Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 115
1.
Int J Pharm ; 658: 124200, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38710298

This study aimed to develop oral lipidic hybrids of amikacin sulfate (AMK), incorporating thiolated chitosan as a P-glycoprotein (P-gp) inhibitor to enhance intestinal absorptivity and bioavailability. Three formulations were designed: PEGylated Liposomes, Chitosan-functionalized PEGylated (Chito-PEGylated) Lipidic Hybrids, and Thiolated Chito-PEGylated Lipidic Hybrids. The physical characteristics of nanovesicles were assessed. Ex-vivo permeation and confocal laser scanning microscopy (CLSM) studies were conducted to evaluate the formulations' potential to enhance AMK intestinal permeability. In-vivo pharmacokinetic studies in rats and histological/biochemical investigations assessed the safety profile and oral bioavailability. The AMK-loaded Thiolated Chito-PEGylated Lipidic Hybrids exhibited favorable physical characteristics, higher ex-vivo permeation parameters, and verified P-gp inhibition via CLSM. They demonstrated heightened oral bioavailability (68.62% absolute bioavailability) and a sufficient safety profile. Relative bioavailability was significantly higher (1556.3% and 448.79%) compared to PEGylated Liposomes and Chito-PEGylated Lipidic Hybrids, respectively, indicating remarkable oral AMK delivery with fewer doses, reduced side effects, and enhanced patient compliance.


Amikacin , Anti-Bacterial Agents , Biological Availability , Chitosan , Lipids , Liposomes , Polyethylene Glycols , Animals , Polyethylene Glycols/chemistry , Male , Administration, Oral , Chitosan/chemistry , Amikacin/pharmacokinetics , Amikacin/administration & dosage , Amikacin/chemistry , Lipids/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Rats , Rats, Sprague-Dawley , Intestinal Absorption , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/pharmacokinetics , Rats, Wistar
2.
Int J Pharm ; 657: 124134, 2024 May 25.
Article En | MEDLINE | ID: mdl-38643810

Long-term inflammation, including those induced by bacterial infections, contributes to the superfluous accumulation of reactive oxygen species (ROS), further aggravating this condition, decreasing the local pH, and adversely affecting bone defect healing. Conventional drug delivery scaffold materials struggle to meet the demands of this complex and dynamic microenvironment. In this work, a smart gelatin methacryloyl (GelMA) hydrogel was synthesized for the dual delivery of proanthocyanidin and amikacin based on the unique pH and ROS responsiveness of boronate complexes. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) demonstrated the co-crosslinking of two boronate complexes with GelMA. The addition of the boronate complexes improved the mechanical properties, swelling ratio, degradation kinetics and antioxidative properties of the hydrogel. The hydrogel exhibited pH and ROS responses and a synergistic control over the drug release. Proanthocyanidin was responsively released to protect mouse osteoblast precursor cells from oxidative stress and promote their osteogenic differentiation. The hydrogel responded to pH changes and released sufficient amikacin in a timely manner, thereby exerting an efficient antimicrobial effect. Overall, the hydrogel delivery system exhibited a promising strategy for solving infectious and inflammatory problems in bone defects and promoting early-stage bone healing.


Amikacin , Antioxidants , Cell Differentiation , Drug Delivery Systems , Drug Liberation , Gelatin , Hydrogels , Osteogenesis , Proanthocyanidins , Reactive Oxygen Species , Animals , Hydrogels/chemistry , Mice , Osteogenesis/drug effects , Proanthocyanidins/administration & dosage , Proanthocyanidins/pharmacology , Proanthocyanidins/chemistry , Antioxidants/pharmacology , Antioxidants/administration & dosage , Antioxidants/chemistry , Hydrogen-Ion Concentration , Reactive Oxygen Species/metabolism , Cell Differentiation/drug effects , Gelatin/chemistry , Amikacin/administration & dosage , Amikacin/chemistry , Amikacin/pharmacology , Methacrylates/chemistry , Osteoblasts/drug effects , Cell Line , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Oxidative Stress/drug effects
3.
Int J Pharm ; 656: 124056, 2024 May 10.
Article En | MEDLINE | ID: mdl-38548072

Bacterial corneal keratitis is a damage to the corneal tissue that if not treated, can cause various complications like severe vision loss or even blindness. Combination therapy with two antibiotics which are effective against Gram-positive and Gram-negative bacteria offers sufficient broad-spectrum antibiotic coverage for the treatment of keratitis. Nanofibers can be a potential carrier in dual drug delivery due to their structural characteristics, specific surface area and high porosity. In order to achieve a sustained delivery of amikacin (AMK) and vancomycin (VAN), the current study designed, assessed, and compared nanofibrous inserts utilizing polyvinyl alcohol (PVA) and polycaprolactone (PCL) as biocompatible polymers. Electrospinning method was utilized to prepare two different formulations, PVA-VAN/AMK and PCL/PVA-VAN/AMK, with 351.8 ± 53.59 nm and 383.85 ± 49 nm diameters, respectively. The nanofibers were simply inserted in the cul-de-sac as a noninvasive approach for in vivo studies. The data obtained from the physicochemical and mechanical properties studies confirmed the suitability of the formulations. Antimicrobial investigations showed the antibacterial properties of synthesized nanofibers against Staphylococcus aureus and Pseudomonas aeruginosa. Both in vitro and animal studies demonstrated sustained drug release of the prepared nanofibers for 120 h. Based on the in vivo findings, the prepared nanofibers' AUC0-120 was found to be 20 to 31 times greater than the VAN and AMK solutions. Considering the results, the nanofibrous inserts can be utilized as an effective and safe system in drug delivery.


Administration, Ophthalmic , Amikacin , Anti-Bacterial Agents , Delayed-Action Preparations , Drug Liberation , Nanofibers , Polyesters , Polyvinyl Alcohol , Pseudomonas aeruginosa , Staphylococcus aureus , Vancomycin , Animals , Rabbits , Nanofibers/chemistry , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/chemistry , Polyvinyl Alcohol/chemistry , Staphylococcus aureus/drug effects , Polyesters/chemistry , Pseudomonas aeruginosa/drug effects , Vancomycin/administration & dosage , Vancomycin/pharmacokinetics , Vancomycin/chemistry , Amikacin/pharmacokinetics , Amikacin/administration & dosage , Amikacin/chemistry , Drug Delivery Systems , Drug Carriers/chemistry , Male
4.
Nat Commun ; 14(1): 4666, 2023 08 03.
Article En | MEDLINE | ID: mdl-37537169

Aminoglycosides are a class of antibiotics that bind to ribosomal RNA and exert pleiotropic effects on ribosome function. Amikacin, the semisynthetic derivative of kanamycin, is commonly used for treating severe infections with multidrug-resistant, aerobic Gram-negative bacteria. Amikacin carries the 4-amino-2-hydroxy butyrate (AHB) moiety at the N1 amino group of the central 2-deoxystreptamine (2-DOS) ring, which may confer amikacin a unique ribosome inhibition profile. Here we use in vitro fast kinetics combined with X-ray crystallography and cryo-EM to dissect the mechanisms of ribosome inhibition by amikacin and the parent compound, kanamycin. Amikacin interferes with tRNA translocation, release factor-mediated peptidyl-tRNA hydrolysis, and ribosome recycling, traits attributed to the additional interactions amikacin makes with the decoding center. The binding site in the large ribosomal subunit proximal to the 3'-end of tRNA in the peptidyl (P) site lays the groundwork for rational design of amikacin derivatives with improved antibacterial properties.


Amikacin , Anti-Bacterial Agents , Amikacin/pharmacology , Amikacin/chemistry , Amikacin/metabolism , Anti-Bacterial Agents/chemistry , Models, Molecular , Ribosomes/metabolism , Kanamycin/pharmacology , Kanamycin/analysis , Kanamycin/metabolism , RNA, Transfer/metabolism
5.
J Vet Pharmacol Ther ; 45(4): 409-414, 2022 Jul.
Article En | MEDLINE | ID: mdl-35307838

Eight horses underwent IVRLP at two occasions through a 23-gauge 2 cm long butterfly catheter. Regional anaesthesia of the ulnar, median and medial cutaneous antebrachial nerves was performed prior, and an 8 cm rubber tourniquet was placed on the proximal radius for 30 minutes following the infusion. The first infusion consisted of 2 g of amikacin sulphate and 10 mg of dexamethasone phosphate diluted with 0.9% NaCl to a total volume of 100 ml. The second perfusion was performed after a 2-week washout period, the same protocol was used but without dexamethasone phosphate. Synovial fluid samples were collected from the metacarpophalangeal joint at T = 0, 0.5, 2, 12, 24 and 36 h post-infusion. Synovial fluid amikacin sulphate concentrations were determined by use of liquid chromatography/tandem mass-spectrometry. All horses (n = 8) remained healthy throughout the study, and no adverse effects associated with the study were encountered. No statistically significant differences were found in synovial fluid amikacin sulphate concentrations between the treatment and the control group at any of the time points. In conclusion, dexamethasone phosphate can be used in IVRLP concomitantly with amikacin sulphate in cases of distal limb inflammation and pain without decreasing the synovial fluid concentration of amikacin sulphate.


Amikacin , Synovial Fluid , Amikacin/analysis , Amikacin/chemistry , Animals , Anti-Bacterial Agents/analysis , Dexamethasone/analogs & derivatives , Forelimb , Horses , Perfusion/veterinary , Synovial Fluid/chemistry
6.
Microbiol Spectr ; 10(1): e0254621, 2022 02 23.
Article En | MEDLINE | ID: mdl-35080463

Mycobacterium abscessus is the etiological agent of severe pulmonary infections in vulnerable patients, such as those with cystic fibrosis (CF), where it represents a relevant cause of morbidity and mortality. Treatment of pulmonary infections caused by M. abscessus remains extremely difficult, as this species is resistant to most classes of antibiotics, including macrolides, aminoglycosides, rifamycins, tetracyclines, and ß-lactams. Here, we show that apoptotic body like liposomes loaded with phosphatidylinositol 5-phosphate (ABL/PI5P) enhance the antimycobacterial response, both in macrophages from healthy donors exposed to pharmacological inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) and in macrophages from CF patients, by enhancing phagosome acidification and reactive oxygen species (ROS) production. The treatment with liposomes of wild-type as well as CF mice, intratracheally infected with M. abscessus, resulted in about a 2-log reduction of pulmonary mycobacterial burden and a significant reduction of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF). Finally, the combination treatment with ABL/PI5P and amikacin, to specifically target intracellular and extracellular bacilli, resulted in a further significant reduction of both pulmonary mycobacterial burden and inflammatory response in comparison with the single treatments. These results offer the conceptual basis for a novel therapeutic regimen based on antibiotic and bioactive liposomes, used as a combined host- and pathogen-directed therapeutic strategy, aimed at the control of M. abscessus infection, and of related immunopathogenic responses, for which therapeutic options are still limited. IMPORTANCE Mycobacterium abscessus is an opportunistic pathogen intrinsically resistant to many antibiotics, frequently linked to chronic pulmonary infections, and representing a relevant cause of morbidity and mortality, especially in immunocompromised patients, such as those affected by cystic fibrosis. M. abscessus-caused pulmonary infection treatment is extremely difficult due to its high toxicity and long-lasting regimen with life-impairing side effects and the scarce availability of new antibiotics approved for human use. In this context, there is an urgent need for the development of an alternative therapeutic strategy that aims at improving the current management of patients affected by chronic M. abscessus infections. Our data support the therapeutic value of a combined host- and pathogen-directed therapy as a promising approach, as an alternative to single treatments, to simultaneously target intracellular and extracellular pathogens and improve the clinical management of patients infected with multidrug-resistant pathogens such as M. abscessus.


Anti-Bacterial Agents/administration & dosage , Cystic Fibrosis/immunology , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium abscessus/drug effects , Phosphatidylinositol Phosphates/administration & dosage , Amikacin/administration & dosage , Amikacin/chemistry , Animals , Anti-Bacterial Agents/chemistry , Cystic Fibrosis/complications , Cystic Fibrosis/genetics , Cystic Fibrosis/microbiology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/immunology , Female , Humans , Liposomes/chemistry , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Mycobacterium Infections, Nontuberculous/etiology , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium abscessus/physiology , Phagosomes/immunology , Phosphatidylinositol Phosphates/chemistry , Reactive Oxygen Species/immunology
7.
Vet Dermatol ; 33(1): 23-e8, 2022 Feb.
Article En | MEDLINE | ID: mdl-34545642

BACKGROUND: Anecdotally, amikacin has been added to compounded topical preparations for the management of canine bacterial otitis externa. However, the stability of amikacin within these solutions is unknown. HYPOTHESIS/OBJECTIVES: The purpose of this study was to determine the stability of amikacin at 10 and 30 mg/mL concentrations in four topical solutions over a 56 day period. We hypothesised that amikacin would maintain chemical stability within the various solutions. METHODS AND MATERIALS: Amikacin was formulated to 10 and 30 mg/mL (1% and 3%) concentrations within four topical solutions: tris-EDTA (TrizEDTA Aqueous Flush) (TE); 0.15% chlorhexidine gluconate and tris-EDTA (TrizCHLOR Flush) (TC); 0.9% NaCl (NA); and 0.9% NaCl + 2 mg/mL dexamethasone (ND). Samples were made in duplicate and stored at room temperature (25°C) for 0, 7,14, 21, 28 and 56 days. Amikacin content was quantified, in triplicate, by ultrahigh-performance liquid chromatography tandem mass spectrometry. RESULTS: The recovered amikacin concentrations for the 10 mg/mL solutions ranged from 10 to 13.5 mg/mL (mean 11.5 mg/mL) with the exception of NA sample 2 at Day (D)0 (9.4 mg/mL) and D7 (9.2 mg/mL). The recovered amikacin concentrations for the 30 mg/mL solutions ranged from 30 to 40.2 mg/mL (mean 35.7 mg/mL). No significant difference was seen between the amikacin concentrations at D0 compared to D56 for all solutions except 10 mg/mL TE (P < 0.001). CONCLUSIONS AND CLINICAL RELEVANCE: Amikacin maintained stability within TE, TC, NA and ND over 56 days except when formulated at 10 mg/mL within TE.


