RESUMEN
PURPOSE: Recent studies have shown that 20-hydroxyeicosatetraenoic acid (20-HETE) is a key molecule in sustaining androgen-mediated prostate cancer cell survival. Thus, the aim of this study was to determine whether 20-HETE can affect the metastatic potential of androgen-insensitive prostate cancer cells, and the implication of the newly described 20-HETE receptor, GPR75, in mediating these effects. METHODS: The expression of GPR75, protein phosphorylation, actin polymerization and protein distribution were assessed by western blot and/or fluorescence microscopy. Additionally, in vitro assays including epithelial-mesenchymal transition (EMT), metalloproteinase-2 (MMP-2) activity, scratch wound healing, transwell invasion and soft agar colony formation were used to evaluate the effects of 20-HETE agonists/antagonists or GPR75 gene silencing on the aggressive features of PC-3 cells. RESULTS: 20-HETE (0.1â¯nM) promoted the acquisition of a mesenchymal phenotype by increasing EMT, the release of MMP-2, cell migration and invasion, actin stress fiber formation and anchorage-independent growth. Also, 20-HETE augmented the expression of HIC-5, the phosphorylation of EGFR, NF-κB, AKT and p-38 and the intracellular redistribution of p-AKT and PKCα. These effects were impaired by GPR75 antagonism and/or silencing. Accordingly, the inhibition of 20-HETE formation with N-hydroxy-N'-(4-n-butyl-2-methylphenyl) formamidine (HET0016) elicited the opposite effects. CONCLUSIONS: The present results show for the first time the involvement of the 20-HETE-GPR75 receptor in the activation of intracellular signaling known to be stimulated in cell malignant transformations leading to the differentiation of PC-3 cells towards a more aggressive phenotype. Targeting the 20-HETE/GPR75 pathway is a promising and novel approach to interfere with prostate tumor cell malignant progression.
Asunto(s)
Ácidos Hidroxieicosatetraenoicos/metabolismo , Neoplasias de la Próstata/patología , Receptores Acoplados a Proteínas G/metabolismo , Amidinas/farmacología , Andrógenos/metabolismo , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Ácidos Hidroxieicosatetraenoicos/agonistas , Ácidos Hidroxieicosatetraenoicos/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Células PC-3 , Neoplasias de la Próstata/tratamiento farmacológico , ARN Interferente Pequeño/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/efectos de los fármacosRESUMEN
Five bis-arylimidamides were assayed as anti-Trypanosoma cruzi agents by in vitro, in silico, and in vivo approaches. None were considered to be pan-assay interference compounds. They had a favorable pharmacokinetic landscape and were active against trypomastigotes and intracellular forms, and in combination with benznidazole, they gave no interaction. The most selective agent (28SMB032) tested in vivo led to a 40% reduction in parasitemia (0.1 mg/kg of body weight/5 days intraperitoneally) but without mortality protection. In silico target fishing suggested DNA as the main target, but ultrastructural data did not match.
Asunto(s)
Amidinas/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Enfermedad de Chagas/tratamiento farmacológico , Masculino , Ratones , Nitroimidazoles/farmacología , Parasitemia/tratamiento farmacológico , Pruebas de Sensibilidad Parasitaria/métodosRESUMEN
A series of arylamidines 3a-j was designed, synthesized and investigated for antimicrobial activity. Structures of the compounds were confirmed by IR, 1H-NMR and 13C-NMR and a 2D spectroscopic study was performed. A preliminary screening of the antimicrobial tests clearly showed that three out of ten arylamidines, viz, 3f, 3g and 3i, were effective against all the gram-negative bacteria: Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella enteric; and against the yeast, candida albicans. Further, the Minimum Inhibitory Concentrations (MIC) against the bacteria and yeast were determined. All compounds 3a-d, 3f, 3g, 3i and 3j were also investigated for their low cytotoxic effects on tested cell lines. Compounds 3d and 3f were the most effective derivatives against HL-60 and HEp-2 cells, respectively, with IC50 value (2µg/mL), and low normal cells toxicity.
