our ability to rationally optimize allosteric regulation is limited by incomplete knowledge of the mutations that tune allostery. Are these mutations few or abundant, structurally localized or distributed? To examine this, we conducted saturation mutagenesis of a synthetic allosteric switch in which Dihydrofolate reductase (DHFR) is regulated by a blue-light sensitive LOV2 domain. Using a high-throughput assay wherein DHFR catalytic activity is coupled to E. coli growth, we assessed the impact of 1548 viable DHFR single mutations on allostery. Despite most mutations being deleterious to activity, fewer than 5% of mutations had a statistically significant influence on allostery. Most allostery disrupting mutations were proximal to the LOV2 insertion site. In contrast, allostery enhancing mutations were structurally distributed and enriched on the protein surface. Combining several allostery enhancing mutations yielded near-additive improvements to dynamic range. Our results indicate a path toward optimizing allosteric function through variation at surface sites.


Many proteins exhibit a property called 'allostery'. In allostery, an input signal at a specific site of a protein ­ such as a molecule binding, or the protein absorbing a photon of light ­ leads to a change in output at another site far away. For example, the protein might catalyze a chemical reaction faster or bind to another molecule more tightly in the presence of the input signal. This protein 'remote control' allows cells to sense and respond to changes in their environment. An ability to rapidly engineer new allosteric mechanisms into proteins is much sought after because this would provide an approach for building biosensors and other useful tools. One common approach to engineering new allosteric regulation is to combine a 'sensor' or input region from one protein with an 'output' region or domain from another. When researchers engineer allostery using this approach of combining input and output domains from different proteins, the difference in the output when the input is 'on' versus 'off' is often small, a situation called 'modest allostery'. McCormick et al. wanted to know how to optimize this domain combination approach to increase the difference in output between the 'on' and 'off' states. More specifically, McCormick et al. wanted to find out whether swapping out or mutating specific amino acids (each of the individual building blocks that make up a protein) enhances or disrupts allostery. They also wanted to know if there are many possible mutations that change the effectiveness of allostery, or if this property is controlled by just a few amino acids. Finally, McCormick et al. questioned where in a protein most of these allostery-tuning mutations were located. To answer these questions, McCormick et al. engineered a new allosteric protein by inserting a light-sensing domain (input) into a protein involved in metabolism (a metabolic enzyme that produces a biomolecule called a tetrahydrofolate) to yield a light-controlled enzyme. Next, they introduced mutations into both the 'input' and 'output' domains to see where they had a greater effect on allostery. After filtering out mutations that destroyed the function of the output domain, McCormick et al. found that only about 5% of mutations to the 'output' domain altered the allosteric response of their engineered enzyme. In fact, most mutations that disrupted allostery were found near the site where the 'input' domain was inserted, while mutations that enhanced allostery were sprinkled throughout the enzyme, often on its protein surface. This was surprising in light of the commonly-held assumption that mutations on protein surfaces have little impact on the activity of the 'output' domain. Overall, the effect of individual mutations on allostery was small, but McCormick et al. found that these mutations can sometimes be combined to yield larger effects. McCormick et al.'s results suggest a new approach for optimizing engineered allosteric proteins: by introducing mutations on the protein surface. It also opens up new questions: mechanically, how do surface sites affect allostery? In the future, it will be important to characterize how combinations of mutations can optimize allosteric regulation, and to determine what evolutionary trajectories to high performance allosteric 'switches' look like.


Allosteric Regulation/genetics , Allosteric Site/genetics , Protein Binding/genetics , Computational Biology , Escherichia coli/genetics , Models, Molecular , Mutation/genetics , Protein Domains/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism
7.
FEBS J ; 288(8): 2502-2512, 2021 04.
Article En | MEDLINE | ID: mdl-33738925

