Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.126
1.
J Clin Pediatr Dent ; 48(3): 171-176, 2024 May.
Article En | MEDLINE | ID: mdl-38755996

To explore a new method to implant deciduous tooth pulp into the canal of young permanent teeth with necrotic pulps and apical periodontitis for the regenerative endodontic treatment of tooth no: 41 in a 7-year-old male. Briefly, 1.5% Sodium Hypochlorite (NaOCl) irrigation and calcium hydroxide-iodoform paste were used as root canal disinfectant at the first visit. After 2 weeks, the intracanal medication was removed, and the root canal was slowly rinsed with 17% Ethylene Diamine Tetraacetic Acid (EDTA), followed by flushing with 20 mL saline and then drying with paper points. Tooth no: 72 was extracted, and its pulp was extracted and subsequently implanted into the disinfected root canal along with induced apical bleeding. Calcium hydroxide iodoform paste was gently placed over the bleeding clot, and after forming a mineral trioxide aggregate (MTA) coronal barrier, the accessed cavities were restored using Z350 resin composite. The root developments were evaluated via radiographic imaging at 6 months, 1 year and 5 years after treatment. Imaging and clinical analysis showed closure of the apical foramen, thickening of the root canal wall, and satisfactory root length growth. Autologous transplantation might be useful to regenerate dental pulp in necrotic young permanent teeth.


Aluminum Compounds , Calcium Compounds , Dental Pulp , Incisor , Tooth, Deciduous , Humans , Male , Child , Dental Pulp/blood supply , Calcium Compounds/therapeutic use , Aluminum Compounds/therapeutic use , Oxides/therapeutic use , Drug Combinations , Dental Pulp Necrosis/therapy , Silicates/therapeutic use , Follow-Up Studies , Regenerative Endodontics/methods , Mandible/surgery , Calcium Hydroxide/therapeutic use , Neovascularization, Physiologic , Root Canal Therapy/methods , Root Canal Irrigants/therapeutic use , Root Canal Filling Materials/therapeutic use , Periapical Periodontitis/therapy , Periapical Periodontitis/surgery , Sodium Hypochlorite/therapeutic use , Dental Pulp Cavity , Hydrocarbons, Iodinated
2.
Int J Immunopathol Pharmacol ; 38: 3946320241250286, 2024.
Article En | MEDLINE | ID: mdl-38764158

Background: Aluminum phosphide (AlP) poisoning is prevalent in numerous countries, resulting in high mortality rates. Phosphine gas, the primary agent responsible for AlP poisoning, exerts detrimental effects on various organs, notably the heart, liver and kidneys. Numerous studies have documented the advantageous impact of Coenzyme Q10 (CoQ10) in mitigating hepatic injuries. The objective of this investigation is to explore the potential protective efficacy of CoQ10 against hepatic toxicity arising from AlP poisoning. Method: The study encompassed distinct groups receiving almond oil, normal saline, exclusive CoQ10 (at a dosage of 100 mg/kg), AlP at 12 mg/kg; LD50 (lethal dose for 50%), and four groups subjected to AlP along with CoQ10 administration (post-AlP gavage). CoQ10 was administered at 10, 50, and 100 mg/kg doses via Intraparietal (ip) injections. After 24 h, liver tissue specimens were scrutinized for mitochondrial complex activities, oxidative stress parameters, and apoptosis as well as biomarkers such as aspartate transaminase (AST) and alanine transaminase (ALT). Results: AlP induced a significant decrease in the activity of mitochondrial complexes I and IV, as well as a reduction in catalase activity, Ferric Reducing Antioxidant Power (FRAP), and Thiol levels. Additionally, AlP significantly elevated oxidative stress levels, indicated by elevated reactive oxygen species (ROS) production, and resulted in the increment of hepatic biomarkers such as AST and ALT. Administration of CoQ10 led to a substantial improvement in the aforementioned biochemical markers. Furthermore, phosphine exposure resulted in a significant reduction in viable hepatocytes and an increase in apoptosis. Co-treatment with CoQ10 exhibited a dose-dependent reversal of these observed alterations. Conclusion: CoQ10 preserved mitochondrial function, consequently mitigating oxidative damage. This preventive action impeded the progression of heart cells toward apoptosis.


Chemical and Drug Induced Liver Injury , Liver , Oxidative Stress , Phosphines , Ubiquinone , Phosphines/poisoning , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Ubiquinone/therapeutic use , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/etiology , Animals , Oxidative Stress/drug effects , Male , Liver/drug effects , Liver/metabolism , Liver/pathology , Apoptosis/drug effects , Antioxidants/pharmacology , Antioxidants/therapeutic use , Rats , Aspartate Aminotransferases/blood , Aspartate Aminotransferases/metabolism , Aluminum Compounds/toxicity , Alanine Transaminase/blood , Alanine Transaminase/metabolism , Reactive Oxygen Species/metabolism , Rats, Wistar
3.
BMC Oral Health ; 24(1): 554, 2024 May 12.
Article En | MEDLINE | ID: mdl-38735924

This in vitro study compared various obturation techniques with bioceramic sealers for filling C-shaped 3D-printed replicas. A mandibular molar with a C-shaped root canal with a C1 configuration was obtained. After instrumenting with M3 Pro Gold files (United Dental, Shanghai, China) up to size #30/0.04, a CBCT scan of the tooth was taken. Sixty 3D-printed replicas of the tooth were created. The samples were obturated with EndoSeal TCS sealer (E. TCS; Maruchi, Wonju, Korea) or EndoSeal MTA (E. MTA; Maruchi, Wonju, Korea) (n = 30). The samples in each group were obturated with the following techniques (n = 10): (1) single-cone technique (SC), (2) SC with ultrasonic activation (UA), and (3) cold hydraulic compaction (CHC). Following incubation, the replicas' apical, middle, and coronal thirds were inspected under a digital microscope, and the proportion of filling material and void were calculated. Also, the obturation time and sealer extrusion were recorded. Data were analyzed using ANOVA, LSD post-hoc, and the chi-square tests (α = 0.05). The results indicated that in the apical third, E. TCS-SC, E. TCS-UA, and E. MTA-UA had the lowest void percentage among groups (p < 0.05). In the middle thirds, samples obturated with E. TCS-UA showed a significantly lower void percentage among all groups (p < 0.05). However, in the coronal third, E. TCS-CHC showed the least void percentage (p < 0.05), followed by E. TCS-UA and E. MTA-CHC. The E. TCS-SC and E. TCS-UA were the least time-consuming methods (p < 0.05). Sealer extrusion significantly differed among the groups, with E. MTA-UA and E. TCS-UA showing higher incidence (p = 0.019). It was concluded that E. TCS-UA was the most convenient obturation technique. However, care must be taken when obturating the canals with high flow and ultrasonic activation near the vital anatomical landmarks.


Printing, Three-Dimensional , Root Canal Filling Materials , Root Canal Obturation , Root Canal Obturation/methods , Humans , Drug Combinations , Molar/diagnostic imaging , In Vitro Techniques , Calcium Compounds , Oxides , Dental Pulp Cavity/diagnostic imaging , Aluminum Compounds , Cone-Beam Computed Tomography/methods , Silicates
4.
Eur J Paediatr Dent ; 25: 1, 2024 May 01.
Article En | MEDLINE | ID: mdl-38804663

BACKGROUND: Dilaceration can lead to impaction of maxillary incisors, resulting in both aesthetic and functional problems. This case report presents the multidisciplinary approach to managing an inverse impacted dilacerated left lateral incisor in a 9-year-old male patient. CASE REPORT: The orthodontic alignment of the remaining three incisors was achieved within six months. After using the diode laser to remove the gingiva covering the right lateral incisor during alignment process, a lingual button was bonded. The primary left canine and the impacted permanent left lateral incisor were extracted by raising the full-thickness mucoperiosteal flap, followed by the transplantation of the dilacerated lateral incisor into its correct position, splinted to the adjacent central incisors using composite resin. Root canal treatment was performed after the apical plug was created with mineral trioxide aggregate. The composite splint was removed after three weeks, and a new bracket was bonded to the left lateral incisor. It was left passively for 18 months until the permanent canines started to erupt. Light orthodontic forces were then applied for six months, and a passive eruption was expected over three months to properly position the canines within the dental arch. After an 11-year follow-up, the incisor displayed no clinical symptoms, although radiographic examination revealed external resorption in the long-term. CONCLUSION: This case demonstrates the successful and fast autotransplantation of an immature inverse impacted dilacerated incisor, highlighting the long-term clinical success and favorable aesthetic outcomes.


Incisor , Tooth, Impacted , Humans , Male , Child , Incisor/abnormalities , Tooth, Impacted/surgery , Tooth, Impacted/therapy , Follow-Up Studies , Transplantation, Autologous , Root Canal Therapy/methods , Maxilla/surgery , Composite Resins , Lasers, Semiconductor/therapeutic use , Cuspid/abnormalities , Calcium Compounds/therapeutic use , Oxides/therapeutic use , Drug Combinations , Aluminum Compounds , Silicates
5.
Sci Rep ; 14(1): 10998, 2024 05 14.
Article En | MEDLINE | ID: mdl-38745068

Using ferric chloride (FeCl3) to induce experimental superior sagittal sinus (SSS) thrombosis might interfere with magnetic resonance imaging (MRI)-assisted visualization and evaluation of the thrombus, the brain parenchyma, and the quality of the occlusion. The aim of this study was to investigate whether aluminum chloride (AlCl3)-induced thrombosis of the SSS has comparable properties to those of FeCl3 without causing artifacts in MRI. SSS thrombosis was induced in 14 male Wistar rats by exposure of the SSS and subsequent topical application of a filter paper strip soaked in AlCl3 (n = 7) or FeCl3 (n = 7) over a period of 15 min. The animals with AlCl3-induced SSS thrombosis showed a constant and complete occlusion with in histological analysis large thrombi. Blood flow measurements indicated a significant reduction on the first and seventh postoperative day compared to preoperative measurements. MRI enabled visualization and subsequent evaluation of the thrombus and the surrounding parenchyma. In comparison, FeCl3-induced SSS thrombosis could not be evaluated by MRI due to artifacts caused by the paramagnetic properties and increased susceptibility of FeCl3. The occluded sinus and the surrounding area appeared hypointense. The quality of SSS occlusion by AlCl3 was comparable to that of FeCl3. AlCl3 therefore represents a significant alternative substance in experimental SSS thrombosis ideally suited for studies using MRI.