Asunto(s)
Amidinas/síntesis química , Amidinas/farmacología , Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Candida albicans/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Reproducibilidad de los Resultados , Espectrofotometría Infrarroja , Sales de Tetrazolio , Tiazoles , Pruebas de ToxicidadRESUMEN
ABSTRACT A series of arylamidines 3a-j was designed, synthesized and investigated for antimicrobial activity. Structures of the compounds were confirmed by IR, 1H-NMR and 13C-NMR and a 2D spectroscopic study was performed. A preliminary screening of the antimicrobial tests clearly showed that three out of ten arylamidines, viz, 3f, 3g and 3i, were effective against all the gram-negative bacteria: Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella enteric; and against the yeast, candida albicans. Further, the Minimum Inhibitory Concentrations (MIC) against the bacteria and yeast were determined. All compounds 3a-d, 3f, 3g, 3i and 3j were also investigated for their low cytotoxic effects on tested cell lines. Compounds 3d and 3f were the most effective derivatives against HL-60 and HEp-2 cells, respectively, with IC50 value (2µg/mL), and low normal cells toxicity.
Asunto(s)
Humanos , Candida albicans/efectos de los fármacos , Amidinas/síntesis química , Amidinas/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Espectrofotometría Infrarroja , Sales de Tetrazolio , Tiazoles , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Reproducibilidad de los Resultados , Pruebas de Toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacosRESUMEN
3-Hydroxy-anthranilic acid (3-OHAA), a tryptophan metabolite produced in the kynurenine pathway, is an efficient antioxidant towards peroxyl radicals (ROO) derived from the AAPH (2,2'-azobis(2-amidinopropane) dihydrochloride) thermolysis. However, self-reactions of ROO can give rise to alkoxyl radicals (RO), which could strongly affect the fate of scavenging reactions. In the present work, we studied the influence of RO in the scavenging activity of 3-OHAA in three different systems: i) Monitoring of the direct reaction between 3-OHAA and AAPH-derived free radicals (kinetic studies); ii) Evaluation of the protective effect of 3-OHAA on the AAPH-induced consumption of fluorescein; and, iii) Inhibition, given by 3-OHAA, of the AAPH-initiated lipid peroxidation of both, rat brain synaptosomes and homogenate preparations (assessed by chemiluminescence). For such purposes, the fraction of free radicals (f) trapped per 3-OHAA molecule was determined in each system. Kinetic results show that the oxidation of 3-OHAA follows a process dominated by ROO with a zero order kinetic limit in 3-OHAA, and a fraction (fri) equal to 0.88. From the induction times, elicited by 3-OHAA in the kinetic profiles of fluorescein consumption, a fraction (fT) of 0.28 was determined. 3-OHAA also generated induction times in the kinetic profiles of light emission during the AAPH-initiated lipid peroxidation of rat brain synaptosomes and homogenates. From such induction times, fractions of 0.61 and 0.63 were determined for rat brain synaptosomes (fsyn) and homogenates (fhom), respectively. These results show that during the incubation of 3-OHAA and AAPH, a low fraction of ROO self-reacts to generate RO. Nevertheless, when 3-OHAA is employed to protect particular targets, such as fluorescein, rat brain synaptosomes and homogenates, reactions of ROO and/or RO should be considered.
Asunto(s)
Depuradores de Radicales Libres/farmacología , Radicales Libres/metabolismo , Peróxidos/metabolismo , Triptófano/farmacología , ortoaminobenzoatos/farmacología , Alcoholes/metabolismo , Amidinas/farmacología , Animales , Antioxidantes/farmacología , Femenino , Cinética , Peroxidación de Lípido/efectos de los fármacos , Ratones , Oxidación-Reducción/efectos de los fármacos , RatasRESUMEN
Systemic or hippocampal administration of nitric oxide (NO) synthase inhibitors induces antidepressant-like effects in animals, implicating increased hippocampal levels of NO in the neurobiology of depression. However, the role played by different NO synthase in this process has not been clearly defined. As stress is able to induce neuroinflammatory mechanisms and trigger the expression of inducible nitric oxide synthase (iNOS) in the brain, as well as upregulate neuronal nitric oxide synthase (nNOS) activity, the aim of the present study was to investigate the possible differential contribution of hippocampal iNOS and nNOS in the modulation of the consequences of stress elicited by the forced swimming test. Male Wistar rats received intrahippocampal injections, immediately after the pretest or 1 h before the forced swimming test, of selective inhibitors of nNOS (N-propyl-L-arginine), iNOS (1400W), or sGC (ODQ), the main pharmacological target for NO. Stress exposure increased nNOS and phospho-nNOS levels at all time points, whereas iNOS expression was increased only 24 h after the pretest. All drugs induced an antidepressant-like effect. However, whereas the nNOS inhibitor was equally effective when injected at different times, the iNOS inhibitor was more effective 24 h after the pretest. These results suggest that hippocampal nNOS and iNOS contribute to increase in NO levels in response to stress, although with a differential time course after stress exposure.