G protein-coupled receptors (GPCRs) are membrane-bound proteins that are ubiquitously expressed in many cell types and take part in mediating multiple signaling pathways. GPCRs are dynamic proteins and exist in an equilibrium between an ensemble of conformational states such as inactive and fully active states. This dynamic nature of GPCRs is one of the factors that confers their basal activity even in the absence of any ligand-mediated activation. Ligands selectively bind and stabilize a subset of the conformations from the ensemble leading to a shift in the equilibrium toward the inactive or the active state depending on the nature of the ligand. This ligand-selective effect is achieved through allosteric communication between the ligand binding site and G protein or ß-arrestin coupling site. Similarly, the G protein coupling to the receptor exerts the allosteric effect on the ligand binding region leading to increased binding affinity for agonists and decreased affinity for antagonists or inverse agonists. In this review, we enumerate the current state of our understanding of the mechanism of allosteric communication in GPCRs with a specific focus on the critical role of computational methods in delineating the residues involved in allosteric communication. Analyzing allosteric communication mechanism using molecular dynamics simulations has revealed (a) a structurally conserved mechanism of allosteric communication that regulates the G protein coupling, (b) a rational structure-based approach to designing selective ligands, and (c) an approach to designing allosteric GPCR mutants that are either ligand and G protein or ß-arrestin selective.


GTP-Binding Proteins/genetics , Receptors, Adrenergic, beta-2/genetics , Receptors, G-Protein-Coupled/genetics , beta-Arrestins/genetics , Allosteric Regulation/genetics , Allosteric Site/genetics , Humans , Ligands , Protein Binding/genetics , Protein Conformation , Signal Transduction/genetics
8.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article En | MEDLINE | ID: mdl-33536342

Cooperative ligand binding is an important phenomenon in biological systems where ligand binding influences the binding of another ligand at an alternative site of the protein via an intramolecular network of interactions. The underlying mechanisms behind cooperative binding remain poorly understood, primarily due to the lack of structural data of these ternary complexes. Using time-resolved fluorescence resonance energy transfer (TR-FRET) studies, we show that cooperative ligand binding occurs for RORγt, a nuclear receptor associated with the pathogenesis of autoimmune diseases. To provide the crucial structural insights, we solved 12 crystal structures of RORγt simultaneously bound to various orthosteric and allosteric ligands. The presence of the orthosteric ligand induces a clamping motion of the allosteric pocket via helices 4 to 5. Additional molecular dynamics simulations revealed the unusual mechanism behind this clamping motion, with Ala355 shifting between helix 4 and 5. The orthosteric RORγt agonists regulate the conformation of Ala355, thereby stabilizing the conformation of the allosteric pocket and cooperatively enhancing the affinity of the allosteric inverse agonists.


Allosteric Regulation/genetics , Drug Discovery , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Protein Conformation/drug effects , Allosteric Site/drug effects , Allosteric Site/genetics , Binding Sites/genetics , Biophysical Phenomena , Crystallography, X-Ray , Humans , Ligands , Molecular Conformation , Molecular Dynamics Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/chemistry , Protein Binding/genetics
9.
Nat Chem Biol ; 17(4): 456-464, 2021 04.
Article En | MEDLINE | ID: mdl-33526892

Cyclin-dependent kinases (CDKs) are the master regulators of the eukaryotic cell cycle. To become activated, CDKs require both regulatory phosphorylation and binding of a cognate cyclin subunit. We studied the activation process of the G1/S kinase Cdk2 in solution and developed a thermodynamic model that describes the allosteric coupling between regulatory phosphorylation, cyclin binding and inhibitor binding. The results explain why monomeric Cdk2 lacks activity despite sampling an active-like state, reveal that regulatory phosphorylation enhances allosteric coupling with the cyclin subunit and show that this coupling underlies differential recognition of Cdk2 and Cdk4 inhibitors. We identify an allosteric hub that has diverged between Cdk2 and Cdk4 and show that this hub controls the strength of allosteric coupling. The altered allosteric wiring of Cdk4 leads to compromised activity toward generic peptide substrates and comparative specialization toward its primary substrate retinoblastoma (RB).