Amikacin/chemistry , Drug Stability , Animals , Chromatography, High Pressure Liquid/veterinary , Dog Diseases/drug therapy , Dogs , Otitis Externa/veterinary , Solutions
8.
Eur J Hosp Pharm ; 29(e1): e77-e82, 2022 03.
Article En | MEDLINE | ID: mdl-34789474

OBJECTIVES: As part of the service provided by clinical pharmacists in our hospital, an assay for plasma amikacin quantification by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been established for clinical use since 2018. This study was undertaken to describe: (1) the establishment of this assay; (2) the application and results of the testing; and (3) the analysis and impact for patients. METHODS: The amikacin quantification assay was validated and the plasma amikacin concentration data were extracted and analysed. The clinical data for related patients were collected from electronic health and medical records. RESULTS: 121 plasma samples from 53 patients were included in this statistical analysis. The use of amikacin was mostly monitored in the intensive care unit and the haematology department, and the monitoring range of amikacin concentrations were about 0.1-57µg/mL. The main indications for amikacin concentration detection were combined medications, impaired renal function, or people over 65 years old, which may increase the incidence of adverse reactions. Amikacin prescribing decisions were diversified due to the combination of assay results and clinical disease progression, and the effective rate of amikacin administration was about 52.8% (28/53). CONCLUSIONS: The assay for plasma amikacin concentration has been successfully established to monitor the clinical use of amikacin, and the assay results served as one of the references for amikacin prescribing decisions.


Amikacin , Drug Monitoring , Aged , Amikacin/chemistry , Chromatography, Liquid/methods , Drug Monitoring/methods , Humans , Pharmacists , Tandem Mass Spectrometry/methods
9.
PLoS One ; 16(10): e0258426, 2021.
Article En | MEDLINE | ID: mdl-34648556

Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) poses a major threat to human health worldwide. Combination therapies of antibiotics with different mechanisms have been recommended in literatures. This study assessed in vitro antibacterial activities and synergistic activities of ceftazidime/avibactam alone and in combinations against KPC-Kp. In total, 70 isolates from 2 hospitals in Beijing were examined in our study. By using the agar dilution method and broth dilution method, we determined the minimum inhibitory concentration (MIC) of candidate antibiotics. Ceftazidime/avibactam demonstrated promising susceptibility against KPC-Kp (97.14%). Synergistic activities testing was achieved by checkerboard method and found ceftazidime/avibactam-amikacin displayed synergism in 90% isolates. Ceftazidime/avibactam-colistin displayed partial synergistic in 43% isolates, and ceftazidime/avibactam-tigecycline displayed indifference in 67% isolates. In time-kill assays, antibiotics at 1-fold MIC were mixed with bacteria at 1 × 105 CFU/ml and Mueller-Hinton broth (MHB). Combinations of ceftazidime/avibactam with amikacin and tigecycline displayed better antibacterial effects than single drug. Ceftazidime/avibactam-colistin combination did not exhibit better effect than single drug. In KPC-Kp infections, susceptibility testing suggested that ceftazidime/avibactam may be considered as first-line choice. However, monotherapy is often inadequate in infection management. Thus, our study revealed that combination therapy including ceftazidime/avibactam colistin and ceftazidime/avibactam tigecycline may benefit than monotherapy in KPC-Kp treatment. Further pharmacokinetic/pharmacodynamic and mutant prevention concentration studies should be performed to optimize multidrug-regimens.


Amikacin/chemistry , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Ceftazidime/pharmacology , Colistin/chemistry , Drug Resistance, Bacterial/drug effects , Klebsiella pneumoniae/drug effects , Tigecycline/chemistry , Anti-Bacterial Agents/chemistry , Azabicyclo Compounds/chemistry , Bacterial Proteins/metabolism , Ceftazidime/chemistry , Drug Combinations , Drug Synergism , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/metabolism , Microbial Sensitivity Tests , Time Factors , beta-Lactamases/metabolism
10.
Life Sci ; 284: 119883, 2021 Nov 01.
Article En | MEDLINE | ID: mdl-34390724

Hypodermic delivery of amikacin is a widely adopted treatment modality for severe infections, including bacterial septicemia, meningitis, intra-abdominal infections, burns, postoperative complications, and urinary tract infections in both paediatric and adult populations. In most instances, the course of treatment requires repeated bolus doses of amikacin, prolonged hospitalization, and the presence of a skilled healthcare worker for administration and continuous therapeutic monitoring to manage the severe adverse effects. Amikacin is hydrophilic and exhibits a short half-life, which further challenges the delivery of sufficient systemic concentrations when administered by the oral or transdermal route. In this purview, the exploitation of novel controlled and sustained release drug delivery platforms is warranted. Furthermore, it has been shown that novel delivery systems are capable of increasing the antibacterial activity of amikacin at lower doses when compared to the conventional formulations and also aid in overcoming the development of drug-resistance, which currently is a significant threat to the healthcare system worldwide. The current review presents a comprehensive overview of the developmental history of amikacin, the mechanism of action in virulent strains as well as the occurrence of resistance, and various emerging drug delivery solutions developed both by the academia and the industry. The examples outlined within the review provides significant pieces of evidence on novel amikacin formulations in the field of antimicrobial research paving the path for future therapeutic interventions that will result in improved clinical outcome.


