Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Curr Opin Struct Biol ; 75: 102405, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35709614

RESUMEN

Glutamate transporters facilitate the removal of this excitatory neurotransmitter from the synapse. Increasing evidence indicates that this process is linked to intrinsic chloride channel activity that is thermodynamically uncoupled from substrate transport. A recent cryo-EM structure of GltPh - an archaeal homolog of the glutamate transporters - in an open channel state has shed light on the structural basis for channel opening formed at the interface of two domains within the transporter which is gated by two clusters of hydrophobic residues. These transporters cycle through several conformational states during the transport process, including the chloride conducting state, which appears to be stabilised by protein-membrane interactions and membrane deformation. Several point mutations that perturb the chloride conductance can have detrimental effects and are linked to the pathogenesis of the neurological disorder, episodic ataxia type 6.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG , Cloruros , Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Transporte Biológico , Glutamatos , Transporte Iónico
2.
Proc Natl Acad Sci U S A ; 119(19): e2121653119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35507872

RESUMEN

Glutamate transporters carry out the concentrative uptake of glutamate by harnessing the ionic gradients present across cellular membranes. A central step in the transport mechanism is the coupled binding of Na+ and substrate. The sodium coupled Asp transporter, GltPh is an archaeal homolog of glutamate transporters that has been extensively used to probe the transport mechanism. Previous studies have shown that hairpin-2 (HP2) functions as the extracellular gate for the aspartate binding site and plays a key role in the coupled binding of sodium and aspartate to GltPh. The binding sites for three Na+ ions (Na1-3) have been identified in GltPh, but the specific roles of the individual Na+ sites in the binding process have not been elucidated. In this study, we developed assays to probe Na+ binding to the Na1 and Na3 sites and to monitor the conformational switch in the NMDGT motif. We used these assays along with a fluorescence assay to monitor HP2 movement and EPR spectroscopy to show that Na+ binding to the Na3 site is required for the NMDGT conformational switch while Na+ binding to the Na1 site is responsible for the partial opening of HP2. Complete opening of HP2 requires the conformational switch of the NMDGT motif and therefore Na+ binding to both the Na1 and the Na3 sites. Based on our studies, we also propose an alternate pathway for the coupled binding of Na+ and Asp.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG , Sodio , Sistema de Transporte de Aminoácidos X-AG/química , Sitios de Unión , Ácido Glutámico/metabolismo , Iones/metabolismo , Sodio/metabolismo
3.
J Gen Physiol ; 154(5)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35452090

RESUMEN

Integral membrane glutamate transporters couple the concentrative substrate transport to ion gradients. There is a wealth of structural and mechanistic information about this protein family. Recent studies of an archaeal homologue, GltPh, revealed transport rate heterogeneity, which is inconsistent with simple kinetic models; however, its structural and mechanistic determinants remain undefined. Here, we demonstrate that in a mutant GltPh, which exclusively populates the outward-facing state, at least two substates coexist in slow equilibrium, binding the substrate with different apparent affinities. Wild type GltPh shows similar binding properties, and modulation of the substate equilibrium correlates with transport rates. The low-affinity substate of the mutant is transient following substrate binding. Consistently, cryo-EM on samples frozen within seconds after substrate addition reveals the presence of structural classes with perturbed helical packing of the extracellular half of the transport domain in regions adjacent to the binding site. By contrast, an equilibrated structure does not show such classes. The structure at 2.2-Å resolution details a pattern of waters in the intracellular half of the domain and resolves classes with subtle differences in the substrate-binding site. We hypothesize that the rigid cytoplasmic half of the domain mediates substrate and ion recognition and coupling, whereas the extracellular labile half sets the affinity and dynamic properties.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG , Archaea , Sistema de Transporte de Aminoácidos X-AG/química , Archaea/metabolismo , Sitios de Unión , Ácido Glutámico/metabolismo , Cinética , Especificidad por Sustrato
4.
Neuropharmacology ; 192: 108602, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33991564

RESUMEN

Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. Once released, it binds to specific membrane receptors and transporters activating a wide variety of signal transduction cascades, as well as its removal from the synaptic cleft in order to avoid its extracellular accumulation and the overstimulation of extra-synaptic receptors that might result in neuronal death through a process known as excitotoxicity. Although neurodegenerative diseases are heterogenous in clinical phenotypes and genetic etiologies, a fundamental mechanism involved in neuronal degeneration is excitotoxicity. Glutamate homeostasis is critical for brain physiology and Glutamate transporters are key players in maintaining low extracellular Glutamate levels. Therefore, the characterization of Glutamate transporters has been an active area of glutamatergic research for the last 40 years. Transporter activity its regulated at different levels: transcriptional and translational control, transporter protein trafficking and membrane mobility, and through extensive post-translational modifications. The elucidation of these mechanisms has emerged as an important piece to shape our current understanding of glutamate actions in the nervous system.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Ácido Glutámico/metabolismo , Transmisión Sináptica/fisiología , Sistema de Transporte de Aminoácidos X-AG/genética , Animales , Transportador 1 de Aminoácidos Excitadores/química , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/química , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Humanos , Procesamiento Proteico-Postraduccional/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
5.
PLoS One ; 16(4): e0250635, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33891665

RESUMEN

Glutamate transporters are essential for removing the neurotransmitter glutamate from the synaptic cleft. Glutamate transport across the membrane is associated with elevator-like structural changes of the transport domain. These structural changes require initial binding of the organic substrate to the transporter. Studying the binding pathway of ligands to their protein binding sites using molecular dynamics (MD) simulations requires micro-second level simulation times. Here, we used three methods to accelerate aspartate binding to the glutamate transporter homologue Gltph and to investigate the binding pathway. 1) Two methods using user-defined forces to prevent the substrate from diffusing too far from the binding site. 2) Conventional MD simulations using very high substrate concentrations in the 0.1 M range. The final, substrate bound states from these methods are comparable to the binding pose observed in crystallographic studies, although they show more flexibility in the side chain carboxylate function. We also captured an intermediate on the binding pathway, where conserved residues D390 and D394 stabilize the aspartate molecule. Finally, we investigated glutamate binding to the mammalian glutamate transporter, excitatory amino acid transporter 1 (EAAT1), for which a crystal structure is known, but not in the glutamate-bound state. Overall, the results obtained in this study reveal new insights into the pathway of substrate binding to glutamate transporters, highlighting intermediates on the binding pathway and flexible conformational states of the side chain, which most likely become locked in once the hairpin loop 2 closes to occlude the substrate.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Ácido Aspártico/metabolismo , Simulación de Dinámica Molecular , Sistema de Transporte de Aminoácidos X-AG/química , Ácido Aspártico/química , Sitios de Unión , Transportador 1 de Aminoácidos Excitadores/química , Transportador 1 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Humanos , Unión Proteica , Especificidad por Sustrato
6.
Nature ; 591(7849): 327-331, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33597752

RESUMEN

Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and its precise control is vital to maintain normal brain function and to prevent excitotoxicity1. The removal of extracellular glutamate is achieved by plasma-membrane-bound transporters, which couple glutamate transport to sodium, potassium and pH gradients using an elevator mechanism2-5. Glutamate transporters also conduct chloride ions by means of a channel-like process that is thermodynamically uncoupled from transport6-8. However, the molecular mechanisms that enable these dual-function transporters to carry out two seemingly contradictory roles are unknown. Here we report the cryo-electron microscopy structure of a glutamate transporter homologue in an open-channel state, which reveals an aqueous cavity that is formed during the glutamate transport cycle. The functional properties of this cavity, combined with molecular dynamics simulations, reveal it to be an aqueous-accessible chloride permeation pathway that is gated by two hydrophobic regions and is conserved across mammalian and archaeal glutamate transporters. Our findings provide insight into the mechanism by which glutamate transporters support their dual function, and add information that will assist in mapping the complete transport cycle shared by the solute carrier 1A transporter family.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/ultraestructura , Animales , Encéfalo/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/ultraestructura , Cloruros/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Transportador 1 de Aminoácidos Excitadores/química , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 1 de Aminoácidos Excitadores/ultraestructura , Femenino , Ácido Glutámico/metabolismo , Humanos , Modelos Moleculares , Mutación , Oocitos , Conformación Proteica , Xenopus laevis
7.
J Am Chem Soc ; 143(3): 1513-1520, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33449695

RESUMEN

Photopharmacology addresses the challenge of drug selectivity and side effects through creation of photoresponsive molecules activated with light with high spatiotemporal precision. This is achieved through incorporation of molecular photoswitches and photocages into the pharmacophore. However, the structural basis for the light-induced modulation of inhibitory potency in general is still missing, which poses a major design challenge for this emerging field of research. Here we solved crystal structures of the glutamate transporter homologue GltTk in complex with photoresponsive transport inhibitors-azobenzene derivative of TBOA (both in trans and cis configuration) and with the photocaged compound ONB-hydroxyaspartate. The essential role of glutamate transporters in the functioning of the central nervous system renders them potential therapeutic targets in the treatment of neurodegenerative diseases. The obtained structures provide a clear structural insight into the origins of photocontrol in photopharmacology and lay the foundation for application of photocontrolled ligands to study the transporter dynamics by using time-resolved X-ray crystallography.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Compuestos Azo/metabolismo , Sistema de Transporte de Aminoácidos X-AG/química , Ácido Aspártico/efectos de la radiación , Compuestos Azo/química , Compuestos Azo/efectos de la radiación , Cristalografía por Rayos X , Unión Proteica , Estereoisomerismo , Thermococcus/química , Rayos Ultravioleta
8.
Sci Adv ; 6(47)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33208356

RESUMEN

Excitatory amino acid transporters (EAATs) harness [Na+], [K+], and [H+] gradients for fast and efficient glutamate removal from the synaptic cleft. Since each glutamate is cotransported with three Na+ ions, [Na+] gradients are the predominant driving force for glutamate uptake. We combined all-atom molecular dynamics simulations, fluorescence spectroscopy, and x-ray crystallography to study Na+:substrate coupling in the EAAT homolog GltPh A lipidic cubic phase x-ray crystal structure of wild-type, Na+-only bound GltPh at 2.5-Å resolution revealed the fully open, outward-facing state primed for subsequent substrate binding. Simulations and kinetic experiments established that only the binding of two Na+ ions to the Na1 and Na3 sites ensures complete HP2 gate opening via a conformational selection-like mechanism and enables high-affinity substrate binding via electrostatic attraction. The combination of Na+-stabilized gate opening and electrostatic coupling of aspartate to Na+ binding provides a constant Na+:substrate transport stoichiometry over a broad range of neurotransmitter concentrations.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG , Ácido Glutámico , Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Ácido Glutámico/metabolismo , Iones/metabolismo , Sodio/química , Electricidad Estática
9.
Elife ; 92020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33155546

RESUMEN

Glutamate transporters are essential players in glutamatergic neurotransmission in the brain, where they maintain extracellular glutamate below cytotoxic levels and allow for rounds of transmission. The structural bases of their function are well established, particularly within a model archaeal homolog, sodium, and aspartate symporter GltPh. However, the mechanism of gating on the cytoplasmic side of the membrane remains ambiguous. We report Cryo-EM structures of GltPh reconstituted into nanodiscs, including those structurally constrained in the cytoplasm-facing state and either apo, bound to sodium ions only, substrate, or blockers. The structures show that both substrate translocation and release involve movements of the bulky transport domain through the lipid bilayer. They further reveal a novel mode of inhibitor binding and show how solutes release is coupled to protein conformational changes. Finally, we describe how domain movements are associated with the displacement of bound lipids and significant membrane deformations, highlighting the potential regulatory role of the bilayer.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Pyrococcus horikoshii/metabolismo , Sistema de Transporte de Aminoácidos X-AG/genética , Proteínas Arqueales/genética , Transporte Biológico , Microscopía por Crioelectrón , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Cinética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Dominios Proteicos , Pyrococcus horikoshii/química , Pyrococcus horikoshii/genética , Sodio/química , Sodio/metabolismo
10.
Nat Chem Biol ; 16(9): 1006-1012, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32514183

RESUMEN

In proteins where conformational changes are functionally important, the number of accessible states and their dynamics are often difficult to establish. Here we describe a novel 19F-NMR spectroscopy approach to probe dynamics of large membrane proteins. We labeled a glutamate transporter homolog with a 19F probe via cysteine chemistry and with a Ni2+ ion via chelation by a di-histidine motif. We used distance-dependent enhancement of the longitudinal relaxation of 19F nuclei by the paramagnetic metal to assign the observed resonances. We identified one inward- and two outward-facing states of the transporter, in which the substrate-binding site is near the extracellular and intracellular solutions, respectively. We then resolved the structure of the unanticipated second outward-facing state by cryo-EM. Finally, we showed that the rates of the conformational exchange are accessible from measurements of the metal-enhanced longitudinal relaxation of 19F nuclei.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Espectroscopía de Resonancia Magnética , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Microscopía por Crioelectrón , Cisteína/química , Flúor , Histidina/química , Modelos Moleculares , Mutación , Níquel/química , Conformación Proteica , Dominios Proteicos , Pyrococcus horikoshii/química
11.
Nat Commun ; 11(1): 998, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081874

RESUMEN

Glutamate transporters are cation-coupled secondary active membrane transporters that clear the neurotransmitter L-glutamate from the synaptic cleft. These transporters are homotrimers, with each protomer functioning independently by an elevator-type mechanism, in which a mobile transport domain alternates between inward- and outward-oriented states. Using single-particle cryo-EM we have determined five structures of the glutamate transporter homologue GltTk, a Na+- L-aspartate symporter, embedded in lipid nanodiscs. Dependent on the substrate concentrations used, the protomers of the trimer adopt a variety of asymmetrical conformations, consistent with the independent movement. Six of the 15 resolved protomers are in a hitherto elusive state of the transport cycle in which the inward-facing transporters are loaded with Na+ ions. These structures explain how substrate-leakage is prevented - a strict requirement for coupled transport. The belt protein of the lipid nanodiscs bends around the inward oriented protomers, suggesting that membrane deformations occur during transport.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Proteínas Arqueales/química , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Ácido Aspártico/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Lípidos/química , Modelos Moleculares , Nanoestructuras/química , Conformación Proteica , Estructura Cuaternaria de Proteína , Pyrococcus horikoshii/metabolismo , Imagen Individual de Molécula , Simportadores/química , Simportadores/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
12.
J Biol Chem ; 295(13): 4359-4366, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32079674

RESUMEN

Excitatory amino acid transporters (EAATs) represent a protein family that is an emerging drug target with great therapeutic potential for managing central nervous system disorders characterized by dysregulation of glutamatergic neurotransmission. As such, it is of significant interest to discover selective modulators of EAAT2 function. Here, we applied computational methods to identify specific EAAT2 inhibitors. Utilizing a homology model of human EAAT2, we identified a binding pocket at the interface of the transport and trimerization domain. We next conducted a high-throughput virtual screen against this site and identified a selective class of EAAT2 inhibitors that were tested in glutamate uptake and whole-cell electrophysiology assays. These compounds represent potentially useful pharmacological tools suitable for further exploration of the therapeutic potential of EAAT2 and may provide molecular insights into mechanisms of allosteric modulation for glutamate transporters.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/antagonistas & inhibidores , Sitios de Unión/efectos de los fármacos , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Transportador 2 de Aminoácidos Excitadores/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/genética , Animales , Sitios de Unión/genética , Transporte Biológico/efectos de los fármacos , Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/patología , Biología Computacional , Transportador 2 de Aminoácidos Excitadores/química , Transportador 2 de Aminoácidos Excitadores/genética , Humanos , Unión Proteica/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Interfaz Usuario-Computador
13.
Biochem Soc Trans ; 47(4): 1197-1207, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31383819

RESUMEN

Glutamate transporters play important roles in bacteria, archaea and eukaryotes. Their function in the mammalian central nervous system is essential for preventing excitotoxicity, and their dysregulation is implicated in many diseases, such as epilepsy and Alzheimer's. Elucidating their transport mechanism would further the understanding of these transporters and promote drug design as they provide compelling targets for understanding the pathophysiology of diseases and may have a direct role in the treatment of conditions involving glutamate excitotoxicity. This review outlines the insights into the transport cycle, uncoupled chloride conductance and modulation, as well as identifying areas that require further investigation.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Archaea/metabolismo , Sistema de Transporte de Aminoácidos X-AG/química , Ácido Aspártico/metabolismo , Sitios de Unión , Cloruros/metabolismo , Ácido Glutámico/metabolismo , Humanos , Potasio/metabolismo , Conformación Proteica , Sodio/metabolismo
14.
Proc Natl Acad Sci U S A ; 116(32): 15939-15946, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31332002

RESUMEN

Glutamate transporters harness the ionic gradients across cell membranes for the concentrative uptake of glutamate. The sodium-coupled Asp symporter, GltPh is an archaeal homolog of glutamate transporters and has been extensively used to understand the transport mechanism. A critical aspect of the transport cycle in GltPh is the coupled binding of sodium and aspartate. Previous studies have suggested a major role for hairpin-2 (HP2), which functions as the extracellular gate for the aspartate binding site, in the coupled binding of sodium and aspartate to GltPh In this study, we develop a fluorescence assay for monitoring HP2 movement by incorporating tryptophan and the unnatural amino acid, p-cyanophenylalanine into GltPh We use the HP2 assays to show that HP2 opening with Na+ follows an induced-fit mechanism. We also determine how residues in the substrate binding site affect the opening and closing of HP2. Our data, combined with previous studies, provide the molecular sequence of events in the coupled binding of sodium and aspartate to GltPh.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Aminoácidos/genética , Mutagénesis/genética , Homología de Secuencia de Aminoácido , Regulación Alostérica , Sistema de Transporte de Aminoácidos X-AG/química , Fluorescencia , Cinética , Modelos Moleculares , Estructura Secundaria de Proteína , Sodio/metabolismo
15.
Elife ; 82019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30969168

RESUMEN

Mammalian glutamate transporters are crucial players in neuronal communication as they perform neurotransmitter reuptake from the synaptic cleft. Besides L-glutamate and L-aspartate, they also recognize D-aspartate, which might participate in mammalian neurotransmission and/or neuromodulation. Much of the mechanistic insight in glutamate transport comes from studies of the archeal homologs GltPh from Pyrococcus horikoshii and GltTk from Thermococcus kodakarensis. Here, we show that GltTk transports D-aspartate with identical Na+: substrate coupling stoichiometry as L-aspartate, and that the affinities (Kd and Km) for the two substrates are similar. We determined a crystal structure of GltTk with bound D-aspartate at 2.8 Å resolution. Comparison of the L- and D-aspartate bound GltTk structures revealed that D-aspartate is accommodated with only minor rearrangements in the structure of the binding site. The structure explains how the geometrically different molecules L- and D-aspartate are recognized and transported by the protein in the same way.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Ácido D-Aspártico/metabolismo , Thermococcus/enzimología , Transporte Biológico , Cristalografía por Rayos X , Unión Proteica , Conformación Proteica , Sodio/metabolismo
16.
Prog Med Chem ; 58: 63-117, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30879475