Allosteric Regulation/physiology , Cyclin-Dependent Kinase 2/metabolism , Allosteric Site/genetics , Cell Cycle/physiology , Cell Cycle Proteins/metabolism , Cyclin A/metabolism , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Humans , Microtubule-Associated Proteins/metabolism , Models, Biological , Phosphorylation/physiology , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Proteins/metabolism
10.
Int J Mol Sci ; 22(1)2020 Dec 27.
Article En | MEDLINE | ID: mdl-33375427

G protein-coupled Receptors (GPCRs) play a central role in many physiological processes and, consequently, constitute important drug targets. In particular, the search for allosteric drugs has recently drawn attention, since they could be more selective and lead to fewer side effects. Accordingly, computational tools have been used to estimate the druggability of allosteric sites in these receptors. In spite of many successful results, the problem is still challenging, particularly the prediction of hydrophobic sites in the interface between the protein and the membrane. In this work, we propose a complementary approach, based on dynamical correlations. Our basic hypothesis was that allosteric sites are strongly coupled to regions of the receptor that undergo important conformational changes upon activation. Therefore, using ensembles of experimental structures, normal mode analysis and molecular dynamics simulations we calculated correlations between internal fluctuations of different sites and a collective variable describing the activation state of the receptor. Then, we ranked the sites based on the strength of their coupling to the collective dynamics. In the ß2 adrenergic (ß2AR), glucagon (GCGR) and M2 muscarinic receptors, this procedure allowed us to correctly identify known allosteric sites, suggesting it has predictive value. Our results indicate that this dynamics-based approach can be a complementary tool to the existing toolbox to characterize allosteric sites in GPCRs.


Allosteric Site , Molecular Dynamics Simulation , Receptors, G-Protein-Coupled/chemistry , Allosteric Regulation/genetics , Allosteric Site/genetics , Binding Sites , Hydrophobic and Hydrophilic Interactions , Protein Conformation , Receptor, Muscarinic M2/chemistry
11.
J Mol Biol ; 432(24): 166697, 2020 12 04.
Article En | MEDLINE | ID: mdl-33157083

T cells are vital for adaptive immune responses that protect against pathogens and cancers. The T cell receptor (TCR)-CD3 complex comprises a diverse αß TCR heterodimer in noncovalent association with three invariant CD3 dimers. The TCR is responsible for recognizing antigenic peptides bound to MHC molecules (pMHC), while the CD3 dimers relay activation signals to the T cell. However, the mechanisms by which TCR engagement by pMHC is transmitted to CD3 remain mysterious, although there is growing evidence that mechanosensing and allostery both play a role. Here, we carried out NMR analysis of a human autoimmune TCR (MS2-3C8) that recognizes a self-peptide from myelin basic protein presented by the MHC class II molecule HLA-DR4. We observed pMHC-induced NMR signal perturbations in MS2-3C8 that indicate long-range effects on TCR ß chain conformation and dynamics. Our results demonstrate that, in addition to expected changes in the NMR resonances of pMHC-contacting residues, perturbations extend to the Vß/Vα, Vß/Cß, and Cß/Cα interfacial regions. Moreover, the pattern of long-range perturbations is similar to that detected previously in the ß chains of two MHC class I-restricted TCRs, thereby revealing a common allosteric pathway among three unrelated TCRs. Molecular dynamics (MD) simulations predict similar pMHC-induced effects. Taken together, our results demonstrate that pMHC binding induces long-range allosteric changes in the TCR ß chain at conserved sites in both representative MHC class I- and class II-restricted TCRs, and that these sites may play a role in the transmission of signaling information.


Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class I/immunology , Peptides/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Allosteric Site/genetics , Binding Sites/genetics , Conserved Sequence/genetics , HLA-DR4 Antigen/genetics , HLA-DR4 Antigen/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class II/genetics , Humans , Molecular Dynamics Simulation , Peptides/genetics , Protein Binding/genetics , Protein Conformation , Receptor-CD3 Complex, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , T-Lymphocytes/immunology
12.
Proc Natl Acad Sci U S A ; 117(50): 31838-31849, 2020 12 15.
Article En | MEDLINE | ID: mdl-33229582

Guanosine triphosphate (GTP) cyclohydrolase I (GCH1) catalyzes the conversion of GTP to dihydroneopterin triphosphate (H2NTP), the initiating step in the biosynthesis of tetrahydrobiopterin (BH4). Besides other roles, BH4 functions as cofactor in neurotransmitter biosynthesis. The BH4 biosynthetic pathway and GCH1 have been identified as promising targets to treat pain disorders in patients. The function of mammalian GCH1s is regulated by a metabolic sensing mechanism involving a regulator protein, GCH1 feedback regulatory protein (GFRP). GFRP binds to GCH1 to form inhibited or activated complexes dependent on availability of cofactor ligands, BH4 and phenylalanine, respectively. We determined high-resolution structures of human GCH1-GFRP complexes by cryoelectron microscopy (cryo-EM). Cryo-EM revealed structural flexibility of specific and relevant surface lining loops, which previously was not detected by X-ray crystallography due to crystal packing effects. Further, we studied allosteric regulation of isolated GCH1 by X-ray crystallography. Using the combined structural information, we are able to obtain a comprehensive picture of the mechanism of allosteric regulation. Local rearrangements in the allosteric pocket upon BH4 binding result in drastic changes in the quaternary structure of the enzyme, leading to a more compact, tense form of the inhibited protein, and translocate to the active site, leading to an open, more flexible structure of its surroundings. Inhibition of the enzymatic activity is not a result of hindrance of substrate binding, but rather a consequence of accelerated substrate binding kinetics as shown by saturation transfer difference NMR (STD-NMR) and site-directed mutagenesis. We propose a dissociation rate controlled mechanism of allosteric, noncompetitive inhibition.


GTP Cyclohydrolase/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Allosteric Regulation , Allosteric Site/genetics , Biopterins/analogs & derivatives , Biopterins/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , GTP Cyclohydrolase/genetics , GTP Cyclohydrolase/ultrastructure , Mutagenesis, Site-Directed , Phenylalanine/metabolism , Protein Structure, Quaternary
13.
Sci Signal ; 13(646)2020 08 25.
Article En | MEDLINE | ID: mdl-32843541

The mitogen-activated protein kinase (MAPK) phosphatases (MKPs) have been considered "undruggable," but their position as regulators of the MAPKs makes them promising therapeutic targets. MKP5 has been suggested as a potential target for the treatment of dystrophic muscle disease. Here, we identified an inhibitor of MKP5 using a p38α MAPK-derived, phosphopeptide-based small-molecule screen. We solved the structure of MKP5 in complex with this inhibitor, which revealed a previously undescribed allosteric binding pocket. Binding of the inhibitor to this pocket collapsed the MKP5 active site and was predicted to limit MAPK binding. Treatment with the inhibitor recapitulated the phenotype of MKP5 deficiency, resulting in activation of p38 MAPK and JNK. We demonstrated that MKP5 was required for TGF-ß1 signaling in muscle and that the inhibitor blocked TGF-ß1-mediated Smad2 phosphorylation. TGF-ß1 pathway antagonism has been proposed for the treatment of dystrophic muscle disease. Thus, allosteric inhibition of MKP5 represents a therapeutic strategy against dystrophic muscle disease.


Dual-Specificity Phosphatases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays/methods , Mitogen-Activated Protein Kinase Phosphatases/antagonists & inhibitors , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Allosteric Site/genetics , Amino Acid Sequence , Animals , Cell Differentiation/drug effects , Cell Line , Dual-Specificity Phosphatases/chemistry , Dual-Specificity Phosphatases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Female , Humans , Kinetics , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase Phosphatases/chemistry , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Myoblasts/cytology , Myoblasts/drug effects , Myoblasts/metabolism , Protein Binding/drug effects , Sequence Homology, Amino Acid , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism
14.
J Proteome Res ; 19(11): 4576-4586, 2020 11 06.
Article En | MEDLINE | ID: mdl-32551648