Asunto(s)
Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Estrés Psicológico/metabolismo , Amidinas/farmacología , Animales , Arginina/análogos & derivados , Arginina/farmacología , Bencilaminas/farmacología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Masculino , Óxido Nítrico/metabolismo , Oxadiazoles/farmacología , Ratas , Ratas Wistar , Natación , Factores de TiempoRESUMEN
Leishmaniasis is a complex disease that is considered a serious public health problem. Due to the absence of an effective vaccine and debilitating chemotherapy better therapies are urgently needed. This situation has stimulated the search for alternative treatments such as the use of herbal medicines. Several studies conducted with Morinda citrifolia Linn. have shown various biological activities such as antitumor, immunomodulation and antileishmanial activity, however its mechanisms of action are still unknown. This study aimed to analyze the activity of M. citrifolia fruit juice against Leishmania amazonensis and its action on peritoneal macrophages from BALB/c infected with L. amazonensis. Activity against the promastigote forms showed IC50 at 275.3 µg/mL. Transmission electron microscopy was used to evaluate the ultrastructural alterations in the promastigotes treated with the juice and the results showed cytoplasmic vacuolization, lipid inclusion and increased activity of exocytosis. The juice treatment presented an IC50 at 208.4 µg/mL against intracellular amastigotes and led to an increased nitrite production in infected and non-infected macrophages. When macrophages were pre-treated with iNOS inhibitors, aminoguanidine or 1400W, the intracellular amastigotes increased, demonstrating the important role of NO production in M. citrifolia fruit activity. In conclusion, our results reveal that treatment with M. citrifolia fruit juice can increase NO production in peritoneal macrophages and this ability has an important role in the killing of L. amazonensis intracellular amastigotes.
Asunto(s)
Jugos de Frutas y Vegetales , Leishmania/efectos de los fármacos , Macrófagos Peritoneales/parasitología , Morinda/química , Óxido Nítrico/biosíntesis , Preparaciones de Plantas/farmacología , Tripanocidas/farmacología , Amidinas/farmacología , Anfotericina B/farmacología , Animales , Bencilaminas/farmacología , Femenino , Guanidinas/farmacología , Leishmania/metabolismo , Leishmania/ultraestructura , Ratones Endogámicos BALB C , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , ARN Mensajero/metabolismoRESUMEN
The current treatment of Chagas disease (CD), based on nifurtimox and benznidazole (Bz), is unsatisfactory. In this context, we performed the phenotypic in vitro screening of novel mono- and diamidines and drug interaction assays with selected compounds. Ten novel amidines were tested for their activities against bloodstream trypomastigote (BT) and amastigote forms of Trypanosoma cruzi (Y and Tulahuen strains) and their toxicities for mammalian host cells (L929 cells and cardiac cells). Seven of 10 molecules were more active than Bz against BT, with the most active compound being the diamidine DB2267 (50% effective concentration [EC50] = 0.23 µM; selectivity index = 417), which was 28-fold more active and about 3 times more selective than the standard drug. Five of the six monoamidines were also more active than Bz. The combination of DB2267 and DB2236 in fixed-ratio proportions showed an additive effect (sum of fractional inhibitory concentrations < 4) on BT. Interestingly, when intracellular forms were exposed to DB2267, its activity was dependent on the parasite strain, being effective (EC50 = 0.87 ± 0.05 µM) against a discrete typing unit (DTU) II strain (strain Y) but not against a representative DTU VI strain (strain Tulahuen) even when different vehicles (ß-cyclodextrin and dimethyl sulfoxide) were used. The intrinsic fluorescence of several diamidines allowed their uptake to be studied. Testing of the uptake of DB2236 (inactive) and DB2267 (active) by amastigotes of the Y strain showed that the two compounds were localized intracellularly in different compartments: DB2236 in the cytoplasm and DB2267 in the nucleus. Our present data encourage further studies regarding the activities of amidines and provide information which will help with the identification of novel agents for the treatment of CD.