Aluminum Chloride , Artifacts , Chlorides , Disease Models, Animal , Ferric Compounds , Magnetic Resonance Imaging , Rats, Wistar , Animals , Magnetic Resonance Imaging/methods , Male , Rats , Chlorides/pharmacology , Chlorides/administration & dosage , Sagittal Sinus Thrombosis/diagnostic imaging , Sagittal Sinus Thrombosis/chemically induced , Aluminum Compounds , Superior Sagittal Sinus/diagnostic imaging , Superior Sagittal Sinus/drug effects
6.
Medicine (Baltimore) ; 103(18): e38015, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701294

BACKGROUND: Compared with traditional root canal therapy (RCT), vital pulp therapy (VPT) is a personalized and minimally invasive method for the treatment of pulpitis caused by dental caries. However, there are still no clear guidelines for VPT because high-quality randomized clinical trials are scarce. This prospective cohort study evaluated the clinical efficacy of VPT with the light-curable calcium silicate-based material TheraCal LC (TH) and bioceramic material iRoot BP Plus (BP) in reversible and irreversible pulpitis permanent teeth with carious exposures. METHODS: 115 teeth with reversible or irreversible pulpitis caused by deep care were randomly divided into 2 groups. TheraCal LC and iRoot BP Plus were used for the pulp capping. Direct pulp capping (DPC), partial pulpotomy (PP) and full pulpotomy (FP) were performed based on observation of the exposed pulp. Postoperative discomforts were enquired and recorded via follow-up phone calls. Clinical and radiographic evaluations were performed 3, 6, and 12 months postoperatively. RESULTS: The overall clinical success rate in the first year was 90.4% (47/52) in both groups. The TH group required less operating time, showed lower levels of pain, and had shorter pain duration post-operative (P < .001). According to the binary logistic regression model, preoperative pain duration was significantly correlated with the prognosis of VPT (P = .011). CONCLUSION: VPT with TheraCal LC and iRoot BP Plus in pulpitis permanent carious teeth both achieved good clinical outcomes, and TheraCal LC can be easily operated for clinical use. Preoperative pain duration of the affected tooth might have a significant correlation with the prognosis of VPT.


Calcium Compounds , Dental Pulp Capping , Pulpitis , Pulpotomy , Silicates , Humans , Pulpitis/therapy , Calcium Compounds/therapeutic use , Calcium Compounds/administration & dosage , Silicates/therapeutic use , Female , Male , Pulpotomy/methods , Adult , Prospective Studies , Dental Pulp Capping/methods , Dental Caries/therapy , Young Adult , Treatment Outcome , Adolescent , Middle Aged , Drug Combinations , Calcium Hydroxide/therapeutic use , Aluminum Compounds/therapeutic use , Oxides/therapeutic use , Oxides/administration & dosage
7.
Sci Total Environ ; 931: 172945, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38703849

The coagulation process has a high potential as a treatment method that can handle pathogenic viruses including emerging enveloped viruses in drinking water treatment process which can lower infection risk through drinking water consumption. In this study, a surrogate enveloped virus, bacteriophage Փ6, and surrogate non-enveloped viruses, including bacteriophage MS-2, T4, ՓX174, were used to evaluate removal efficiencies and mechanisms by the conventional coagulation process with alum, poly­aluminum chloride, and ferric chloride at pH 5, 7, and 9 in turbid water. Also, treatability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a recent virus of global concern by coagulation was evaluated as SARS-CoV-2 can presence in drinking water sources. It was observed that an increase in the coagulant dose enhanced the removal efficiency of turbidity and viruses, and the condition that provided the highest removal efficiency of enveloped and non-enveloped viruses was 50 mg/L of coagulants at pH 5. In addition, the coagulation process was more effective for enveloped virus removal than for the non-enveloped viruses, and it demonstrated reduction of SARS-CoV-2 Omicron BA.2 over 0.83-log with alum. According to culture- and molecular-based assays (qPCR and CDDP-qPCR), the virus removal mechanisms were floc adsorption and coagulant inactivation. Through inactivation with coagulants, coagulants caused capsid destruction, followed by genome damage in non-enveloped viruses; however, damage to a lipid envelope is suggested to contribute to a great extend for enveloped virus inactivation. We demonstrated that conventional coagulation is a promising method for controlling emerging and re-emerging viruses in drinking water.


SARS-CoV-2 , Water Purification , Water Purification/methods , SARS-CoV-2/physiology , COVID-19 , Drinking Water/virology , Drinking Water/chemistry , Alum Compounds , Water Microbiology , Betacoronavirus/physiology , Flocculation , Aluminum Compounds , Ferric Compounds/chemistry
8.
Inorg Chem ; 63(21): 9831-9841, 2024 May 27.
Article En | MEDLINE | ID: mdl-38739498

Aluminum fluoride (AlF) complexes have been used over the past decade to incorporate [18F]fluoride into large biomolecules in a highly selective fashion by using relatively facile conditions. However, despite their widespread usage, there are a large number of variations in the reaction conditions, without a definitive discussion provided on the mechanism to understand how these changes would alter the end result. Herein, we report a detailed mechanistic investigation of the reaction, using a mixture of theoretical studies, fluorine-19 and fluorine-18 chemistry, and the consequences it has on the efficient clinical translation of AlF-containing imaging agents.


Aluminum Compounds , Chelating Agents , Fluorides , Fluorides/chemistry , Aluminum Compounds/chemistry , Chelating Agents/chemistry , Chelating Agents/chemical synthesis , Fluorine Radioisotopes/chemistry , Molecular Structure
9.
J Dent Res ; 103(6): 652-661, 2024 Jun.
Article En | MEDLINE | ID: mdl-38716736

The process of neovascularization during cell-based pulp regeneration is difficult to study. Here we developed a tube model that simulates root canal space and allows direct visualization of the vascularization process in vitro. Endothelial-like cells (ECs) derived from guiding human dental pulp stem cells (DPSCs) into expressing endothelial cell markers CD144, vWF, VEGFR1, and VEGFR2 were used. Human microvascular endothelial cells (hMVECs) were used as a positive control. DPSC-ECs formed tubules on Matrigel similar to hMVECs. Cells were mixed in fibrinogen/thrombin or mouse blood and seeded into wells of 96-well plates or injected into a tapered plastic tube (14 mm in length and 1 or 2 mm diameter of the apex opening) with the larger end sealed with MTA to simulate root canal space. Cells/gels in wells or tubes were incubated for various times in vitro and observed under the microscope for morphological changes. Samples were then fixed and processed for histological analysis to determine vessel formation. Vessel-like networks were observed in culture from 1 to 3 d after cell seeding. Cells/gels in 96-well plates were maintained up to 25 d. Histologically, both hMVECs and DPSC-ECs in 96-well plates or tubes showed intracellular vacuole formation. Some cells showed merged large vacuoles indicating the lumenization. Tubular structures were also observed resembling blood vessels. Cells appeared healthy throughout the tube except some samples (1 mm apical diameter) in the coronal third. Histological analysis also showed pulp-like soft tissue throughout the tube samples with vascular-like structures. hMVECs formed larger vascular lumen size than DPSC-ECs while the latter tended to have more lumen and tubular structure counts. We conclude that DPSC-ECs can form vascular structures and sustained in the 3-dimensional fibrin gel system in vitro. The tube model appears to be a proper and simple system simulating the root canal space for vascular formation and pulp regeneration studies.


Dental Pulp , Drug Combinations , Endothelial Cells , Neovascularization, Physiologic , Proteoglycans , Regeneration , Stem Cells , Dental Pulp/cytology , Dental Pulp/blood supply , Dental Pulp/physiology , Neovascularization, Physiologic/physiology , Animals , Mice , Humans , Regeneration/physiology , Endothelial Cells/physiology , Stem Cells/physiology , Collagen , Cell Culture Techniques , Laminin , von Willebrand Factor/analysis , Vascular Endothelial Growth Factor Receptor-2 , Fibrinogen , Dental Pulp Cavity , Calcium Compounds , Aluminum Compounds , Root Canal Filling Materials , Microvessels/cytology , Cells, Cultured , Oxides , Silicates , CD146 Antigen
10.
J Transl Med ; 22(1): 498, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796431

OBJECTIVE: The aim of the present pilot study was to assess the effectiveness of the platelet-rich fibrin (PRF) apical barrier for the placement of MTA for the treatment of teeth with periapical lesions and open apices. METHODS: A total of thirty teeth on twenty-eight patients with open apices and periapical periodontitis were enrolled and divided into two groups in the present pilot study. In the PRF group (fourteen teeth in thirteen patients), nonsurgical endodontic treatment was performed using PRF as an apical matrix, after which the apical plug of the MTA was created. For the non-PRF group (fourteen teeth in fourteen patients), nonsurgical endodontic therapy was performed using only the MTA for an apical plug with no further periapical intervention. Clinical findings and periapical digital radiographs were used for evaluating the healing progress after periodic follow-ups of 1, 3, 6, and 9 months. The horizontal dimension of the periapical lesion was gauged, and the changes in the dimensions were recorded each time. The Friedman test, Dunn-Bonferroni post hoc correction, and Mann-Whitney U test were used for statistical analysis, with P < 0.05 serving as the threshold for determining statistical significance. RESULTS: All patients in both groups in the present pilot study had no clinical symptoms after 1 month, with a significant reduction in the periapical lesion after periodic appointments. The lesion width of the PRF group was significantly smaller than that of the non-PRF group in the sixth and ninth month after treatment. CONCLUSIONS: PRF is a promising apical barrier matrix when combined with MTA for the treatment of teeth with open apices and periapical periodontitis. Small number of study subjects and the short time of follow-up period limit the generalizability of these results. TRIAL REGISTRATION: TCTR, TCTR20221109006. Registered 09 November 2022 - Retrospectively registered, https://www.thaiclinicaltrials.org/show/TCTR20221109006 .