Amikacin/administration & dosage , Drug Delivery Systems , Amikacin/chemistry , Amikacin/pharmacokinetics , Animals , Clinical Trials as Topic , Drug Carriers/chemistry , Drug Liberation , Humans , Nanoparticles/chemistry , Nanoparticles/ultrastructure
11.
Mol Pharm ; 18(8): 2986-2996, 2021 08 02.
Article En | MEDLINE | ID: mdl-34196555

The aim of this study was to fabricate novel microparticles (MPs) for efficient and long-term delivery of amikacin (AMI). The emulsification method proposed for encapsulating AMI employed low-molecular-weight poly(lactic acid) (PLA) and poly(lactic acid-co-polyethylene glycol) (PLA-PEG), both supplemented with poly(vinyl alcohol) (PVA). The diameters of the particles obtained were determined as less than 30 µm. Based on an in-vitro release study, it was proven that the MPs (both PLA/PVA- and PLA-PEG/PVA-based) demonstrated long-term AMI release (2 months), the kinetics of which adhered to the Korsmeyer-Peppas model. The loading efficiencies of AMI in the study were determined at the followings levels: 36.5 ± 1.5 µg/mg for the PLA-based MPs and 106 ± 32 µg/mg for the PLA-PEG-based MPs. These values were relatively high and draw parallels with studies published on the encapsulation of aminoglycosides. The MPs provided antimicrobial action against the Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae bacterial strains. The materials were also comprehensively characterized by the following methods: differential scanning calorimetry; gel permeation chromatography; scanning electron microscopy; Fourier transform infrared spectroscopy-attenuated total reflectance; energy-dispersive X-ray fluorescence; and Brunauer-Emmett-Teller surface area analysis. The findings of this study contribute toward discerning new means for conducting targeted therapy with polar, broad spectrum antibiotics.


Amikacin/administration & dosage , Anti-Bacterial Agents/administration & dosage , Drug Carriers/chemistry , Drug Compounding/methods , Lactates/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Amikacin/chemistry , Anti-Bacterial Agents/chemistry , Capsules , Drug Liberation , Escherichia coli/drug effects , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , Molecular Weight , Particle Size , Polyvinyl Alcohol/chemistry , Pseudomonas aeruginosa/drug effects , Solubility , Staphylococcus aureus/drug effects
12.
Sci Rep ; 11(1): 11614, 2021 06 02.
Article En | MEDLINE | ID: mdl-34078922

Plazomicin is currently the only next-generation aminoglycoside approved for clinical use that has the potential of evading the effects of widespread enzymatic resistance factors. However, plazomicin is still susceptible to the action of the resistance enzyme AAC(2')-Ia from Providencia stuartii. As the clinical use of plazomicin begins to increase, the spread of resistance factors will undoubtedly accelerate, rendering this aminoglycoside increasingly obsolete. Understanding resistance to plazomicin is an important step to ensure this aminoglycoside remains a viable treatment option for the foreseeable future. Here, we present three crystal structures of AAC(2')-Ia from P. stuartii, two in complex with acetylated aminoglycosides tobramycin and netilmicin, and one in complex with a non-substrate aminoglycoside, amikacin. Together, with our previously reported AAC(2')-Ia-acetylated plazomicin complex, these structures outline AAC(2')-Ia's specificity for a wide range of aminoglycosides. Additionally, our survey of AAC(2')-I homologues highlights the conservation of residues predicted to be involved in aminoglycoside binding, and identifies the presence of plasmid-encoded enzymes in environmental strains that confer resistance to the latest next-generation aminoglycoside. These results forecast the likely spread of plazomicin resistance and highlight the urgency for advancements in next-generation aminoglycoside design.


Acetyltransferases/chemistry , Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Drug Resistance, Bacterial/genetics , Providencia/enzymology , Sisomicin/analogs & derivatives , Acetyltransferases/genetics , Acetyltransferases/metabolism , Amikacin/chemistry , Amikacin/metabolism , Amikacin/pharmacology , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Models, Molecular , Netilmicin/chemistry , Netilmicin/metabolism , Netilmicin/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Providencia/chemistry , Providencia/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sisomicin/chemistry , Sisomicin/metabolism , Sisomicin/pharmacology , Substrate Specificity , Tobramycin/chemistry , Tobramycin/metabolism , Tobramycin/pharmacology
13.
Eur J Pharm Biopharm ; 162: 82-91, 2021 May.
Article En | MEDLINE | ID: mdl-33737147

AIM: The aim was to develop a self-emulsifying drug delivery system (SEDDS) for amikacin via imine bond formation with hydrophobic aldehydes. METHODS: Trans-2, cis-6-nonadienal, trans-cinnamaldehyde, citral and benzaldehyde were conjugated to amikacin at pH 8.5. Based on results of precipitation efficiency, Fourier-transform infrared spectroscopy (FTIR) and NMR analysis, amikacin-trans-cinnamaldehyde conjugates were further characterized regarding log Poctanol/water via HPLC. The release of amikacin from the amikacin-trans-cinnamaldehyde conjugates was examined through in vitro incubation with bovine serum albumin (BSA). SEDDS containing the amikacin-trans-cinnamaldehyde conjugates were tested regarding mean droplet size (MDS), polydispersity index (PDI), log DSEDDS/release medium and cell viability. RESULTS: Trans-cinnamaldehyde formed the most hydrophobic conjugates with amikacin whereas benzaldehyde did not form hydrophobic conjugates at all. Imine bond formation was confirmed by FTIR and NMR analysis. The highest increase in log P was achieved for the amikacin-trans-cinnamaldehyde conjugate in a molar ratio of 1:5, shifting from -8.58 up to 1.59. Incubation of this conjugate with BSA led to the formation of BSA-trans-cinnamaldehyde releasing in turn amikacin. SEDDS based on Capmul MCM, Cremophor EL and propylene glycol containing the conjugate demonstrated a MDS of 61.4 nm and PDI of 0.265. Log DSEDDS/release medium was calculated to be 3.38. Cell viability studies showed very good tolerability of conjugate loaded SEDDS in concentrations of 0.1% - 0.5%. CONCLUSION: Imine bond formation of amikacin with trans-cinnamaldehyde and the incorporation of the resulting conjugate into SEDDS represents a promising strategy for oral delivery of amikacin.


Amikacin/pharmacokinetics , Drug Carriers/chemistry , Acrolein/analogs & derivatives , Acrolein/chemistry , Administration, Oral , Amikacin/administration & dosage , Amikacin/chemistry , Benzaldehydes/chemistry , Caco-2 Cells , Drug Liberation , Emulsions , Humans , Hydrophobic and Hydrophilic Interactions , Permeability , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Solubility , Toxicity Tests, Acute
14.
Molecules ; 26(3)2021 Jan 27.
Article En | MEDLINE | ID: mdl-33513993

Amikacin (Amk) analysis and quantitation, for pharmacokinetics studies and other types of investigations, is conventionally performed after extraction from plasma. No report exists so far regarding drug extraction from whole blood (WB). This can represent an issue since quantification in plasma does not account for drug partitioning to the blood cell compartment, significantly underrating the drug fraction reaching the blood circulation. In the present work, the optimization of an extraction method of Amk from murine WB has been described. The extraction yield was measured by RP-HPLC-UV after derivatization with 1-fluoro-2,4-dinitrobenzene, which produced an appreciably stable derivative with a favorable UV/vis absorption. Several extraction conditions were tested: spiked Amk disulfate solution/acetonitrile/WB ratio; presence of organic acids and/or ammonium hydroxide and/or ammonium acetate in the extraction mixture; re-dissolution of the supernatant in water after a drying process under vacuum; treatment of the supernatant with a solution of inorganic salts. The use of 5% (by volume) of ammonium hydroxide in a hydro-organic solution with acetonitrile, allowed the almost quantitative (95%) extraction of the drug from WB.


Amikacin/chemistry , Blood/metabolism , Plasma/chemistry , Acetonitriles/chemistry , Ammonium Hydroxide/chemistry , Animals , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Female , Mice
15.
J Nanobiotechnology ; 18(1): 174, 2020 Nov 23.
Article En | MEDLINE | ID: mdl-33228673

BACKGROUND: Treatment of patients affected by severe burns is challenging, especially due to the high risk of Pseudomonas infection. In the present work, we have generated a novel model of bioartificial human dermis substitute by tissue engineering to treat infected wounds using fibrin-agarose biomaterials functionalized with nanostructured lipid carriers (NLCs) loaded with two anti-Pseudomonas antibiotics: sodium colistimethate (SCM) and amikacin (AMK). RESULTS: Results show that the novel tissue-like substitutes have strong antibacterial effect on Pseudomonas cultures, directly proportional to the NLC concentration. Free DNA quantification, WST-1 and Caspase 7 immunohistochemical assays in the functionalized dermis substitute demonstrated that neither cell viability nor cell proliferation were affected by functionalization in most study groups. Furthermore, immunohistochemistry for PCNA and KI67 and histochemistry for collagen and proteoglycans revealed that cells proliferated and were metabolically active in the functionalized tissue with no differences with controls. When functionalized tissues were biomechanically characterized, we found that NLCs were able to improve some of the major biomechanical properties of these artificial tissues, although this strongly depended on the type and concentration of NLCs. CONCLUSIONS: These results suggest that functionalization of fibrin-agarose human dermal substitutes with antibiotic-loaded NLCs is able to improve the antibacterial and biomechanical properties of these substitutes with no detectable side effects. This opens the door to future clinical use of functionalized tissues.


Anti-Bacterial Agents , Lipids/chemistry , Nanostructures , Skin, Artificial , Tissue Engineering/methods , Amikacin/chemistry , Amikacin/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Colistin/analogs & derivatives , Colistin/chemistry , Colistin/pharmacology , Drug Carriers/chemistry , Drug Carriers/toxicity , Fibroblasts/cytology , Humans , Nanostructures/chemistry , Nanostructures/toxicity
16.
Curr Top Med Chem ; 20(25): 2300-2307, 2020.
Article En | MEDLINE | ID: mdl-32819244

BACKGROUND: The increasing and inappropriate use of antibiotics has increased the number of multidrug-resistant microorganisms to these drugs, causing the emergence of infections that are difficult to control and manage by health professionals. As an alternative to combat these pathogens, some monoterpenes have harmful effects on the bacterial cell membrane, showing themselves as an alternative in combating microorganisms. Therefore, the positive enantiomer α -pinene becomes an alternative to fight bacteria, since it was able to inhibit the growth of the species Escherichia coli ATCC 25922, demonstrating the possibility of its use as an isolated antimicrobial or associated with other drugs. AIMS: The aim of this study is to evaluate the sensitivity profile of E. coli ATCC 25922 strain against clinical antimicrobials associated with (+) -α-pinene and how it behaves after successive exposures to subinhibitory concentrations of the phytochemicals. METHODS: The minimum inhibitory concentration (MIC) was determined using the microdilution method. The study of the modulating effect of (+) -α-pinene on the activity of antibiotics for clinical use in strains of E. coli and the analysis of the strain's adaptation to the monoterpene were tested using the adapted disk-diffusion method. RESULTS: The results demonstrate that the association of monoterpene with the antimicrobials ceftazidime, amoxicillin, cefepime, cefoxitin and amikacin is positive since it leads to the potentiation of the antibiotic effect of these compounds. It was observed that the monoterpene was able to induce crossresistance only for antimicrobials: cefuroxime, ceftazidime, cefepime and chloramphenicol. CONCLUSION: It is necessary to obtain more concrete data for the safe use of these combinations, paying attention to the existence of some type of existing toxicity reaction related to the herbal medicine and to understand the resistance mechanisms acquired by the microorganism.


Anti-Bacterial Agents/pharmacology , Bicyclic Monoterpenes/pharmacology , Escherichia coli/drug effects , Amikacin/chemistry , Amikacin/pharmacology , Amoxicillin/chemistry , Amoxicillin/pharmacology , Anti-Bacterial Agents/chemistry , Bicyclic Monoterpenes/chemistry , Cefepime/chemistry , Cefepime/pharmacology , Cefoxitin/chemistry , Cefoxitin/pharmacology , Ceftazidime/chemistry , Ceftazidime/pharmacology , Microbial Sensitivity Tests
17.
Structure ; 28(10): 1087-1100.e3, 2020 10 06.
Article En | MEDLINE | ID: mdl-32857965

Acinetobacter baumannii is a Gram-negative bacterium primarily associated with hospital-acquired, often multidrug-resistant (MDR) infections. The ribosome-targeting antibiotics amikacin and tigecycline are among the limited arsenal of drugs available for treatment of such infections. We present high-resolution structures of the 70S ribosome from A. baumannii in complex with these antibiotics, as determined by cryoelectron microscopy. Comparison with the ribosomes of other bacteria reveals several unique structural features at functionally important sites, including around the exit of the polypeptide tunnel and the periphery of the subunit interface. The structures also reveal the mode and site of interaction of these drugs with the ribosome. This work paves the way for the design of new inhibitors of translation to address infections caused by MDR A. baumannii.


Acinetobacter baumannii/cytology , Amikacin/chemistry , Anti-Bacterial Agents/chemistry , Ribosomes/chemistry , Tigecycline/chemistry , Acinetobacter baumannii/chemistry , Binding Sites , Cryoelectron Microscopy , Models, Molecular , Ribosome Subunits/chemistry , Ribosome Subunits/metabolism , Ribosomes/metabolism
18.
Nanomedicine ; 29: 102259, 2020 10.
Article En | MEDLINE | ID: mdl-32619707

Sodium colistimethate (SCM) and amikacin (AMK) are among the few antibiotics effective against resistant P. aeruginosa, K. pneumoniae and A. baumannii; however, their toxicity severely limits their use. Enclosing antibiotics into nanostructured lipid carriers (NLC) might decrease drug toxicity and improve antibiotic disposition. In this work, SCM or AMK was loaded into different NLC formulations, through high pressure homogenization, and their in vitro and in vivo effectiveness was analyzed. The encapsulation process did not reduce drug effectiveness since in vitro SCM-NLC and AMK-NLC drug activity was equal to that of the free drugs. As cryoprotectant, trehalose showed better properties than dextran. Instead, positive chitosan coating was discarded due to its limited cost-efficiency. Finally, the in vivo study in acute pneumonia model revealed that intraperitoneal administration was superior to the intramuscular route and confirmed that (-) SCM-NLC with trehalose, was the most suitable formulation against an extensively drug-resistant A. baumannii strain.