Asunto(s)
Amidinas/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/parasitología , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Citoplasma/efectos de los fármacos , Citoplasma/parasitología , Mamíferos/parasitología , Pruebas de Sensibilidad Parasitaria/métodos , FenotipoRESUMEN
Arylimidamides (AIAs) have been shown to have considerable biological activity against intracellular pathogens, includingTrypanosoma cruzi, which causes Chagas disease. In the present study, the activities of 12 novel bis-AIAs and 2 mono-AIAs against different strains ofT. cruziin vitroandin vivowere analyzed. The most active wasm-terphenyl bis-AIA (35DAP073), which had a 50% effective concentration (EC50) of 0.5 µM for trypomastigotes (Y strain), which made it 26-fold more effective than benznidazole (Bz; 13 µM). It was also active against the Colombiana strain (EC50= 3.8 µM). Analysis of the activity against intracellular forms of the Tulahuen strain showed that this bis-AIA (EC50= 0.04 µM) was about 100-fold more active than Bz (2 µM). The trypanocidal effect was dissociated from the ability to trigger intracellular lipid bodies within host cells, detected by oil red labeling. Both an active compound (35DAP073) and an inactive compound (26SMB060) displayed similar activation profiles. Due to their high selectivity indexes, two AIAs (35DAP073 and 35DAP081) were moved toin vivostudies, but because of the results of acute toxicity assays, 35DAP081 was excluded from the subsequent tests. The findings obtained with 35DAP073 treatment of infections caused by the Y strain revealed that 2 days of therapy induced a dose-dependent action, leading to 96 to 46% reductions in the level of parasitemia. However, the administration of 10 daily doses in animals infected with the Colombiana strain resulted in toxicity, preventing longer periods of treatment. The activity of the combination of 0.5 mg/kg of body weight/day 35DAP073 with 100 mg/kg/day Bz for 10 consecutive days was then assayed. Treatment with the combination resulted in the suppression of parasitemia, the elimination of neurological toxic effects, and survival of 100% of the animals. Quantitative PCR showed a considerable reduction in the parasite load (60%) compared to that achieved with Bz or the amidine alone. Our results support further investigations of this class with the aim of developing novel alternatives for the treatment of Chagas disease.
Asunto(s)
Amidas/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Parasitemia/tratamiento farmacológico , Compuestos de Terfenilo/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Amidas/síntesis química , Amidinas/farmacología , Animales , Enfermedad de Chagas/mortalidad , Enfermedad de Chagas/parasitología , Modelos Animales de Enfermedad , Esquema de Medicación , Cálculo de Dosificación de Drogas , Sinergismo Farmacológico , Quimioterapia Combinada , Femenino , Ratones , Nitroimidazoles/farmacología , Carga de Parásitos , Parasitemia/mortalidad , Parasitemia/parasitología , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Análisis de Supervivencia , Compuestos de Terfenilo/síntesis química , Tripanocidas/síntesis química , Trypanosoma cruzi/crecimiento & desarrolloRESUMEN
Severe hemorrhage can lead to global ischemia and hemorrhagic shock (HS), resulting in multiple organ failure (MOF) and death. Restoration of blood flow and re-oxygenation is associated with an exacerbation of tissue injury and inflammatory response. The neuronal nitric oxide synthase (nNOS) has been implicated in vascular collapse and systemic inflammation of septic shock; however, the role of nNOS in HS is poorly understood. The aim of this study was to evaluate the role of nNOS in the MOF associated with HS.Rats were subjected to HS under anesthesia. Mean arterial pressure was reduced to 30â mmHg for 90 âmin, followed by resuscitation with shed blood. Rats were randomly treated with two chemically distinct nNOS inhibitors [ARL 17477 (1âmg/kg) and 7-nitroindazol (5âmg/kg)] or vehicle upon resuscitation. Four hours later, parameters of organ injury and dysfunction were assessed.HS was associated with MOF development. Inhibition of nNOS activity at resuscitation protected rats against the MOF and vascular dysfunction. In addition, treatment of HS rats with nNOS inhibitors attenuated neutrophil infiltration into target organs and decreased the activation of NF-κB, iNOS expression, NO production, and nitrosylation of proteins. Furthermore, nNOS inhibition also reduced the levels of pro-inflammatory cytokines TNF-α and IL-6 in HS rats.In conclusion, two distinct inhibitors of nNOS activity reduced the MOF, vascular dysfunction, and the systemic inflammation associated with HS. Thus, nNOS inhibitors may be useful as an adjunct therapy before fluids and blood administration in HS patients to avoid the MOF associated with reperfusion injury during resuscitation.