Aluminum Compounds , Calcium Compounds , Platelet-Rich Fibrin , Silicates , Tooth Apex , Humans , Pilot Projects , Platelet-Rich Fibrin/metabolism , Female , Male , Aluminum Compounds/therapeutic use , Silicates/therapeutic use , Calcium Compounds/therapeutic use , Adult , Tooth Apex/pathology , Tooth Apex/diagnostic imaging , Drug Combinations , Middle Aged , Oxides/therapeutic use , Periapical Periodontitis/therapy , Periapical Periodontitis/diagnostic imaging
11.
BMC Oral Health ; 24(1): 584, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773504

BACKGROUND: Apical surgery with standard retrograde maneuvers may be challenging in certain cases. Simplifying apical surgery to reduce operating time and streamline retrograde manipulation is an emerging need in clinical endodontics. AIM OF THE STUDY: The aim of the study was to compare the bacterial sealing ability of a calcium silicate-based sealer with the single cone technique combined with root end resection only, and calcium silicate-based sealer as a retrograde filling versus MTA retrofilling, and to analyze bacterial viability using confocal laser scanning microscope (CLSM). MATERIALS AND METHODS: In this in vitro experimental study, 50 extracted human maxillary incisor teeth were instrumented and randomly divided into five groups: three experimental groups, a positive control group, and a negative control group (n = 10/group). In the experimental groups, the roots were obturated using the single cone technique (SCT) and a calcium silicate-based sealer. In group 1, the roots were resected 3 mm from the apex with no further retrograde preparation or filling. In groups 2 and 3, the roots were resected, retroprepared, and retrofilled with either a calcium silicate-based sealer or MTA, respectively. Group 4 (positive control) was filled with a single gutta-percha cone without any sealer. In group 5 (negative control), the canals were left empty, and the roots were sealed with wax and nail varnish. A bacterial leakage model using Enterococcus faecalis was employed to assess the sealing ability over a 30-day period, checking for turbidity and analyzing colony forming units (CFUs) per milliliter. Five specimens from each group were examined using CLSM for bacterial viability. Data for the bacterial sealing ability were statistically analyzed using chi-squared and Kruskal-Wallis tests. RESULTS: The three experimental groups did not show significant differences in terms of bacterial leakage, or bacterial counts (CFUs) (P > 0.05). However, significant differences were observed when comparing the experimental groups to the positive control group. Notably, the calcium silicate-based sealer, when used as a retrofilling, yielded the best sealing ability. CLSM imaging revealed viable bacterial penetration in all the positive control group specimens while for the experimental groups, dead bacteria was the prominent feature seen. CONCLUSION: Within the limitations of this study, it could be concluded that the bacterial sealing ability of calcium silicate-based sealer with the single cone technique combined with root end resection only and calcium silicate-based sealer as a retrograde filling were comparable with MTA retrofilling during endodontic surgical procedures.


Calcium Compounds , Root Canal Filling Materials , Silicates , Silicates/therapeutic use , Calcium Compounds/therapeutic use , Humans , Root Canal Filling Materials/pharmacology , Root Canal Filling Materials/therapeutic use , Oxides/pharmacology , Oxides/therapeutic use , Drug Combinations , Aluminum Compounds/therapeutic use , In Vitro Techniques , Microscopy, Confocal , Dental Leakage/microbiology , Retrograde Obturation/methods , Enterococcus faecalis/drug effects , Microbial Viability , Incisor , Apicoectomy/methods
12.
PeerJ ; 12: e17237, 2024.
Article En | MEDLINE | ID: mdl-38699192

Background: Root perforation repair presents a significant challenge in dentistry due to inherent limitations of existing materials. This study explored the potential of a novel polydopamine-based composite as a root repair material by evaluating its sealing efficacy, radiopacity, and surface topography. Methods: Confocal microscopy assessed sealing ability, comparing the polydopamine-based composite to the gold standard, mineral trioxide aggregate (MTA). Radiopacity was evaluated using the aluminium step wedge technique conforming to ISO standards. Surface roughness analysis utilized atomic force microscopy (AFM), while field emission scanning electron microscopy (FESEM) visualized morphology. Results: The polydopamine-based composite exhibited significantly superior sealing efficacy compared to MTA (P < 0.001). Radiopacity reached 3 mm aluminium equivalent, exceeding minimum clinical requirements. AFM analysis revealed a smooth surface topography, and FESEM confirmed successful composite synthesis. Conclusion: This study demonstrates promising properties of the polydopamine-based composite for root perforation repair, including superior sealing efficacy, clinically relevant radiopacity, and smooth surface topography. Further investigation is warranted to assess its clinical viability and potential translation to endodontic practice.


Aluminum Compounds , Calcium Compounds , Indoles , Oxides , Polymers , Root Canal Filling Materials , Silicates , Surface Properties , Polymers/chemistry , Indoles/chemistry , Silicates/chemistry , Calcium Compounds/chemistry , Oxides/chemistry , Root Canal Filling Materials/chemistry , Aluminum Compounds/chemistry , Humans , Drug Combinations , Microscopy, Electron, Scanning , Microscopy, Atomic Force/methods , Microscopy, Confocal , Materials Testing , Tooth Root/injuries , Tooth Root/diagnostic imaging , Tooth Root/surgery
13.
Crit Rev Toxicol ; 54(4): 235-251, 2024 04.
Article En | MEDLINE | ID: mdl-38656260

Some studies suggested that gastrointestinal (GIT) decontamination with oil may improve the prognosis of patients who ingested aluminum phosphide (AlP). The aim of this study is to compare the efficacy and safety of gastric lavage with oil-based solutions to any method of gastric decontamination not using oils in patients presenting with acute AlP poisoning. The literature was searched for English-published randomized controlled trials (RCTs) from inception to 16 September 2023. The searched electronic databases included MEDLINE/PubMed, Cochrane Library, Web of Science, Egyptian Knowledge Bank, Scopus, and Google Scholar. Data were extracted and pooled by calculating the risk ratio (RR) for categorical outcomes and standardized mean difference (SMD) for numerical outcomes, with 95% confidence intervals (CI). Seven RCTs were included. Paraffin oil was significantly associated with a lower risk of mortality (RR = 0.59 [95% CI: 0.45, 0.76], p < .001), intubation (RR = 0.59 [95% CI: 0.46, 0.76], p < .001) and vasopressor need (RR = 0.71 [95% CI: 0.56, 0.91], p = .006). Survival time was significantly prolonged with paraffin oil (SMD = 0.72 [95% CI: 0.32, 1.13], p < .001). Coconut oil was significantly associated with prolonged survival time (SMD = 0.83 [95% CI: 0.06, 1.59], p = .03) as well as decreased risk of requiring intubation (RR = 0.78 [95% CI: 0.62, 0.99], p = .04). Oil-based GIT decontamination using paraffin oil showed benefits over conventional lavage regarding the incidence of in-hospital mortality and endotracheal intubation, and survival time. Coconut oil showed some benefits in terms of the intubation incidence and survival time. Decontamination using paraffin oil is recommended. Future clinical trials are warranted with larger sample sizes and focusing on cost-benefit and safety.


Aluminum Compounds , Gastric Lavage , Phosphines , Humans , Aluminum Compounds/poisoning , Gastric Lavage/methods , Oils , Paraffin , Pesticides , Phosphines/poisoning , Poisoning , Randomized Controlled Trials as Topic
14.
Clin Oral Investig ; 28(5): 275, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38668793

OBJECTIVES: To assess the effect of cryotherapy on haemostasis, post-operative pain, and the outcome of full pulpotomy performed in mature permanent teeth with symptomatic irreversible pulpitis. MATERIALS AND METHODS: The study included sixty mature permanent mandibular molar teeth with symptomatic irreversible pulpitis and no periapical rarefaction. After coronal pulp tissue amputation, teeth were randomly allocated to one of two groups (n = 30 each). In group I (conventional pulpotomy), a sterile cotton pellet moistened with 2.5% NaOCl was used for haemostasis. In group II (cryotherapy), the pulp chamber was continuously lavaged with 2.50C normal saline solution for haemostasis using an indigenous portable cryotherapy irrigation unit. Following haemostasis, the pulp was capped with mineral trioxide aggregate and the tooth was restored with resin composite. The time taken to achieve haemostasis was recorded. Preoperative and 24, 48 and 72 h postoperative pain was measured using the Numerical Rating Scale. The pulpotomy outcome was assessed at the 12-month follow-up. Data were analyzed using Fischer's exact test, two-sample t-test, two-sample Wilcoxon rank-sum test, Friedman Test, and Wilcoxon Signed Rank Test. RESULTS: The cryotherapy group achieved haemostasis in less time (p < 0.05). There was a significant pain reduction at 24 and 48 h in the cryotherapy group when compared with the conventional pulpotomy group (P < 0.005). The overall success rate of pulpotomy after 12 months was 88% (n = 22) in both study groups(p < 0.05). CONCLUSIONS: Cryotherapy application reduces postoperative pain and has no adverse effect on the outcome of pulpotomy in permanent teeth with symptomatic irreversible pulpitis. CLINICAL RELEVANCE: The cryotherapy can be incorporated in pulpotomy protocol as an adjunct to minimize post-operative pain.