SARS-CoV-2 has caused the largest pandemic of the twenty-first century (COVID-19), threatening the life and economy of all countries in the world. The identification of novel therapies and vaccines that can mitigate or control this global health threat is among the most important challenges facing biomedical sciences. To construct a long-term strategy to fight both SARS-CoV-2 and other possible future threats from coronaviruses, it is critical to understand the molecular mechanisms underlying the virus action. The viral entry and associated infectivity stems from the formation of the SARS-CoV-2 spike protein complex with angiotensin-converting enzyme 2 (ACE2). The detection of putative allosteric sites on the viral spike protein molecule can be used to elucidate the molecular pathways that can be targeted with allosteric drugs to weaken the spike-ACE2 interaction and, thus, reduce viral infectivity. In this study, we present the results of the application of different computational methods aimed at detecting allosteric sites on the SARS-CoV-2 spike protein. The adopted tools consisted of the protein contact networks (PCNs), SEPAS (Affinity by Flexibility), and perturbation response scanning (PRS) based on elastic network modes. All of these methods were applied to the ACE2 complex with both the SARS-CoV2 and SARS-CoV spike proteins. All of the adopted analyses converged toward a specific region (allosteric modulation region [AMR]), present in both complexes and predicted to act as an allosteric site modulating the binding of the spike protein with ACE2. Preliminary results on hepcidin (a molecule with strong structural and sequence with AMR) indicated an inhibitory effect on the binding affinity of the spike protein toward the ACE2 protein.


Allosteric Site/genetics , Coronavirus Infections/virology , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , Binding Sites , COVID-19 , Drug Discovery , Humans , Models, Molecular , Neural Networks, Computer , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
15.
Int J Mol Sci ; 21(6)2020 Mar 21.
Article En | MEDLINE | ID: mdl-32245216

Activation of the mitogen-activated protein kinase (MAPK) signaling pathway regulated by human MAP kinase 1 (MEK1) is associated with the carcinogenesis and progression of numerous cancers. In addition, two active mutations (P124S and E203K) have been reported to enhance the activity of MEK1, thereby eventually leading to the tumorigenesis of cancer. Trametinib is an MEK1 inhibitor for treating EML4-ALK-positive, EGFR-activated, and KRAS-mutant lung cancers. Therefore, in this study, molecular docking and molecular dynamic (MD) simulations were performed to explore the effects of inactive/active mutations (A52V/P124S and E203K) on the conformational changes of MEK1 and the changes in the interaction of MEK1 with trametinib. Moreover, steered molecular dynamic (SMD) simulations were further utilized to compare the dissociation processes of trametinib from the wild-type (WT) MEK1 and two active mutants (P124S and E203K). As a result, trametinib had stronger interactions with the non-active MEK1 (WT and A52V mutant) than the two active mutants (P124S and E203K). Moreover, two active mutants may make the allosteric channel of MEK1 wider and shorter than that of the non-active types (WT and A52V mutant). Hence, trametinib could dissociate from the active mutants (P124S and E203K) more easily compared with the WT MEK1. In summary, our theoretical results demonstrated that the active mutations may attenuate the inhibitory effects of MEK inhibitor (trametinib) on MEK1, which could be crucial clues for future anti-cancer treatment.


Antineoplastic Agents/chemistry , MAP Kinase Kinase 1/chemistry , Protein Kinase Inhibitors/chemistry , Pyridones/chemistry , Pyrimidinones/chemistry , Allosteric Site/genetics , Antineoplastic Agents/pharmacology , Catalysis/drug effects , Hydrogen Bonding , Ligands , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/genetics , Molecular Docking Simulation , Mutation , Protein Binding/genetics , Protein Conformation/drug effects , Protein Kinase Inhibitors/pharmacology , Pyridones/pharmacology , Pyrimidinones/pharmacology , Static Electricity , Thermodynamics
16.
Nat Commun ; 11(1): 1491, 2020 03 20.
Article En | MEDLINE | ID: mdl-32198394