Asunto(s)
Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Choque Hemorrágico/complicaciones , Choque Hemorrágico/metabolismo , Amidinas/farmacología , Animales , Indazoles/farmacología , Interleucina-6/metabolismo , Masculino , Insuficiencia Multiorgánica/enzimología , FN-kappa B/metabolismo , Infiltración Neutrófila/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
CONTEXT: Syzygium cumini (Myrtaceae) presents antioxidant, anti-inflammatory, hypoglycemic and antibacterial effects; however, the cellular and molecular mechanisms of action in the immune system are not yet completely elucidated. OBJECTIVE: This study evaluates the in vitro effect of gallic acid and aqueous S. cumini leaf extract (ASc) on adenosine deaminase (ADA) and dipeptidyl peptidase IV (DPP-IV) activities, cell viability and oxidative stress parameters in lymphocytes exposed to 2, 2'-azobis-2-amidinopropane dihydrochloride (AAPH). MATERIALS AND METHODS: Lymphocytes were incubated with ASc (100 and 500 µg/ml) and gallic acid (50 and 200 µM) at 37 °C for 30 min followed by incubation with AAPH (1 mM) at 37 °C for 2 h. After the incubation time, the lymphocytes were used for determinations of ADA, DPP-IV and lactate dehydrogenase (LDH) activities, lipid peroxidation, protein thiol (P-SH) group levels and cellular viability by colorimetric methods. RESULTS: (i) HPLC fingerprinting of ASc revealed the presence of catechin, epicatechin, rutin, quercitrin, isoquercitrin, quercetin, kaempferol and chlorogenic, caffeic, gallic and ellagic acids; (ii) for the first time, ASc reduced the AAPH-induced increase in ADA activity, but no effect was observed on DPP-IV activity; (iii) ASc increased P-SH groups and cellular viability and decreased LDH activity, but was not able to reduce the AAPH-induced lipid peroxidation; (iv) gallic acid showed less protective effects than ASc. DISCUSSION AND CONCLUSION: ASc affects the purinergic system and may modulate adenosine levels, indicating that the extract of this plant exhibits immunomodulatory properties. ASc also may potentially prevent the cellular injury induced by oxidative stress, highlighting its cytoprotective effects.
Asunto(s)
Antioxidantes/farmacología , Ácido Gálico/farmacología , Linfocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Syzygium/química , Amidinas/farmacología , Antioxidantes/aislamiento & purificación , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cromatografía Líquida de Alta Presión , Humanos , Peroxidación de Lípido/efectos de los fármacos , Linfocitos/patología , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/químicaRESUMEN
Por meio da análise de obras acadêmicas produzidas por filósofos naturais no século XVIII, pretendemos discutir algumas ideias recorrentes acerca da Grande Cadeia do Ser. Para tal, analisamos as relações entre filosofia e teologia natural no período. Reavaliamos ainda alguns elementos da Cadeia do Ser, investigando autores que discorreram sobre o tema em seus escritos. Por fim, elencamos um ponto específico das discussões setecentistas sobre a scala naturae, qual seja, as diversas e nem sempre convergentes ideias de que, a partir de características específicas, haveria diferenças entre os homens, bem como seu consequente lugar na Cadeia do Ser.
This examination of academic works produced by eighteenth-century natural philosophers discusses some recurring ideas about the Chain of Being. To this end, the article analyzes the relations between natural philosophy and theology during the period. It also re-evaluates some elements of the Chain of Being through an exploration of authors who addressed the topic in their writings. Lastly, it identifies a specific element within eighteenth-century discussions of scala naturae, to wit, the various and not always convergent ideas about whether there are differences between humans based on specific characteristics and, consequently, about the places they occupy in the chain of being.