Calcium Compounds , Cryotherapy , Molar , Pain, Postoperative , Pulpitis , Pulpotomy , Silicates , Humans , Pulpotomy/methods , Pulpitis/therapy , Pulpitis/surgery , Cryotherapy/methods , Female , Male , Pain, Postoperative/therapy , Silicates/therapeutic use , Adult , Treatment Outcome , Calcium Compounds/therapeutic use , Pain Measurement , Oxides/therapeutic use , Aluminum Compounds/therapeutic use , Drug Combinations , Sodium Hypochlorite/therapeutic use , Dentition, Permanent , Adolescent
15.
Sensors (Basel) ; 24(7)2024 Mar 24.
Article En | MEDLINE | ID: mdl-38610281

In this study, we propose a low-cost piezoelectric flexible pressure sensor fabricated on Kapton® (Kapton™ Dupont) substrate by using aluminum nitride (AlN) thin film, designed for the monitoring of the respiration rate for a fast detection of respiratory anomalies. The device was characterized in the range of 15-30 breaths per minute (bpm), to simulate moderate difficult breathing, borderline normal breathing, and normal spontaneous breathing. These three breathing typologies were artificially reproduced by setting the expiratory to inspiratory ratios (E:I) at 1:1, 2:1, 3:1. The prototype was able to accurately recognize the breath states with a low response time (~35 ms), excellent linearity (R2 = 0.997) and low hysteresis. The piezoelectric device was also characterized by placing it in an activated carbon filter mask to evaluate the pressure generated by exhaled air through breathing acts. The results indicate suitability also for the monitoring of very weak breath, exhibiting good linearity, accuracy, and reproducibility, in very low breath pressures, ranging from 0.09 to 0.16 kPa. These preliminary results are very promising for the future development of smart wearable devices able to monitor different patients breathing patterns, also related to breathing diseases, providing a suitable real-time diagnosis in a non-invasive and fast way.


Respiration , Respiratory Rate , Humans , Reproducibility of Results , Aluminum Compounds
16.
J Hazard Mater ; 470: 134190, 2024 May 15.
Article En | MEDLINE | ID: mdl-38593659

Organophosphorus compounds (OPs), such as VX, pose a significant threat due to their neurotoxic and hazardous properties. Skin decontamination is essential to avoid irreversible effects. Fuller's earth (FE), a phyllosilicate conventionally employed in powder form, has demonstrated decontamination capacity against OPs. The aim of this study was to develop a formulation that forms a film on the skin, with a significant OP removal capacity (>95 %) coupled with sequestration capabilities, favorable drying time and mechanical properties to allow for easy application and removal, particularly in emergency context. Various formulations were prepared using different concentrations of polyvinyl alcohol (PVA), FE and surfactants. Their removal and sequestration capacity was tested using paraoxon-ethyl (POX), a chemical that simulates the behavior of VX. Formulations with removal capacity levels surpassing 95 % were mechanically characterized and cell viability assays were performed on Normal Human Dermal Fibroblast (NHDF). The four most promising formulations were used to assess decontamination efficacy on pig ear skin explants. These formulations showed decontamination levels ranging from 84.4 ± 4.7 % to 96.5 ± 1.3 %, which is equivalent to current decontamination methods. These results suggest that this technology could be a novel and effective tool for skin decontamination following exposure to OPs.


Decontamination , Paraoxon , Skin , Decontamination/methods , Animals , Skin/drug effects , Humans , Swine , Paraoxon/toxicity , Paraoxon/chemistry , Aluminum Compounds/chemistry , Cell Survival/drug effects , Silicates/chemistry , Polyvinyl Alcohol/chemistry , Magnesium Compounds/chemistry , Magnesium Compounds/pharmacology , Surface-Active Agents/chemistry , Fibroblasts/drug effects
18.
Phys Chem Chem Phys ; 26(18): 14018-14036, 2024 May 08.
Article En | MEDLINE | ID: mdl-38683598

In this study, the potential of aluminum nitride (h-AlN), boron nitride (h-BN) and silicon carbide (h-SiC) nanosheets as the drug delivery systems (DDS) of isoniazid (INH) was scrutinized through density functional theory (DFT) and molecular dynamic (MD) simulations. We performed DFT periodic calculations on the geometry and electronic features of nanosheets adsorbed with INH by the DFT functional (DZP/GGA-PBE) employed in the SIESTA code. In the energetically favorable model, an oxygen atom of the C-O group of the INH molecule interacts with a Si atom of the h-SiC at 2.077 Å with an interaction energy of -1.361 eV. Charge transfer (CT) calculation by employing the Mulliken, Hirshfeld and Voronoi approaches reveals that the monolayers and drug molecules act as donors and acceptors, respectively. The density of states (DOS) calculations indicate that the HOMO-LUMO energy gap (HLG) of the h-SiC nanosheet declines significantly from 2.543 to 1.492 eV upon the adsorption of the INH molecule, which causes an electrical conductivity increase and then produces an electrical signal. The signal is linked to the existence of INH, demonstrating that h-SiC may be an appropriate sensor for INH sensing. The decrease in HLG for the interaction of INH and h-SiC is the uppermost (up to 41%) representing the uppermost sensitivity, whereas the sensitivity trend is σ(h-SiC) > σ(h-AlN) > σ(h-BN). Quantum theory of atoms in molecules (QTAIM) investigations is employed to scrutinize the nature of the INH/nanosheet interactions. The QTAIM analysis reveals that the interaction of the INH molecule and h-SiC has a partially covalent nature, while INH/h-AlN model electrostatic interaction occurs in the system and noncovalent and electrostatic interaction for the INH/h-BN model. Finally, the state-of-the-art DFT-MD simulations utilized in this study can mimic ambient conditions. The results obtained from the MD simulation show that it takes more time to bond the INH drug and h-SiC, and the INH/h-SiC system becomes stable. The results of the current research demonstrate the potential of h-SiC as a suitable sensor and drug delivery platform for INH drugs to remedy tuberculosis.


Boron Compounds , Carbon Compounds, Inorganic , Density Functional Theory , Isoniazid , Molecular Dynamics Simulation , Silicon Compounds , Isoniazid/chemistry , Silicon Compounds/chemistry , Carbon Compounds, Inorganic/chemistry , Boron Compounds/chemistry , Drug Delivery Systems , Nanostructures/chemistry , Antitubercular Agents/chemistry , Nitrogen Compounds/chemistry , Drug Carriers/chemistry , Aluminum Compounds
19.
Biosens Bioelectron ; 257: 116171, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38636317

The COVID-19 pandemic has highlighted the need for rapid and sensitive detection of SARS-CoV-2. Here, we report an ultrasensitive SARS-CoV-2 immunosensor by integration of an AlGaN/GaN high-electron-mobility transistor (HEMT) and anti-SARS-CoV-2 spike protein antibody. The AlGaN/GaN HEMT immunosensor has demonstrated the capability to detect SARS-CoV-2 spike proteins at an impressively low concentration of 10-22 M. The sensor was also applied to pseudoviruses and SARS-CoV-2 ΔN virions that display the Spike proteins with a single virion particle sensitivity. These features validate the potential of AlGaN/GaN HEMT biosensors for point of care tests targeting SARS-CoV-2. This research not only provides the first HEMT biosensing platform for ultrasensitive and label-free detection of SARS-CoV-2.


Biosensing Techniques , COVID-19 , Gallium , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Transistors, Electronic , Virion , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/analysis , Humans , COVID-19/diagnosis , COVID-19/virology , Gallium/chemistry , Virion/isolation & purification , Virion/chemistry , Limit of Detection , Aluminum Compounds/chemistry , Equipment Design , Immunoassay/instrumentation , Immunoassay/methods , Antibodies, Immobilized/chemistry , Antibodies, Viral
20.
Dent Mater ; 40(5): e14-e25, 2024 May.
Article En | MEDLINE | ID: mdl-38431482

OBJECTIVES: The biological responses of MTA and Biodentine™ has been assessed on a three-dimensional, tissue-engineered organotypic deciduous pulp analogue. METHODS: Human endothelial (HUVEC) and dental mesenchymal stem cells (SHED) at a ratio of 3:1, were incorporated into a collagen I/fibrin hydrogel; succeeding Biodentine™ and MTA cylindrical specimens were placed in direct contact with the pulp analogue 48 h later. Cell viability/proliferation and morphology were evaluated through live/dead staining, MTT assay and Scanning Electron Microscopy (SEM), and expression of angiogenic, odontogenic markers through real time PCR. RESULTS: Viable cells dominated at day 3 after treatment presenting typical morphology, firmly attached within the hydrogel structures, as shown by live/dead staining and SEM images. MTT assay at day 1 presented a significant increase of cell proliferation in Biodentine™ group. Real-time PCR showed significant upregulation of odontogenic markers DSPP, BMP-2 (day 3,6), RUNX2, ALP (day 3) in contact with Biodentine™ compared to MTA and the control, whereas MTA promoted significant upregulation of DSPP, BMP-2, RUNX2, Osterix (day 3) and ALP (day 6) compared to the control. MSX1 presented downregulation in both experimental groups. Expression of angiogenic markers VEGFa and ANGPT-1 at day 3 was significantly upregulated in contact with Biodentine™ and MTA respectively, while the receptors VEGFR1, VEGFR2 and Tie-2, as well as PECAM-1 were downregulated. SIGNIFICANCE: Both calcium silicate-based materials are biocompatible and exert positive angiogenic and odontogenic effects, although Biodentine™ during the first days of culture, seems to induce higher cell proliferation and provoke a more profound odontogenic and angiogenic response from SHED.


Calcium Compounds , Cell Proliferation , Dental Pulp , Drug Combinations , Silicates , Tissue Engineering , Silicates/pharmacology , Silicates/chemistry , Calcium Compounds/pharmacology , Calcium Compounds/chemistry , Humans , Tissue Engineering/methods , Cell Proliferation/drug effects , Dental Pulp/cytology , Dental Pulp/drug effects , Aluminum Compounds/pharmacology , Aluminum Compounds/chemistry , Oxides/pharmacology , Oxides/chemistry , Cell Survival/drug effects , Real-Time Polymerase Chain Reaction , Mesenchymal Stem Cells/drug effects , Microscopy, Electron, Scanning , Tooth, Deciduous/cytology , Dental Cements/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Cells, Cultured
...