The serotonin transporter (SERT) terminates serotonin signaling by rapid presynaptic reuptake. SERT activity is modulated by antidepressants, e.g., S-citalopram and imipramine, to alleviate symptoms of depression and anxiety. SERT crystal structures reveal two S-citalopram binding pockets in the central binding (S1) site and the extracellular vestibule (S2 site). In this study, our combined in vitro and in silico analysis indicates that the bound S-citalopram or imipramine in S1 is allosterically coupled to the ligand binding to S2 through altering protein conformations. Remarkably, SERT inhibitor Lu AF60097, the first high-affinity S2-ligand reported and characterized here, allosterically couples the ligand binding to S1 through a similar mechanism. The SERT inhibition by Lu AF60097 is demonstrated by the potentiated imipramine binding and increased hippocampal serotonin level in rats. Together, we reveal a S1-S2 coupling mechanism that will facilitate rational design of high-affinity SERT allosteric inhibitors.


Allosteric Site/drug effects , Citalopram/pharmacology , Imipramine/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin Plasma Membrane Transport Proteins/chemistry , Serotonin Plasma Membrane Transport Proteins/metabolism , Allosteric Regulation/drug effects , Allosteric Site/genetics , Animals , Antidepressive Agents/pharmacology , Citalopram/chemistry , Drug Development , Genetic Engineering , Imipramine/chemistry , Ligands , Molecular Docking Simulation , Mutagenesis, Site-Directed , Protein Conformation , Rats , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics
17.
Front Biosci (Landmark Ed) ; 25(8): 1462-1487, 2020 03 01.
Article En | MEDLINE | ID: mdl-32114441

Human kinases represent a large family of enzymes with their primary function being the phosphorylation of various biomolecules. Kinases along with G-Protein Coupled Receptors (GPCRs) represent wo of the most common protein targest in drug discovery. Kinases are classified by the substrate they phosphorylate namely, protein kinases, carbohydrate kinases and lipid kinases. These different classes have unique mechanism of action but show considerable overlap in their structural assembly and sequence of chemical modifications. Compounds can modulate kinadse activity by interacting with the enzyme's ATP binding site (orthostatic site) or the allosteric site. These modulators have been classified as Types I, II, III and IV depending on their mode of binding. Inclusion of atypical kinases and pseuokinases in the targetable kinome along with the recent approval of kinase-based therapeutics provides an impetus to the ever-growing field of kinase modulation. This review attempts to summarize the identification, historical stance, catalytic structure and subsequent development of kinases as significvant drug targets with an emphasis on their catalytic machinery and modulation.


Adenosine Triphosphate/metabolism , Allosteric Regulation , Protein Kinases/metabolism , Receptors, G-Protein-Coupled/metabolism , 1-Phosphatidylinositol 4-Kinase/genetics , 1-Phosphatidylinositol 4-Kinase/metabolism , Allosteric Site/genetics , Binding Sites/genetics , Glucokinase/genetics , Glucokinase/metabolism , Humans , Phosphorylation , Protein Kinases/genetics , Receptors, G-Protein-Coupled/genetics
18.
PLoS Comput Biol ; 16(3): e1007630, 2020 03.
Article En | MEDLINE | ID: mdl-32119660

In allosteric proteins, the binding of a ligand modifies function at a distant active site. Such allosteric pathways can be used as target for drug design, generating considerable interest in inferring them from sequence alignment data. Currently, different methods lead to conflicting results, in particular on the existence of long-range evolutionary couplings between distant amino-acids mediating allostery. Here we propose a resolution of this conundrum, by studying epistasis and its inference in models where an allosteric material is evolved in silico to perform a mechanical task. We find in our model the four types of epistasis (Synergistic, Sign, Antagonistic, Saturation), which can be both short or long-range and have a simple mechanical interpretation. We perform a Direct Coupling Analysis (DCA) and find that DCA predicts well the cost of point mutations but is a rather poor generative model. Strikingly, it can predict short-range epistasis but fails to capture long-range epistasis, in consistence with empirical findings. We propose that such failure is generic when function requires subparts to work in concert. We illustrate this idea with a simple model, which suggests that other methods may be better suited to capture long-range effects.