Asunto(s)
Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Hiperlipidemias/sangre , Ubiquinona/análogos & derivados , Consumo de Bebidas Alcohólicas/efectos adversos , Amidinas/farmacología , Antídotos/metabolismo , Índice de Masa Corporal , Enfermedad Coronaria/sangre , Hipertensión/sangre , Peroxidación de Lípido/efectos de los fármacos , Lipooxigenasa/farmacología , Hepatopatías/sangre , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Análisis de Regresión , Factores de Riesgo , Espectrofotometría , Fumar/efectos adversos , Triglicéridos/sangre , Ubiquinona/sangre , Ubiquinona/efectos de los fármacosRESUMEN
Chagas' disease is a neglected tropical disease caused by Trypanosoma cruzi and constitutes a serious public health problem for Latin America. Its unsatisfactory chemotherapy stimulates the search for novel antiparasitic compounds. Amidines and related compounds exhibit well-known activity towards different microbes including T. cruzi. In this vein, our present aim was to evaluate the biological effect of 10 novel structurally related amidines in vitro against bloodstream and intracellular forms of the parasite as well as their potential toxicity on cardiac cell cultures. Our results show that although active against the extracellular forms, with some of them like DB2247 being 6-fold more effective than benznidazole and displaying very low toxicity (>96 µm), none presented superior trypanocidal effect against intracellular forms as compared with the reference drug. These results may be due to differences in susceptibility profiles related to distinct uptake/extrusion mechanisms and cellular targets between bloodstream and amastigote forms. The present study adds to the knowledge base for the future design of novel amidines that may provide promising activity against T. cruzi.
Asunto(s)
Amidinas/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Pentamidina/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Técnicas de Cultivo de Célula , Enfermedad de Chagas/parasitología , Relación Dosis-Respuesta a Droga , Corazón , Humanos , Nitroimidazoles/farmacología , Pruebas de Sensibilidad ParasitariaRESUMEN
Chagas disease (CD), a neglected tropical disease caused by Trypanosoma cruzi, remains a serious public health problem in several Latin American countries. The available chemotherapies for CD have limited efficacy and exhibit undesirable side effects. Aromatic diamidines and arylimidamides (AIAs) have shown broad-spectrum activity against intracellular parasites, including T. cruzi. Therefore, our aim was to evaluate the biological activity of eight novel AIAs (16DAP002, 16SAB079, 18SAB075, 23SMB022, 23SMB026, 23SMB054, 26SMB070, and 27SMB009) against experimental models of T. cruzi infection in vitro and in vivo. Our data show that none of the compounds induced a loss of cellular viability up to 32 µM. Two AIAs, 18SAB075 and 16DAP002, exhibited good in vitro activity against different parasite strains (Y and Tulahuen) and against the two relevant forms of the parasite for mammalian hosts. Due to the excellent selective indexes of 18SAB075, this AIA was moved to in vivo tests for acute toxicity and parasite efficacy; nontoxic doses (no-observed-adverse-effect level [NOAEL], 50 mg/kg) were employed in the tests for parasite efficacy. In experimental models of acute T. cruzi infection, 18SAB075 reduced parasitemia levels only up to 50% and led to 40% protection against mortality (at 5 mg/kg of body weight), being less effective than the reference drug, benznidazole.