Amikacin/chemistry , Colistin/analogs & derivatives , Drug Resistance, Bacterial/drug effects , Nanostructures/chemistry , Amikacin/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Colistin/chemistry , Colistin/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacology , Humans , Lipids/chemistry , Lipids/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity
19.
Int J Artif Organs ; 43(12): 758-766, 2020 Dec.
Article En | MEDLINE | ID: mdl-32356511

INTRODUCTION: In continuous renal replacement therapy, conduction and convection are controlled allowing prescribing dosage regimen improving survival. In contrast, adsorption is an uncontrolled property altering drug disposition. Whether adsorption depends on flowrates is unknown. We hypothesized an in vitro model may provide information in conditions mimicking continuous renal replacement therapy in humans. METHODS: ST150®-AN69 filter and Prismaflex dialyzer, Baxter-Gambro were used. Simulated blood flowrate was set at 200 mL/min. The flowrates in the filtration (continuous filtration), dialysis (continuous dialysis), and diafiltration (continuous diafiltration) were 1500, 2500, and 4000 mL/h, respectively. Routes of elimination were assessed using NeckEpur® analysis. RESULTS: The percentages of the total amount eliminated by continuous filtration, continuous dialysis, and continuous diafiltration were 82%, 86%, and 94%, respectively. Elimination by effluents and adsorption accounted for 42% ± 7% and 58% ± 5%, 57% ± 7% and 43% ± 6%, and 84% ± 6% and 16% ± 6% of amikacin elimination, respectively. There was a linear regression between flowrates and amikacin clearance: Y = 0.6 X ± 1.7 (R2 = 0.9782). Conversely, there was a linear inverse correlation between the magnitude of amikacin adsorption and flowrate: Y = -16.9 X ± 84.1 (R2 = 0.9976). CONCLUSION: Low flowrates resulted in predominant elimination by adsorption, accounting for 58% of the elimination of amikacin from the central compartment in the continuous filtration mode at 1500 mL/h of flowrate. Thereafter, the greater the flowrate, the lower the adsorption of amikacin in a linear manner. Flowrate is a major determinant of adsorption of amikacin. There was an about 17% decrease in the rate of adsorption per increase in the flowrate of 1 L/min.


Adsorption , Amikacin , Anti-Bacterial Agents , Filtration , Kidneys, Artificial/classification , Amikacin/chemistry , Amikacin/pharmacokinetics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Filtration/instrumentation , Filtration/methods , Humans , Hydrodynamics , Renal Dialysis/adverse effects , Renal Dialysis/instrumentation , Renal Replacement Therapy/methods
20.
Vet Surg ; 49(5): 1035-1042, 2020 Jul.
Article En | MEDLINE | ID: mdl-32311144

OBJECTIVE: To characterize the in vitro elution of amikacin and Dispersin B (ß-N-acetylglucosaminidase) in a degradable hydrogel. STUDY DESIGN: In vitro, prospective study. METHODS: Amikacin (group A; 40 mg/mL), Dispersin B (group D; 70 µg/mL), or combined amikacin and Dispersin B (group AD; 40 mg/mL and 70 µg/mL, respectively) were added to a hydrogel. Ten aliquots per group were incubated in phosphate-buffered saline that was exchanged at 1, 4, 8, 12, and 24 hours and then once daily for 10 days. Eluted amikacin and Dispersin B were quantitated by using an amikacin reagent kit and a Dispersin B enzyme-linked immunosorbent assay kit, respectively. Time point drug concentrations were compared between groups by using repeated-measures analysis of variance, and total drug elution was compared by using an area under the curve calculation. RESULTS: Amikacin alone, Dispersin B alone, and amikacin and Dispersin B combined together underwent rapid elution in the first 24 hours, followed by a gradual decrease over 10 days. The concentration of Dispersin B eluted in group D was higher at 1 day and lower from day 5 to day 10 compared with that in group AD. The concentration of amikacin eluted in group A was higher at 1, 4, and 8 hours and on day 10 and lower on day 1 compared with that in group AD. The total elution of amikacin was greater from group AD compared with that from group A (P = .02). CONCLUSION: Combining amikacin and Dispersin B had an affect on the total elution of amikacin but not Dispersin B. CLINICAL SIGNIFICANCE: The combination of amikacin and Dispersin B in a degradable hydrogel could allow local treatment of complex infections without the requirement for multiple invasive procedures.


Amikacin/chemistry , Bacterial Proteins/chemistry , Drug Liberation , Glycoside Hydrolases/chemistry , Hydrogels/chemistry , Animals , Anti-Bacterial Agents/administration & dosage , Bacterial Proteins/metabolism , Glycoside Hydrolases/metabolism , Polymers , Prospective Studies
...