Allosteric Site/genetics , Computational Biology/methods , Epistasis, Genetic/genetics , Allosteric Regulation/physiology , Amino Acids/genetics , Animals , Catalytic Domain/physiology , Computer Simulation , Drug Design , Humans , Ligands , Models, Molecular , Models, Theoretical , Protein Conformation , Proteins/chemistry
19.
Viruses ; 12(3)2020 03 09.
Article En | MEDLINE | ID: mdl-32182845

The high mutation rate of the human immunodeficiency virus type 1 (HIV-1) plays a major role in treatment resistance, from the development of vaccines to therapeutic drugs. In addressing the crux of the issue, various attempts to estimate the mutation rate of HIV-1 resulted in a large range of 10-5-10-3 errors/bp/cycle due to the use of different types of investigation methods. In this review, we discuss the different assay methods, their findings on the mutation rates of HIV-1 and how the locations of mutations can be further analyzed for their allosteric effects to allow for new inhibitor designs. Given that HIV is one of the fastest mutating viruses, it serves as a good model for the comprehensive study of viral mutations that can give rise to a more horizontal understanding towards overall viral drug resistance as well as emerging viral diseases.


Allosteric Site/genetics , Drug Resistance, Viral/genetics , HIV-1/genetics , Mutation Rate , Anti-HIV Agents/pharmacology , Drug Design , Drug Resistance, Viral/drug effects , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/drug effects , HIV Reverse Transcriptase/genetics , Humans , Models, Molecular , Mutation , Reverse Transcriptase Inhibitors/pharmacology
20.
Sci Rep ; 10(1): 2292, 2020 02 10.
Article En | MEDLINE | ID: mdl-32041998

Fatty acid amide hydrolase (FAAH) is a membrane-bound homodimeric enzyme that in vivo controls content and biological activity of N-arachidonoylethanolamine (AEA) and other relevant bioactive lipids termed endocannabinoids. Parallel orientation of FAAH monomers likely allows both subunits to simultaneously recruit and cleave substrates. Here, we show full inhibition of human and rat FAAH by means of enzyme inhibitors used at a homodimer:inhibitor stoichiometric ratio of 1:1, implying that occupation of only one of the two active sites of FAAH is enough to fully block catalysis. Single W445Y substitution in rat FAAH displayed the same activity as the wild-type, but failed to show full inhibition at the homodimer:inhibitor 1:1 ratio. Instead, F432A mutant exhibited reduced specific activity but was fully inhibited at the homodimer:inhibitor 1:1 ratio. Kinetic analysis of AEA hydrolysis by rat FAAH and its F432A mutant demonstrated a Hill coefficient of ~1.6, that instead was ~1.0 in the W445Y mutant. Of note, also human FAAH catalysed an allosteric hydrolysis of AEA, showing a Hill coefficient of ~1.9. Taken together, this study demonstrates an unprecedented allosterism of FAAH, and represents a case of communication between two enzyme subunits seemingly controlled by a single amino acid (W445) at the dimer interface. In the light of extensive attempts and subsequent failures over the last decade to develop effective drugs for human therapy, these findings pave the way to the rationale design of new molecules that, by acting as positive or negative heterotropic effectors of FAAH, may control more efficiently its activity.


Amidohydrolases/metabolism , Benzamides/pharmacology , Carbamates/pharmacology , Endocannabinoids/metabolism , Protein Subunits/metabolism , Allosteric Regulation/drug effects , Allosteric Site/drug effects , Allosteric Site/genetics , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/chemistry , Amidohydrolases/genetics , Animals , Arachidonic Acids , Biocatalysis/drug effects , Catalytic Domain/drug effects , Catalytic Domain/genetics , Drug Design , Enzyme Assays , Humans , Hydrolysis/drug effects , Kinetics , Molecular Dynamics Simulation , Mutation , Polyunsaturated Alkamides , Protein Subunits/antagonists & inhibitors , Protein Subunits/chemistry , Protein Subunits/genetics , Rats
...