Asunto(s)
Amidinas/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Amidinas/uso terapéutico , Amidinas/toxicidad , Animales , Supervivencia Celular , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Galactosidasas/metabolismo , Masculino , Ratones , Nitroimidazoles/farmacología , Nivel sin Efectos Adversos Observados , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Cultivo Primario de Células , Tripanocidas/uso terapéutico , Tripanocidas/toxicidadRESUMEN
The anti-nociceptive and antioxidant activities of the Anadenantheracolubrina stem bark aqueous extract (AEAC) were investigated. AEAC (30 µg/mL) reduced 94.8% of 2,2-diphenyl-1-picrylhydrazyl radical and prevented 64% (200 µg/mL) of lipid peroxidation caused by 2,2'-azobis(2-methylpropionamidine) dihydrochloride-induced peroxyl radicals. AEAC treatment (200 and 400 mg/kg) significantly (p < 0.001) reduced mice orofacial nociception in the first (61.4% and 62.6%, respectively) and second (48.9% and 61.9%, respectively) phases of the formalin test. Nociception caused by glutamate was significantly (p < 0.001) reduced by up to 79% at 400 mg/kg, while 56-60% of the nociceptive behaviour induced by capsaicin was significantly inhibited by AEAC (100-400 mg/kg). Mice treated with AEAC did not show changes in motor performance in the Rota-rod apparatus. It appears that AEAC is of pharmacological importance in treating pain due to its anti-nociceptive effects, which were shown to be mediated by central and peripheral mechanisms.
Asunto(s)
Analgésicos/farmacología , Antioxidantes/farmacología , Colubrina/química , Fabaceae/química , Amidinas/farmacología , Analgésicos/uso terapéutico , Animales , Antioxidantes/uso terapéutico , Compuestos de Bifenilo/farmacología , Capsaicina/farmacología , Ácido Glutámico/farmacología , Peroxidación de Lípido , Masculino , Ratones , Dolor/tratamiento farmacológico , Dimensión del Dolor , Fitoterapia , Picratos/farmacología , Corteza de la Planta/química , Extractos Vegetales/farmacología , Tallos de la Planta/químicaRESUMEN
Insufficient oxygen delivery to organs leads to tissue dysfunction and cell death. Reperfusion, although vital to organ survival, initiates an inflammatory response that may both aggravate local tissue injury and elicit remote organ damage. Polymorphonuclear neutrophil (PMN) trafficking to remote organs following ischaemia/reperfusion (I/R) is associated with the release of lipid mediators, including leucotriene (LT) B4 , cysteinyl-LTs (CysLTs) and platelet-activating factor (PAF). Yet, their potentially cooperative role in regulating I/R-mediated inflammation has not been thoroughly assessed. The present study aimed to determine the cooperative role of lipid mediators in regulating PMN migration, tissue oedema and injury using selective receptor antagonists in selected models of I/R and dermal inflammation. Our results show that rabbits, pre-treated orally with BIIL 284 and/or WEB 2086 and MK-0571, were protected from remote tissue injury following I/R or dermal inflammation in an additive or synergistic manner when the animals were pre-treated with two drugs concomitantly. The functional selectivity of the antagonists towards their respective agonists was assessed in vitro, showing that neither BIIL 284 nor WEB 2086 prevented the inflammatory response to IL-8, C5a and zymosan-activated plasma stimulation. However, these agonists elicited LTB4 biosynthesis in isolated rabbit PMNs. Similarly, a cardioprotective effect of PAF and LTB4 receptor antagonists was shown following myocardial I/R in mice. Taken together, these results underscore the intricate involvement of LTB4 and PAF in each other's responses and provide further evidence that targeting both LTs and PAF receptors provides a much stronger anti-inflammatory effect, regulating PMN migration and oedema formation.
Asunto(s)
Leucotrienos/metabolismo , Factor de Activación Plaquetaria/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Amidinas/farmacología , Animales , Azepinas/farmacología , Bioensayo , Carbamatos/farmacología , Dermis/patología , Modelos Animales de Enfermedad , Extravasación de Materiales Terapéuticos y Diagnósticos/metabolismo , Extravasación de Materiales Terapéuticos y Diagnósticos/patología , Extremidades/irrigación sanguínea , Extremidades/patología , Inflamación/patología , Leucotrieno B4/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Infiltración Neutrófila/efectos de los fármacos , Glicoproteínas de Membrana Plaquetaria/agonistas , Glicoproteínas de Membrana Plaquetaria/metabolismo , Propionatos/farmacología , Quinolinas/farmacología , Conejos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Leucotrienos/agonistas , Receptores de Leucotrienos/metabolismo , Triazoles/farmacologíaRESUMEN
4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellata root extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2'-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO4/H2O2, in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO4/H2O2, whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO4/H2O2. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation.
Asunto(s)
Antioxidantes/farmacología , Catecoles/farmacología , Membrana Eritrocítica/efectos de los fármacos , Peróxidos/análisis , Fosfolípidos/farmacología , alfa-Tocoferol/farmacología , Amidinas/administración & dosificación , Amidinas/farmacología , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/análisis , Humanos , Peroxidación de Lípido/efectos de los fármacos , Malondialdehído/análisis , Fosfatidilcolinas/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/químicaRESUMEN
4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellata root extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2′-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO4/H2O2, in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO4/H2O2, whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO4/H2O2. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation.
Asunto(s)
Humanos , Antioxidantes/farmacología , Catecoles/farmacología , Membrana Eritrocítica/efectos de los fármacos , Peróxidos/análisis , Fosfolípidos/farmacología , alfa-Tocoferol/farmacología , Amidinas/administración & dosificación , Amidinas/farmacología , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/análisis , Peroxidación de Lípido/efectos de los fármacos , Malondialdehído/análisis , Fosfatidilcolinas/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/químicaRESUMEN
Parasitic protozoa comprise diverse aetiological agents responsible for important diseases in humans and animals including sleeping sickness, Chagas disease, leishmaniasis, malaria, toxoplasmosis and others. They are major causes of mortality and morbidity in tropical and subtropical countries, and are also responsible for important economic losses. However, up to now, for most of these parasitic diseases, effective vaccines are lacking and the approved chemotherapeutic compounds present high toxicity, increasing resistance, limited efficacy and require long periods of treatment. Many of these parasitic illnesses predominantly affect low-income populations of developing countries for which new pharmaceutical alternatives are urgently needed. Thus, very low research funding is available. Amidine-containing compounds such as pentamidine are DNA minor groove binders with a broad spectrum of activities against human and veterinary pathogens. Due to their promising microbicidal activity but their rather poor bioavailability and high toxicity, many analogues and derivatives, including pro-drugs, have been synthesized and screened in vitro and in vivo in order to improve their selectivity and pharmacological properties. This review summarizes the knowledge on amidines and analogues with respect to their synthesis, pharmacological profile, mechanistic and biological effects upon a range of intracellular protozoan parasites. The bulk of these data may contribute to the future design and structure optimization of new aromatic dicationic compounds as novel antiparasitic drug candidates.
Asunto(s)
Amidinas/farmacología , Antiprotozoarios/farmacología , Parásitos/efectos de los fármacos , Infecciones por Protozoos/tratamiento farmacológico , Amidinas/síntesis química , Amidinas/química , Amidinas/farmacocinética , Animales , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Antiprotozoarios/farmacocinética , Humanos , Espacio Intracelular/diagnóstico por imagen , Espacio Intracelular/parasitología , Microscopía Electrónica de Transmisión , Parásitos/ultraestructura , Pentamidina/análogos & derivados , Pentamidina/química , Pentamidina/farmacología , Infecciones por Protozoos/parasitología , UltrasonografíaRESUMEN
The present study was designed to investigate the involvement of the nitric oxide (NO)/cyclic guanylate monophosphate pathway in pilocarpine-induced seizures in mice. Male Swiss mice (26-32 g) were used as the in vivo model. The following pharmacological tools were utilized: the non-selective NO synthase (NOS) inhibitor L-NAME (10 mg/kg, i.p.), a preferential inducible NOS (iNOS) inhibitor aminoguanidine (25 mg/kg, i.p.), a highly specific iNOS inhibitor 1400W (2.5 mg/kg, i.p.), the NO donor L-arginine (150 mg/kg, i.p.), and the soluble guanylyl cyclase inhibitor ODQ (10 mg/kg, i.p.). The animals were divided into groups (n = 8) and pretreated for 30 min before receiving pilocarpine (400 mg/kg, i.p.), while the control group received only pilocarpine. They were observed for 60 min to measure initial seizure latency, latency till death, and mortality. An administration of L-NAME or ODQ delayed the onset of initial seizure, increased latency till death, and produced a 25% survival rate. Aminoguanidine increased the initial seizure and latency until death, and administration of 1400W did not have an effect. Incremental increases of NO by L-arginine were capable of decreasing the seizure and death latency. These results support the idea that the constitutive NOS, probably neuronal NOS, followed by soluble guanylyl cyclase activation is involved in the convulsive responses caused by pilocarpine administration.