Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mBio ; 12(5): e0234221, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34700373

RESUMEN

The recent emergence and spread of zoonotic viruses highlights that animal-sourced viruses are the biggest threat to global public health. Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an HKU2-related bat coronavirus that was spilled over from Rhinolophus bats to swine, causing large-scale outbreaks of severe diarrhea disease in piglets in China. Unlike other porcine coronaviruses, SADS-CoV possesses broad species tissue tropism, including primary human cells, implying a significant risk of cross-species spillover. To explore host dependency factors for SADS-CoV as therapeutic targets, we employed genome-wide CRISPR knockout library screening in HeLa cells. Consistent with two independent screens, we identified the zinc finger DHHC-type palmitoyltransferase 17 (ZDHHC17 or ZD17) as an important host factor for SADS-CoV infection. Through truncation mutagenesis, we demonstrated that the DHHC domain of ZD17 that is involved in palmitoylation is important for SADS-CoV infection. Mechanistic studies revealed that ZD17 is required for SADS-CoV genomic RNA replication. Treatment of infected cells with the palmitoylation inhibitor 2-bromopalmitate (2-BP) significantly suppressed SADS-CoV infection. Our findings provide insight on SADS-CoV-host interactions and a potential therapeutic application. IMPORTANCE The recent emergence of deadly zoonotic viral diseases, including Ebola virus and SARS-CoV-2, emphasizes the importance of pandemic preparedness for the animal-sourced viruses with potential risk of animal-to-human spillover. Over the last 2 decades, three significant coronaviruses of bat origin, SARS-CoV, MERS-CoV, and SARS-CoV-2, have caused millions of deaths with significant economy and public health impacts. Lack of effective therapeutics against these coronaviruses was one of the contributing factors to such losses. Although SADS-CoV, another coronavirus of bat origin, was only known to cause fatal diarrhea disease in piglets, the ability to infect cells derived from multiple species, including human, highlights the potential risk of animal-to-human spillover. As part of our effort in pandemic preparedness, we explore SADS-CoV host dependency factors as targets for host-directed therapeutic development and found zinc finger DHHC-type palmitoyltransferase 17 is a promising drug target against SADS-CoV replication. We also demonstrated that a palmitoylation inhibitor, 2-bromopalmitate (2-BP), can be used as an inhibitor for SADS-CoV treatment.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Alphacoronavirus/patogenicidad , Proteínas del Tejido Nervioso/metabolismo , Aciltransferasas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Alphacoronavirus/efectos de los fármacos , Animales , COVID-19/metabolismo , Células HeLa , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Proteínas del Tejido Nervioso/genética , Palmitatos/farmacología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Porcinos
2.
Viruses ; 13(9)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34578406

RESUMEN

The porcine epidemic diarrhea virus (PEDV) is an Alphacoronavirus (α-CoV) that causes high mortality in infected piglets, resulting in serious economic losses in the farming industry. Hypericin is a dianthrone compound that has been shown as an antiviral activity on several viruses. Here, we first evaluated the antiviral effect of hypericin in PEDV and found the viral replication and egression were significantly reduced with hypericin post-treatment. As hypericin has been shown in SARS-CoV-2 that it is bound to viral 3CLpro, we thus established a molecular docking between hypericin and PEDV 3CLpro using different software and found hypericin bound to 3CLpro through two pockets. These binding pockets were further verified by another docking between hypericin and PEDV 3CLpro pocket mutants, and the fluorescence resonance energy transfer (FRET) assay confirmed that hypericin inhibits the PEDV 3CLpro activity. Moreover, the alignments of α-CoV 3CLpro sequences or crystal structure revealed that the pockets mediating hypericin and PEDV 3CLpro binding were highly conserved, especially in transmissible gastroenteritis virus (TGEV). We then validated the anti-TGEV effect of hypericin through viral replication and egression. Overall, our results push forward that hypericin was for the first time shown to have an inhibitory effect on PEDV and TGEV by targeting 3CLpro, and it deserves further attention as not only a pan-anti-α-CoV compound but potentially also as a compound of other coronaviral infections.


Asunto(s)
Alphacoronavirus/efectos de los fármacos , Alphacoronavirus/fisiología , Antracenos/farmacología , Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Infecciones por Coronavirus/virología , Perileno/análogos & derivados , Replicación Viral/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antivirales/química , Chlorocebus aethiops , Proteasas 3C de Coronavirus/química , Activación Enzimática/efectos de los fármacos , Modelos Moleculares , Perileno/farmacología , Virus de la Diarrea Epidémica Porcina/efectos de los fármacos , Proteínas Recombinantes , Relación Estructura-Actividad , Porcinos , Enfermedades de los Porcinos/virología , Células Vero
3.
Antiviral Res ; 166: 11-18, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30905822

RESUMEN

Swine enteric coronaviruses (SECoVs), including porcine epidemic diarrhea virus (PEDV), swine acute diarrhea syndrome coronavirus (SADS-CoV), and porcine deltacoronavirus (PDCoV) have emerged and been prevalent in pig populations in China for the last several years. However, current traditional inactivated and attenuated PEDV vaccines are of limited efficacy against circulating PEDV variants, and there are no commercial vaccines for prevention of PDCoV and SADS-CoV. RNA interference (RNAi) is a powerful tool in therapeutic applications to inhibit viral replication in vitro. In this study, we developed a small interfering RNA generation system that expressed two different short hairpin RNAs (shRNAs) targeting the M gene of PEDV and SADS-CoV and the N gene of PDCoV, respectively. Our results demonstrated that simultaneous expression of these specific shRNA molecules inhibited expression of PEDV M gene, SADS-CoV M gene, and PDCoV N gene RNA by 99.7%, 99.4%, and 98.8%, respectively, in infected cell cultures. In addition, shRNA molecules significantly restricted the expression of M and N protein, and impaired the replication of PEDV, SADS-CoV, and PDCoV simultaneously. Taken together, this shRNAs expression system not only is proved to be a novel approach for studying functions of various genes synchronously, but also developed to test aspects of a potential therapeutic option for treatment and prevention of multiple SECoV infections.


Asunto(s)
Alphacoronavirus/genética , Infecciones por Coronavirus/veterinaria , Coronavirus/genética , Virus de la Diarrea Epidémica Porcina/genética , ARN Interferente Pequeño , Alphacoronavirus/efectos de los fármacos , Animales , China , Coronavirus/efectos de los fármacos , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/terapia , Genes Virales , Terapia Genética , Virus de la Diarrea Epidémica Porcina/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/uso terapéutico , Porcinos , Enfermedades de los Porcinos/terapia , Enfermedades de los Porcinos/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA