Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 453
1.
Biochem Pharmacol ; 224: 116202, 2024 Jun.
Article En | MEDLINE | ID: mdl-38615917

As bone-resorbing cells rich in mitochondria, osteoclasts require high iron uptake to promote mitochondrial biogenesis and maintain a high-energy metabolic state for active bone resorption. Given that abnormal osteoclast formation and activation leads to imbalanced bone remodeling and osteolytic bone loss, osteoclasts may be crucial targets for treating osteolytic diseases such as periodontitis. Isobavachin (IBA), a natural flavonoid compound, has been confirmed to be an inhibitor of receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs). However, its effects on periodontitis-induced bone loss and the potential mechanism of its anti-osteoclastogenesis effect remain unclear. Our study demonstrated that IBA suppressed RANKL-induced osteoclastogenesis in BMMs and RAW264.7 cells and inhibited osteoclast-mediated bone resorption in vitro. Transcriptomic analysis indicated that iron homeostasis and reactive oxygen species (ROS) metabolic process were enriched among the differentially expressed genes following IBA treatment. IBA exerted its anti-osteoclastogenesis effect by inhibiting iron accumulation in osteoclasts. Mechanistically, IBA attenuated iron accumulation in RANKL-induced osteoclasts by inhibiting the mitogen-activated protein kinase (MAPK) pathway to upregulate ferroportin1 (Fpn1) expression and promote Fpn1-mediated intracellular iron efflux. We also found that IBA inhibited mitochondrial biogenesis and function, and reduced RANKL-induced ROS generation in osteoclasts. Furthermore, IBA attenuated periodontitis-induced bone loss by reducing osteoclastogenesis in vivo. Overall, these results suggest that IBA may serve as a promising therapeutic strategy for bone diseases characterized by osteoclastic bone resorption.


Iron , Mice, Inbred C57BL , Mitochondria , Organelle Biogenesis , Osteoclasts , Periodontitis , Animals , Mice , Iron/metabolism , RAW 264.7 Cells , Periodontitis/drug therapy , Periodontitis/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Osteogenesis/drug effects , Male , Bone Resorption/metabolism , Bone Resorption/drug therapy , Bone Resorption/prevention & control , Bone Resorption/etiology , Alveolar Bone Loss/metabolism , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/prevention & control , Alveolar Bone Loss/etiology , Alveolar Bone Loss/pathology
2.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 486-495, 2024 May 09.
Article Zh | MEDLINE | ID: mdl-38637003

Objective: To observe whether endothelial cells undergo pyroptosis in the inflammatory periodontal environment by using a model in vivo and in vitro, providing an experimental basis for indepth understanding of the underlying pathogenesis of periodontitis. Methods: According to the classification of periodontal diseases of 2018, gingival tissues were collected from periodontally healthy subjects and patients with stage Ⅲ-Ⅳ, grade C periodontitis, who presented Department of Oral and Maxillofacial Surgery and Department of Periodontology, School of Stomatology, The Fourth Military Medical University from April to May 2022. Immunohistochemical staining was performed to detect the expression level and distribution of gasdermin D (GSDMD), a hallmark protein of cell pyroptosis, in gingival tissues. Periodontitis models were established in each group by ligating the maxillary second molar teeth of three mice for 2 weeks (ligation group). The alveolar bone resorption was determined by micro-CT (mice without ligation treatment were used as the control group), and the colocalization of GSDMD and CD31 were quantitatively analyzed by immunofluorescence staining in gingival tissues of healthy and inflammatory mice. Human umbilical vein endothelial cells (HUVECs) were cultured in vitro and treated with lipopolysaccharide (LPS) of Porphyromonas gingivalis (Pg) combined with adenosine triphosphate (ATP) at various concentrations of 0.5, 1.0, 2.5, 5.0, and 10.0 mg/L, respectively, and the 0 mg/L group was set as the control group at the same time. Scanning electron microscopy was used to observe the morphology of HUVECs. Western blotting was used to detect the expression of gasdermin D-N terminal domains (GSDMD-N) protein and immunofluorescence cell staining was used to detect the expression and distribution of GSDMD. Cell counting kit-8 (CCK-8) was used to detect the proliferative ability of HUVECs, and propidium iodide (PI) staining was used to detect the integrity of cell membrane of HUVECs. Results: Immunohistochemistry showed that GSDMD in gingival tissues of periodontitis was mainly distributed around blood vessels and its expression level was higher than that in healthy tissues. Micro-CT showed that alveolar bone resorption around the maxillary second molar significantly increased in ligation group mice compared with control subjects (t=8.88, P<0.001). Immunofluorescence staining showed significant colocalization of GSDMD with CD31 in the gingival vascular endothelial cells in mice of ligation group. The results of scanning electron microscopy showed that there were pores of different sizes, the typical morphology of pyroptosis, on HUVECs cell membranes in the inflammatory environment simulated by ATP combined with different concentrations of LPS, and 2.5 mg/L group showed the most dilated and fused pores on cell membranes, with the cells tended to lyse and die. Western blotting showed that the expression of GSDMD-N, the hallmark protein of cell pyroptosis, was significantly higher in 2.5 and 5.0 mg/L groups than that in the control group (F=3.86, P<0.01). Immunofluorescence cell staining showed that the average fluorescence intensity of GSDMD in 2.5 mg/L group elevated the most significantly in comparison with that in the control group (F=35.25, P<0.001). The CCK-8 proliferation assay showed that compared to the control group (1.00±0.02), 0.5 mg/L (0.52±0.07), 1.0 mg/L (0.57±0.10), 2.5 mg/L (0.58±0.04), 5.0 mg/L (0.55±0.04), 10.0 mg/L (0.61±0.03) groups inhibited cell proliferation (F=39.95, P<0.001). PI staining showed that the proportion of positive stained cells was highest [(56.07±3.22)%] in 2.5 mg/L group (F=88.24, P<0.001). Conclusions: Endothelial cells undergo significant pyroptosis in both in vivo and in vitro periodontal inflammatory environments, suggesting that endothelial cell pyroptosis may be an important pathogenic factor contributing to the pathogenesis of periodontitis.


Endothelial Cells , Gingiva , Human Umbilical Vein Endothelial Cells , Periodontitis , Phosphate-Binding Proteins , Platelet Endothelial Cell Adhesion Molecule-1 , Pyroptosis , Animals , Mice , Humans , Periodontitis/metabolism , Periodontitis/pathology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Gingiva/pathology , Gingiva/metabolism , Gingiva/cytology , Phosphate-Binding Proteins/metabolism , Endothelial Cells/metabolism , Alveolar Bone Loss/pathology , Alveolar Bone Loss/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , X-Ray Microtomography , Disease Models, Animal , Porphyromonas gingivalis
3.
J Bone Miner Res ; 39(5): 580-594, 2024 May 24.
Article En | MEDLINE | ID: mdl-38477783

Healthy alveolar bone is the cornerstone of oral function and oral treatment. Alveolar bone is highly dynamic during the entire lifespan and is affected by both systemic and local factors. Importantly, alveolar bone is subjected to unique occlusal force in daily life, and mechanical force is a powerful trigger of bone remodeling, but the effect of occlusal force in maintaining alveolar bone mass remains ambiguous. In this study, the Piezo1 channel is identified as an occlusal force sensor. Activation of Piezo1 rescues alveolar bone loss caused by a loss of occlusal force. Moreover, we identify Piezo1 as the mediator of occlusal force in osteoblasts, maintaining alveolar bone homeostasis by directly promoting osteogenesis and by sequentially regulating catabolic metabolism through Fas ligand (FasL)-induced osteoclastic apoptosis. Interestingly, Piezo1 activation also exhibits remarkable efficacy in the treatment of alveolar bone osteoporosis caused by estrogen deficiency, which is highly prevalent among middle-aged and elderly women. Promisingly, Piezo1 may serve not only as a treatment target for occlusal force loss-induced alveolar bone loss but also as a potential target for metabolic bone loss, especially in older patients.


Daily occlusal force and estrogen synergistically maintain alveolar bone homeostasis. PIEZO1 in osteoblasts plays a critical role in sensing occlusal force and maintaining bone mass. PIEZO1 may promote osteoclastic apoptosis through osteoblast-secreted FasL through a PIEZO1-STAT3/ESR1-FasL pathway. Restoration of occlusal force with dental therapies as early as possible to prevent alveolar bone loss is the major priority in oral health care. PIEZO1 may serve as a potential target for bone metabolism disorders.


Homeostasis , Ion Channels , Animals , Female , Ion Channels/metabolism , Mice , Bite Force , Osteogenesis , Humans , Osteoblasts/metabolism , Alveolar Bone Loss/metabolism , Alveolar Bone Loss/pathology , Apoptosis , Osteoclasts/metabolism
4.
Sci China Life Sci ; 67(5): 1010-1026, 2024 May.
Article En | MEDLINE | ID: mdl-38489007

Alveolar bone regeneration has been strongly linked to macrophage polarization. M1 macrophages aggravate alveolar bone loss, whereas M2 macrophages reverse this process. Berberine (BBR), a natural alkaloid isolated and refined from Chinese medicinal plants, has shown therapeutic effects in treating metabolic disorders. In this study, we first discovered that culture supernatant (CS) collected from BBR-treated human bone marrow mesenchymal stem cells (HBMSCs) ameliorated periodontal alveolar bone loss. CS from the BBR-treated HBMSCs contained bioactive materials that suppressed the M1 polarization and induced the M2 polarization of macrophages in vivo and in vitro. To clarify the underlying mechanism, the bioactive materials were applied to different animal models. We discovered macrophage colony-stimulating factor (M-CSF), which regulates macrophage polarization and promotes bone formation, a key macromolecule in the CS. Injection of pure M-CSF attenuated experimental periodontal alveolar bone loss in rats. Colony-stimulating factor 1 receptor (CSF1R) inhibitor or anti-human M-CSF (M-CSF neutralizing antibody, Nab) abolished the therapeutic effects of the CS of BBR-treated HBMSCs. Moreover, AKT phosphorylation in macrophages was activated by the CS, and the AKT activator reversed the negative effect of the CSF1R inhibitor or Nab. These results suggest that the CS of BBR-treated HBMSCs modulates macrophage polarization via the M-CSF/AKT axis. Further studies also showed that CS of BBR-treated HBMSCs accelerated bone formation and M2 polarization in rat teeth extraction sockets. Overall, our findings established an essential role of BBR-treated HBMSCs CS and this might be the first report to show that the products of BBR-treated HBMSCs have active effects on alveolar bone regeneration.


Alveolar Bone Loss , Berberine , Bone Regeneration , Macrophage Colony-Stimulating Factor , Macrophages , Mesenchymal Stem Cells , Berberine/pharmacology , Humans , Animals , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Bone Regeneration/drug effects , Macrophages/drug effects , Macrophages/metabolism , Rats , Macrophage Colony-Stimulating Factor/metabolism , Alveolar Bone Loss/metabolism , Male , Rats, Sprague-Dawley , Osteogenesis/drug effects , Cells, Cultured , Proto-Oncogene Proteins c-akt/metabolism , Mice
5.
Cell Biol Int ; 48(6): 808-820, 2024 Jun.
Article En | MEDLINE | ID: mdl-38433534

Bone defects are characterized by a hypoxic environment, which affects bone tissue repair. However, the role of hypoxia in the repair of alveolar bone defects remains unclear. Human periodontal ligament stem cells (hPDLSCs) are high-quality seed cells for repairing alveolar bone defects, whose behavior changes under hypoxia. However, their mechanism of action is not known and needs to be elucidated. We hypothesized that hypoxia might be beneficial to alveolar bone defect repair and the osteogenic differentiation of hPDLSCs. To test this hypothesis, cobalt chloride (CoCl2) was used to create a hypoxic environment, both in vitro and in vivo. In vitro study, the best osteogenic effect was observed after 48 h of hypoxia in hPDLSCs, and the AKT/mammalian target of rapamycin/eukaryotic translation initiation factor 4e-binding protein 1 (AKT/mTOR/4EBP-1) signaling pathway was significantly upregulated. Inhibition of the AKT/mTOR/4EBP-1 signaling pathway decreased the osteogenic ability of hPDLSCs under hypoxia and hypoxia-inducible factor 1 alpha (HIF-1α) expression. The inhibition of HIF-1α also decreased the osteogenic capacity of hPDLSCs under hypoxia without significantly affecting the level of phosphorylation of AKT/mTOR/4EBP-1. In vitro study, Micro-CT and tissue staining results show better bone regeneration in hypoxic group than control group. These results suggested that hypoxia promoted alveolar bone defect repair and osteogenic differentiation of hPDLSCs, probably through AKT/mTOR/4EBP-1/HIF-1α signaling. These findings provided important insights into the regulatory mechanism of hypoxia in hPDLSCs and elucidated the effect of hypoxia on the healing of alveolar bone defects. This study highlighted the importance of physiological oxygen conditions for tissue engineering.


Adaptor Proteins, Signal Transducing , Cell Differentiation , Cobalt , Hypoxia-Inducible Factor 1, alpha Subunit , Osteogenesis , Periodontal Ligament , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Osteogenesis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Cobalt/pharmacology , Cell Differentiation/drug effects , Periodontal Ligament/metabolism , Periodontal Ligament/cytology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Hypoxia , Stem Cells/metabolism , Cell Cycle Proteins/metabolism , Cells, Cultured , Alveolar Bone Loss/metabolism , Phosphoproteins/metabolism , Male , Rabbits , Bone Regeneration/drug effects
6.
J Dent Res ; 103(6): 631-641, 2024 Jun.
Article En | MEDLINE | ID: mdl-38491721

Periodontal tissue destruction in periodontitis is a consequence of the host inflammatory response to periodontal pathogens, which could be aggravated in the presence of type 2 diabetes mellitus (T2DM). Accumulating evidence highlights the intricate involvement of macrophage-mediated inflammation in the pathogenesis of periodontitis under both normal and T2DM conditions. However, the underlying mechanism remains elusive. Alpha-2-glycoprotein 1 (AZGP1), a glycoprotein featuring an MHC-I domain, has been implicated in both inflammation and metabolic disorders. In this study, we found that AZGP1 was primarily colocalized with macrophages in periodontitis tissues. AZGP1 was increased in periodontitis compared with controls, which was further elevated when accompanied by T2DM. Adeno-associated virus-mediated overexpression of Azgp1 in the periodontium significantly enhanced periodontal inflammation and alveolar bone loss, accompanied by elevated M1 macrophages and pyroptosis in murine models of periodontitis and T2DM-associated periodontitis, while Azgp1-/- mice exhibited opposite effects. In primary bone marrow-derived macrophages stimulated by lipopolysaccharide (LPS) or LPS and palmitic acid (PA), overexpression or knockout of Azgp1 markedly upregulated or suppressed, respectively, the expression of macrophage M1 markers and key components of the NLR Family Pyrin Domain Containing 3 (NLRP3)/caspase-1 signaling. Moreover, conditioned medium from Azgp1-overexpressed macrophages under LPS or LPS+PA stimulation induced higher inflammatory activation and lower osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs). Furthermore, elevated M1 polarization and pyroptosis in macrophages and associated detrimental effects on hPDLSCs induced by Azgp1 overexpression could be rescued by NLRP3 or caspase-1 inhibition. Collectively, our study elucidated that AZGP1 could aggravate periodontitis by promoting macrophage M1 polarization and pyroptosis through the NLRP3/casapse-1 pathway, which was accentuated in T2DM-associated periodontitis. This finding deepens the understanding of AZGP1 in the pathogenesis of periodontitis and suggests AZGP1 as a crucial link mediating the adverse effects of diabetes on periodontal inflammation.


Diabetes Mellitus, Type 2 , Macrophages , Periodontitis , Pyroptosis , Animals , Macrophages/metabolism , Periodontitis/metabolism , Periodontitis/immunology , Mice , Humans , Diabetes Mellitus, Type 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Caspase 1/metabolism , Male , Mice, Knockout , Signal Transduction , Alveolar Bone Loss/metabolism , Glycoproteins/metabolism
7.
BMC Oral Health ; 24(1): 395, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38549147

BACKGROUND: Periodontitis is a chronic inflammatory disease that occurs in tooth-supporting tissues. Controlling inflammation and alleviating periodontal tissue destruction are key factors in periodontal therapy. This study aimed to develop an in situ curcumin/zinc oxide (Cur/ZNP) hydrogel and investigate its characteristics and effectiveness in the treatment of periodontitis. METHODS: Antibacterial activity and cytotoxicity assays were performed in vitro. To evaluate the effect of the in situ Cur/ZNP hydrogel on periodontitis in vivo, an experimental periodontitis model was established in Sprague‒Dawley rats via silk ligature and inoculation of the maxillary first molar with Porphyromonas gingivalis. After one month of in situ treatment with the hydrogel, we examined the transcriptional responses of the gingiva to the Cur/ZNP hydrogel treatment and detected the alveolar bone level as well as the expression of osteocalcin (OCN) and osteoprotegerin (OPG) in the periodontal tissues of the rats. RESULTS: Cur/ZNPs had synergistic inhibitory effects on P. gingivalis and good biocompatibility. RNA sequencing of the gingiva showed that immune effector process-related genes were significantly induced by experimental periodontitis. Carcinoembryonic antigen-related cell adhesion molecule 1 (Ceacam1), which is involved in the negative regulation of bone resorption, was differentially regulated by the Cur/ZNP hydrogel but not by the Cur hydrogel or ZNP hydrogel. The Cur/ZNP hydrogel also had a stronger protective effect on alveolar bone resorption than both the Cur hydrogel and the ZNP hydrogel. CONCLUSION: The Cur/ZNP hydrogel effectively inhibited periodontal pathogenic bacteria and alleviated alveolar bone destruction while exhibiting favorable biocompatibility.


Alveolar Bone Loss , Curcumin , Organometallic Compounds , Periodontitis , Pyridines , Rats , Animals , Curcumin/pharmacology , Curcumin/therapeutic use , Hydrogels/therapeutic use , Disease Models, Animal , Rats, Sprague-Dawley , Periodontitis/metabolism , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/prevention & control , Alveolar Bone Loss/metabolism , Porphyromonas gingivalis
8.
Int Immunopharmacol ; 130: 111745, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38430803

Autologous tooth grafting is a dental restorative modality based on periodontal ligament healing.Human periodontal ligament stem cells(PDLSCs) are involved in the formation and remodeling of periodontal tissue.Based on previous findings, the proliferation and differentiation of processing cryopreserved periodontal ligament stem cells (PDLSCs) exhibit similarities to those of fresh cells. However, there is evident absorption in the transplanted frozen tooth's roots and bones, with the underlying cause remaining unknown. Granulocyte macrophage colony-stimulating factor(GM-CSF) is named for its produce granulocyte and macrophage precursors from bone marrow precursors, and it also serves as one of the regulatory factors in inflammatory and osteoclast formation. This study aimed to investigate changes in GM-CSF expression in frozen PDLSCs (fhPDLSCs) and evaluate the impact of GM-CSF on PDLSCs with respect to cellular activity and osteogenic ability. The role of GM-CSF in periodontal absorption was further speculated by comparing with IL-1ß. The results revealed a significant increase in GM-CSF levels from fhPDLSCs compared to fresh cells, which exhibited an equivalent inflammatory stimulation effect as 1 ng/ml IL-1ß. Cell viability also increased with increasing concentrations of GM-CSF; however, the GM-CSF from fhPDLSCs was not sufficient to significantly trigger osteoclastic factors. Considering its interaction with IL-1ß and positive feedback mechanism, environments with high doses of GM-CSF derived from fhPDLSCs are more likely to activate osteoclastic responses.Therefore, for frozen tooth replantation, great attention should be paid to anti-inflammation and anti-infection.GM-CSF may serve as a potential therapeutic target for inhibiting periodontal resorption in delayed grafts.


Alveolar Bone Loss , Granulocyte-Macrophage Colony-Stimulating Factor , Tooth , Humans , Alveolar Bone Loss/metabolism , Alveolar Bone Loss/therapy , Cell Differentiation , Cells, Cultured , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Macrophages , Osteoclasts , Tooth/transplantation , Transplantation, Autologous
9.
J Periodontal Res ; 59(3): 576-588, 2024 Jun.
Article En | MEDLINE | ID: mdl-38411269

OBJECTIVE: The aim of this study was to investigate the association between autoinducer-2 (AI-2) of oral microbial flora and the alveolar bone destruction in periodontitis to determine if AI-2 may have the potential that monitor periodontitis and predict bone loss. BACKGROUND: Plaque biofilm was the initiating factor of periodontitis and the essential factor of periodontal tissue destruction. The formation of biofilms depended on the complex regulation of the quorum sensing (QS) system, in which bacteria could sense changes in surrounding bacterial density by secreting the autoinducer (AI) to regulate the corresponding physiological function. Most oral bacteria also communicated with each other to form biofilms administrating the QS system, which implied that the QS system of periodontal pathogens was related to periodontitis, but the specific relationship was unknown. METHOD: We collected the gingival crevicular fluid (GCF) samples and measured the concentration of AI-2 in samples using the Vibrio harveyi BB180 bioluminescent-reporter system. To explore the interaction between AI-2 and bone metabolism, we utilized AI-2 purified from Fusobacterium nucleatum to investigate the impact of F. nucleatum AI-2 on osteoclast differentiation. Moreover, we constructed murine periodontitis models and multi-species biofilm models to study the association between AI-2 and periodontal disease progression. RESULTS: The AI-2 concentration in GCF samples increased along with periodontal disease progression (p < .0001). F. nucleatum AI-2 promoted osteoclast differentiation in a dose-dependent manner. In the periodontitis mice model, the CEJ-ABC distance in the F. nucleatum AI-2 treatment group was higher than that in the simple ligation group (p < .01), and the maxilla of the mice in the group exhibited significantly lower BMD and BV/TV values (p < .05). CONCLUSIONS: We demonstrated that the AI-2 concentration varied with the alveolar bone destruction in periodontitis, and it may have the potential for screening periodontitis. F. nucleatum AI-2 promoted osteoclast differentiation in a dose-dependent manner and aggravated bone loss.


Alveolar Bone Loss , Biofilms , Fusobacterium nucleatum , Homoserine , Lactones , Periodontitis , Alveolar Bone Loss/microbiology , Alveolar Bone Loss/metabolism , Periodontitis/microbiology , Animals , Homoserine/analogs & derivatives , Homoserine/metabolism , Biofilms/growth & development , Mice , Humans , Gingival Crevicular Fluid/microbiology , Gingival Crevicular Fluid/chemistry , Male , Disease Models, Animal , Osteoclasts , Quorum Sensing , Female , Adult , Cell Differentiation , Middle Aged , X-Ray Microtomography
10.
Int J Oral Sci ; 16(1): 20, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38418808

Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss. With the progression of periodontitis, the osteoimmunology microenvironment in periodontitis is damaged and leads to the formation of pathological alveolar bone resorption. CD301b+ macrophages are specific to the osteoimmunology microenvironment, and are emerging as vital booster for conducting bone regeneration. However, the key upstream targets of CD301b+ macrophages and their potential mechanism in periodontitis remain elusive. In this study, we concentrated on the role of Tim4, a latent upstream regulator of CD301b+ macrophages. We first demonstrated that the transcription level of Timd4 (gene name of Tim4) in CD301b+ macrophages was significantly upregulated compared to CD301b- macrophages via high-throughput RNA sequencing. Moreover, several Tim4-related functions such as apoptotic cell clearance, phagocytosis and engulfment were positively regulated by CD301b+ macrophages. The single-cell RNA sequencing analysis subsequently discovered that Cd301b and Timd4 were specifically co-expressed in macrophages. The following flow cytometric analysis indicated that Tim4 positive expression rates in total macrophages shared highly synchronized dynamic changes with the proportions of CD301b+ macrophages as periodontitis progressed. Furthermore, the deficiency of Tim4 in mice decreased CD301b+ macrophages and eventually magnified alveolar bone resorption in periodontitis. Additionally, Tim4 controlled the p38 MAPK signaling pathway to ultimately mediate CD301b+ macrophages phenotype. In a word, Tim4 might regulate CD301b+ macrophages through p38 MAPK signaling pathway in periodontitis, which provided new insights into periodontitis immunoregulation as well as help to develop innovative therapeutic targets and treatment strategies for periodontitis.


Alveolar Bone Loss , Periodontitis , Animals , Mice , Alveolar Bone Loss/metabolism , Efferocytosis , Macrophages , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/therapeutic use , Periodontitis/drug therapy
11.
J Clin Periodontol ; 51(6): 742-753, 2024 Jun.
Article En | MEDLINE | ID: mdl-38267365

AIM: To investigate the specific role of arrestin beta-2 (ARRB2) in the progression of periodontitis and the underlying mechanisms. MATERIALS AND METHODS: Single-cell RNA sequencing data were used to analyse gene expression in periodontal tissues from healthy controls and patients with periodontitis. Real-time quantitative polymerase chain reaction, Western blotting and immunohistochemical staining were performed to detect the expression of ARRB2. Furthermore, a ligature-induced periodontitis model was created. Using radiographic and histological methods, RNA sequencing and luciferase assay, the role of ARRB2 in periodontitis and the underlying mechanisms were explored. Finally, the therapeutic effect of melatonin, an inhibitor of activating transcription factor 6 (ATF6), on periodontitis in mice was assessed in both in vivo and in vitro experiments. RESULTS: ARRB2 expression was up-regulated in inflammatory periodontal tissue. In the ligature-induced mouse model, Arrb2 knockout exacerbated alveolar bone loss (ABL) and extracellular matrix (ECM) degradation. ARRB2 exerted a negative regulatory effect on ATF6, an essential targeted gene. Melatonin ameliorated ABL and an imbalance in ECM remodelling in Arrb2-deficient periodontitis mice. CONCLUSIONS: ARRB2 mediates ECM remodelling via inhibition of the ATF6 signalling pathway, which ultimately exerts a protective effect on periodontal tissues.


Activating Transcription Factor 6 , Disease Models, Animal , Extracellular Matrix , Periodontitis , beta-Arrestin 2 , Animals , Extracellular Matrix/metabolism , Mice , Periodontitis/metabolism , Periodontitis/genetics , beta-Arrestin 2/metabolism , beta-Arrestin 2/genetics , Activating Transcription Factor 6/metabolism , Activating Transcription Factor 6/genetics , Humans , Melatonin/metabolism , Melatonin/pharmacology , Mice, Knockout , Male , Alveolar Bone Loss/metabolism , Mice, Inbred C57BL , Disease Progression , Signal Transduction
12.
J Periodontal Res ; 59(3): 565-575, 2024 Jun.
Article En | MEDLINE | ID: mdl-38240289

BACKGROUND AND OBJECTIVE: Clinical studies found high levels of hepatocyte growth factor (HGF) expression in patients with periodontitis. Studies suggest that HGF plays an important role in periodontitis, is involved in inflammation, and modulates alveolar bone integrity in periodontitis. This study aims to investigate the effects and mechanisms of HGF in the progression of experimental periodontitis. METHODS: We used silk thread ligation to induce periodontitis in HGF-overexpressing transgenic (HGF-Tg) and wild-type C57BL/6J mice. The effects of HGF overexpression on alveolar bone destruction were assessed by microcomputed tomography imaging at baseline and on days 7, 14, 21, and 28. We analyzed the cytokines (IL-6 and TNF-α) and lymphocytes in periodontitis tissues by enzyme-linked immunosorbent assay and flow cytometry. The effects of HGF on alveolar bone destruction were further tested by quantifying the systemic bone metabolism markers CTXI and PINP and by RNA sequencing for the signaling pathways involved in bone destruction. Western blotting and immunohistochemistry were performed to further elucidate the involved signaling pathways. RESULTS: We found that experimental periodontitis increased HGF production in periodontitis tissues; however, the effects of HGF overexpression were inconsistent with disease progression. In the early stage of periodontitis, periodontal inflammation and alveolar bone destruction were significantly lower in HGF-Tg mice than in wild-type mice. In the late stage, HGF-Tg mice showed higher inflammatory responses and progressively aggravated bone destruction with continued stimulation of inflammation. We identified the IL-17/RANKL/TRAF6 pathway as a signaling pathway involved in the HGF effects on the progression of periodontitis. CONCLUSION: HGF plays divergent effects in the progression of experimental periodontitis and accelerates osteoclastic activity and bone destruction in the late stage of inflammation.


Alveolar Bone Loss , Hepatocyte Growth Factor , Mice, Inbred C57BL , Mice, Transgenic , Periodontitis , X-Ray Microtomography , Animals , Hepatocyte Growth Factor/metabolism , Periodontitis/metabolism , Periodontitis/pathology , Mice , Alveolar Bone Loss/metabolism , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/pathology , Disease Models, Animal , Disease Progression , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Signal Transduction , Male , Enzyme-Linked Immunosorbent Assay
13.
J Periodontal Res ; 59(3): 512-520, 2024 Jun.
Article En | MEDLINE | ID: mdl-38243688

BACKGROUND: Periodontitis is a chronic inflammatory disease defined by the pathologic loss of the periodontal ligament and alveolar bone in relation to aging. Although clinical cohort studies reported that periodontitis is significantly elevated in males compared to females, emerging evidence indicates that females with dementia are at a greater risk for periodontitis and decreased alveolar bone. OBJECTIVE: This study aimed to evaluate whether dementia is a potential sex-dependent risk factor for periodontal bone loss using an experimental model of periodontitis induced in the triple transgenic (3x-Tg) dementia-like mice and clinical samples collected from senior 65 plus age patients with diagnosed dementia. MATERIALS AND METHODS: We induced periodontitis in dementia-like triple-transgenic (3x-Tg) male and female mice and age-matched wild-type (WT) control mice by ligature placement. Then, alveolar bone loss and osteoclast activity were evaluated using micro-CT and in situ imaging assays. In addition, we performed dental examinations on patients with diagnosed dementia. Finally, dementia-associated Aß42 and p-Tau (T181) and osteoclastogenic receptor activator of nuclear factor kappa-Β ligand (RANKL) in gingival crevicular fluid (GCF) collected from mice and clinical samples were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: Alveolar bone loss and in situ osteoclast activity were significantly elevated in periodontal lesions of 3x-Tg females but not males, compared to wild-type control mice. In addition, we also observed that the probing pocket depth (PPD) was also significantly elevated in female patients with dementia. Using ELISA assay, we observed that females had elevated levels of osteoclastogenic RANKL and dementia-associated Aß42 and p-Tau (T181) in the GCF collected from experimental periodontitis lesions and clinical samples. CONCLUSION: Altogether, we demonstrate that females with dementia have an increased risk for periodontal bone loss compared to males.


Alveolar Bone Loss , Dementia , Disease Models, Animal , Mice, Transgenic , Periodontitis , RANK Ligand , Animals , Female , Alveolar Bone Loss/pathology , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/metabolism , Male , Mice , Dementia/etiology , Humans , Aged , RANK Ligand/analysis , RANK Ligand/metabolism , Sex Factors , Periodontitis/complications , Periodontitis/pathology , X-Ray Microtomography , Osteoclasts/pathology , Amyloid beta-Peptides/metabolism , Gingival Crevicular Fluid/chemistry , Peptide Fragments/analysis , Risk Factors
14.
J Dent Res ; 103(2): 208-217, 2024 02.
Article En | MEDLINE | ID: mdl-38193302

Periodontitis is a complex disease characterized by distinct inflammatory stages, with a peak of inflammation in the early phase and less prominent inflammation in the advanced phase. The insulin-like growth factor 2-binding proteins 2 (IGF2BP2) has recently been identified as a new m6A reader that protects m6A-modified messenger RNAs (mRNAs) from decay, thus participating in multiple biological processes. However, its role in periodontitis remains unexplored. Here, we investigated the role of IGF2BP2 in inflammation and osteoclast differentiation using a ligature-induced periodontitis model. Our findings revealed that IGF2BP2 responded to bacterial-induced inflammatory stimuli and exhibited differential expression patterns in early and advanced periodontitis stages, suggesting its dual role in regulating this disease. Depletion of Igf2bp2 contributed to increased release of inflammatory cytokines, thereby exacerbating periodontitis after 3 d of ligature while suppressing osteoclast differentiation and ameliorating periodontitis after 14 d of ligature. Mechanistically, we demonstrated that IGF2BP2 directly interacted with Cd5l and Cd36 mRNA via RNA immunoprecipitation assay. Overexpression of CD36 or recombinant CD5L rescued the osteoclast differentiation ability of Igf2bp2-null cells upon lipopolysaccharide stimulus, and thus the downregulation of Cd36 and Cd5l effectively reversed periodontitis in the advanced stage. Altogether, this study deepens our understanding of the potential mechanistic link among the dysregulated m6A reader IGF2BP2, immunomodulation, and osteoclastogenesis during different stages of periodontitis.


Alveolar Bone Loss , Periodontitis , Humans , Osteoclasts/metabolism , Alveolar Bone Loss/metabolism , Periodontitis/metabolism , Inflammation/metabolism , Osteogenesis , RNA-Binding Proteins/pharmacology
15.
J Cell Physiol ; 239(2): e31172, 2024 02.
Article En | MEDLINE | ID: mdl-38214117

Periodontitis is associated with significant alveolar bone loss. Patients with iron overload suffer more frequently from periodontitis, however, the underlying mechanisms remain largely elusive. Here, we investigated the role of transferrin receptor 2 (Tfr2), one of the main regulators of iron homeostasis, in the pathogenesis of periodontitis and the dental phenotype under basal conditions in mice. As Tfr2 suppresses osteoclastogenesis, we hypothesized that deficiency of Tfr2 may exacerbate periodontitis-induced bone loss. Mice lacking Tfr2 (Tfr2-/- ) and wild-type (Tfr2+/+ ) littermates were challenged with experimental periodontitis. Mandibles and maxillae were collected for microcomputed tomography and histology analyses. Osteoclast cultures from Tfr2+/+ and Tfr2-/- mice were established and analyzed for differentiation efficiency, by performing messenger RNA expression and protein signaling pathways. After 8 days, Tfr2-deficient mice revealed a more severe course of periodontitis paralleled by higher immune cell infiltration and a higher histological inflammation index than Tfr2+/+ mice. Moreover, Tfr2-deficient mice lost more alveolar bone compared to Tfr2+/+ littermates, an effect that was only partially iron-dependent. Histological analysis revealed a higher number of osteoclasts in the alveolar bone of Tfr2-deficient mice. In line, Tfr2-deficient osteoclastic differentiation ex vivo was faster and more efficient as reflected by a higher number of osteoclasts, a higher expression of osteoclast markers, and an increased resorptive activity. Mechanistically, Tfr2-deficient osteoclasts showed a higher p38-MAPK signaling and inhibition of p38-MAPK signaling in Tfr2-deficient cells reverted osteoclast formation to Tfr2+/+ levels. Taken together, our data indicate that Tfr2 modulates the inflammatory response in periodontitis thereby mitigating effects on alveolar bone loss.


Alveolar Bone Loss , Periodontitis , Animals , Humans , Mice , Alveolar Bone Loss/genetics , Alveolar Bone Loss/metabolism , Iron , Osteoclasts , Periodontitis/genetics , Periodontitis/metabolism , Receptors, Transferrin/genetics , X-Ray Microtomography , Mice, Inbred C57BL , Cells, Cultured
16.
Phytomedicine ; 124: 155233, 2024 Feb.
Article En | MEDLINE | ID: mdl-38181526

BACKGROUND: With the growing aging population and longer life expectancy, periodontitis and tooth loss have become major health concerns. The gut microbiota, as a key regulator in bone homeostasis, has gathered immense interest. Baicalin, a flavonoid compound extracted from Scutellaria baicalensis Georgi, has shown antioxidant and anti-inflammatory activities. PURPOSE: This study investigated, for the first time, the protective mechanism of baicalin against alveolar bone inflammatory resorption in aging mice by regulating intestinal flora and metabolites, as well as intestinal barrier function. METHODS: A ligature-induced periodontitis model was established in d-galactose (D-gal)-induced aging mice, and baicalin was administered at different dosages for 13 weeks. Body weight was measured weekly. The antioxidant and anti-inflammatory activity of baicalin were evaluated using serum superoxide dismutase (SOD), malonaldehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) levels. The immune capability was assessed by thymus and spleen indices. Histopathological changes were observed in the heart, liver, ileum, and periodontal tissues. Alveolar bone absorption of maxillary second molars was examined, and osteoclasts were counted by tartrate-resistant acid phosphatase (TRAP) staining. Furthermore, fecal samples were analyzed using 16S rRNA sequencing and non-targeted metabolomics to identify differences in intestinal bacterial composition and metabolites. RESULTS: Baicalin exhibited anti-aging properties, as evidenced by increased SOD activity and decreased levels of MDA, IL-6, and TNF-α in serum compared to the control group. Baicalin also ameliorated alveolar bone loss in the d-gal-induced aging-periodontitis group (p < 0.05). Furthermore, baicalin restored ileal permeability by up-regulating the expression of ZO-1 and occludin in aging-periodontitis groups (p < 0.05). Alpha diversity analysis indicated that baicalin-treated mice harbored a higher diversity of gut microbe. PCoA and ANOSIM results revealed significant dissimilarity between groups. The Firmicutes/Bacteroidetes (F/B) ratio, which decreased in periodontitis mice, was restored by baicalin treatment. Additionally, medium-dosage baicalin promoted the production of beneficial flavonoids, and enriched short-chain fatty acids (SCFAs)-producing bacteria. CONCLUSION: Intestinal homeostasis is a potential avenue for treating age-related alveolar bone loss. Baicalin exerts anti-inflammatory, antioxidant, and osteo-protective properties by regulating the gut microbiota and metabolites.


Alveolar Bone Loss , Microbiota , Periodontitis , Mice , Animals , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/prevention & control , Alveolar Bone Loss/metabolism , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Antioxidants/therapeutic use , RNA, Ribosomal, 16S , Periodontitis/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Flavonoids/pharmacology , Flavonoids/therapeutic use , Aging , Superoxide Dismutase
17.
Mol Nutr Food Res ; 68(3): e2300445, 2024 Feb.
Article En | MEDLINE | ID: mdl-38087782

SCOPE: Bovine milk extracellular vesicles (MEVs) have demonstrated therapeutic potential in regulating bone cell activity. However, the outcome of their use on alveolar bone loss has not yet been demonstrated. METHODS AND RESULTS: This study evaluates the effect of oral administration of MEVs on ovariectomized (OVX) mice. There is a reduced height of the alveolar bone crest in OVX mice by MEVs treatment, but the alveolar bone parameters are not altered. OVX mice are then submitted to a force-induced bone remodeling model by orthodontic tooth movement (OTM). MEVs-treated mice have markedly less bone remodeling movement, unlike the untreated OVX mice. Also, OVX mice treated with MEVs show an increased number of osteoblasts and osteocytes associated with higher sclerostin expression and reduce osteoclasts in the alveolar bone. Although the treatment with MEVs in OVX mice does not show differences in root structure in OTM, few odontoclasts are observed in the dental roots of OVX-treated mice. Compared to untreated mice, maxillary and systemic RANKL/OPG ratios are reduced in OVX mice treated with MEVs. CONCLUSION: Treatment with MEVs results in positive bone cell balance in the alveolar bone and dental roots, indicating its beneficial potential in treating alveolar bone loss in the nutritional context.


Alveolar Bone Loss , Mice , Animals , Female , Humans , Alveolar Bone Loss/prevention & control , Alveolar Bone Loss/metabolism , Milk , Osteoclasts/metabolism , Osteoblasts/metabolism , Bone Remodeling/physiology , Ovariectomy
18.
Mol Oral Microbiol ; 39(3): 125-135, 2024 Jun.
Article En | MEDLINE | ID: mdl-38108557

Liver-X receptors (LXRs) are essential nuclear hormone receptors involved in cholesterol and lipid metabolism. They are also believed to regulate inflammation and physiological and pathological bone turnover. We have previously shown that infection with the periodontal pathogen Porphyromonas gingivalis (Pg) in mice increases the abundance of CD11b+c-fms+Ly6Chi cells in bone marrow (BM), spleen (SPL), and peripheral blood. These cells also demonstrated enhanced osteoclastogenic activity and a distinctive gene profile following Pg infection. Here, we investigated the role of LXRs in regulating these osteoclast precursors (OCPs) and periodontal bone loss. We found that Pg infection downregulates the gene expression of LXRs, as well as ApoE, a transcription target of LXRs, in CD11b+c-fms+Ly6Chi OCPs. Activation of LXRs by treatment with GW3965, a selective LXR agonist, significantly decreased Pg-induced accumulation of CD11b+c-fms+Ly6Chi population in BM and SPL. GW3965 treatment also significantly suppressed the osteoclastogenic potential of these OCPs induced by Pg infection. Furthermore, the activation of LXRs reduces the abundance of OCPs systemically in BM and locally in the periodontium, as well as mitigates gingival c-fms expression and periodontal bone loss in a ligature-induced periodontitis model. These data implicate a novel role of LXRs in regulating OCP abundance and osteoclastogenic potential in inflammatory bone loss.


Alveolar Bone Loss , Liver X Receptors , Osteoclasts , Porphyromonas gingivalis , Animals , Liver X Receptors/metabolism , Mice , Osteoclasts/metabolism , Alveolar Bone Loss/metabolism , Mice, Inbred C57BL , Bacteroidaceae Infections/microbiology , Benzylamines/pharmacology , CD11b Antigen/metabolism , Periodontitis/metabolism , Periodontitis/microbiology , Male , Down-Regulation
19.
J Dent Res ; 102(12): 1356-1365, 2023 11.
Article En | MEDLINE | ID: mdl-37786932

Physiologically, teeth and periodontal tissues are exposed to occlusal forces throughout their lifetime. Following occlusal unloading, unbalanced bone remodeling manifests as a net alveolar bone (AB) loss. This phenomenon is termed alveolar bone disuse osteoporosis (ABDO), the underlying mechanism of which remains unclear. Type H vessels, a novel capillary subtype tightly coupled with osteogenesis, reportedly have a role in skeletal remodeling; however, their role in ABDO is not well studied. In the present study, we aimed to explore the pathogenesis of and therapies for ABDO. The study revealed that type H endothelium highly positive for CD31 and endomucin was identified in the periodontal ligament (PDL) but rarely in the AB of the mice. In hypofunctional PDL, the density of type H vasculature and coupled osterix+ (OSX+) osteoprogenitors declined significantly. In addition, the angiogenic factor Slit guidance ligand 3 (SLIT3) was downregulated in the disused PDL, and periodontal injection of the recombinant SLIT3 protein partially ameliorated type H vessel dysfunction and AB loss in ABDO mice. With regard to the molecular mechanism, a mechanosensory signaling circuit, PIEZO1/Ca2+/HIF-1α/SLIT3, was validated by applying cyclic compression to 3-dimensional-cultured PDL cells using the Flexcell FX-5000 compression system. In summary, PDL plays a pivotal role in mechanotransduction by translating physical forces into the intracellular signaling axis PIEZO1/Ca2+/HIF-1α/SLIT3, which promotes type H angiogenesis and OSX+ cell-related osteogenensis, thereby contributing to AB homeostasis. Our findings advance the understanding of PDL in AB disorders. Further therapies targeting SLIT3 may provide new insights into preventing bone loss in ABDO.


Alveolar Bone Loss , Tooth , Mice , Animals , Bite Force , Mechanotransduction, Cellular , Periodontal Ligament/metabolism , Alveolar Bone Loss/metabolism , Homeostasis
20.
Photobiomodul Photomed Laser Surg ; 41(10): 549-559, 2023 Oct.
Article En | MEDLINE | ID: mdl-37788456

Objective: This study investigated the suppressive effects of blue light-emitting diode (LED) irradiation on bone resorption and changes in the oral microbiome of mice with ligature-induced periodontitis. Background: Wavelength of blue light has antimicrobial effects; however, whether blue LED irradiation alone inhibits the progression of periodontitis remains unclear. Methods: Nine-week-old male mice ligated ligature around the right maxillary second molar was divided into ligation alone (Li) and ligation with blue LED irradiation (LiBL) groups. The LiBL group underwent blue LED (wavelength, 455 nm) irradiation four times in a week at 150 mW/cm2 without a photosensitizer on the gingival tissue around the ligated tooth at a distance of 5 mm for 5 min. The total energy density per day was 45 J/cm2. Bone resorption was evaluated using micro-computed tomography at 8 days. Differences in the oral microbiome composition of the collected ligatures between the Li and LiBL groups were analyzed using next-generation sequencing based on the 16S rRNA gene from the ligatures. Results: Blue LED irradiation did not suppress bone resorption caused by ligature-induced periodontitis. However, in the LiBL group, the α-diversity, number of observed features, and Chao1 were significantly decreased. The relative abundances in phylum Myxococcota and Bacteroidota were underrepresented, and the genera Staphylococcus, Lactococcus, and Lactobacillus were significantly overrepresented by blue LED exposure. Metagenomic function prediction indicated an increase in the downregulated pathways related to microbial energy metabolism after irradiation. The co-occurrence network was altered to a simpler structure in the LiBL group, and the number of core genera decreased. Conclusions: Blue LED irradiation altered the composition and network of the oral microbiome of ligature-induced periodontitis in mice.


Alveolar Bone Loss , Microbiota , Periodontitis , Mice , Male , Animals , Photosensitizing Agents/pharmacology , X-Ray Microtomography/adverse effects , RNA, Ribosomal, 16S , Alveolar Bone Loss/etiology , Alveolar Bone Loss/metabolism , Periodontitis/therapy , Periodontitis/complications , Periodontitis/metabolism
...