RESUMEN

Amyotrophic lateral sclerosis (ALS) is caused by selective and progressive loss of spinal, bulbar and cortical motoneurons and leads to irreversible paralysis, loss of speech, inability to swallow and respiratory malfunctions with the eventual death of the affected individual in a rapid disease course. Several suggested molecular pathways are reviewed including SOD1 gene mutation, protein nitrosylation, phosphorylation and oxidative stress, excitotoxicity, glutamate transporter deprivation, mitochondrial involvement, protein aggregation and motor neuron trophic factors. The role of insulin and its receptor in the brain is described. It is very possible that in 90% of the sporadic ALS cases, the cause of the motor neuron degeneration is different or that multiple mechanisms are involved that would need drugs with multiple mechanisms or action. Several marketed drugs have been selected for clinical trials. Only two drugs have been approved by the FDA as showing positive effect in ALS: Riluzole and Edaravone. Two other drugs that have a significant benefit in ALS are Talampanel and Tamoxifen. The results for modulation of the neurotrophic factor Insulin Growth Factor-1 (IGF1) as a potential treatment are inconclusive. Several compounds are discussed that show a positive effect in the mouse model but which have failed in clinical trials. New approaches using different modalities such as peptides, proteins and stem cells are promising. Our ability to design better drugs would be enhanced by investigating the endogenous factors in neuron death, protein aggregation and oxidative stress that would improve our understanding of the potential pathways that result in neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Inmunoterapia , Fármacos Neuroprotectores/uso terapéutico , Polimorfismo de Nucleótido Simple , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
17.
Elife ; 72018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30334738

RESUMEN

Human excitatory amino acid transporters (EAATs) take up the neurotransmitter glutamate in the brain and are essential to maintain excitatory neurotransmission. Our understanding of the EAATs' molecular mechanisms has been hampered by the lack of stability of purified protein samples for biophysical analyses. Here, we present approaches based on consensus mutagenesis to obtain thermostable EAAT1 variants that share up to ~95% amino acid identity with the wild type transporters, and remain natively folded and functional. Structural analyses of EAAT1 and the consensus designs using hydrogen-deuterium exchange linked to mass spectrometry show that small and highly cooperative unfolding events at the inter-subunit interface rate-limit their thermal denaturation, while the transport domain unfolds at a later stage in the unfolding pathway. Our findings provide structural insights into the kinetic stability of human glutamate transporters, and introduce general approaches to extend the lifetime of human membrane proteins for biophysical analyses.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Secuencia de Consenso , Transportador 1 de Aminoácidos Excitadores/química , Transportador 1 de Aminoácidos Excitadores/metabolismo , Temperatura , Secuencia de Aminoácidos , Medición de Intercambio de Deuterio , Humanos , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Neurotransmisores/metabolismo , Estabilidad Proteica , Subunidades de Proteína/química , Desplegamiento Proteico
18.
Elife ; 72018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30255846

RESUMEN

Many secondary active membrane transporters pump substrates against concentration gradients by coupling their uptake to symport of sodium ions. Symport requires the substrate and ions to be always transported together. Cooperative binding of the solutes is a key mechanism contributing to coupled transport in the sodium and aspartate symporter from Pyrococcus horikoshii GltPh. Here, we describe the kinetic mechanism of coupled binding for GltPh in the inward facing state. The first of the three coupled sodium ions, binds weakly and slowly, enabling the protein to accept the rest of the ions and the substrate. The last ion binds tightly, but is in rapid equilibrium with solution. Its release is required for the complex disassembly. Thus, the first ion serves to 'open the door' for the substrate, the last ion 'locks the door' once the substrate is in, and one ion contributes to both events.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Pyrococcus horikoshii/química , Simportadores/química , Sistema de Transporte de Aminoácidos X-AG/genética , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Sitios de Unión , Transporte Biológico , Iones/química , Cinética , Conformación Proteica , Pyrococcus horikoshii/genética , Sodio/química , Sodio/metabolismo , Especificidad por Sustrato , Simportadores/genética
19.
Elife ; 72018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29889023

RESUMEN

Membrane proteins such as ion channels and transporters are frequently homomeric. The homomeric nature raises important questions regarding coupling between subunits and complicates the application of techniques such as FRET or DEER spectroscopy. These challenges can be overcome if the subunits of a homomeric protein can be independently modified for functional or spectroscopic studies. Here, we describe a general approach for in vitro assembly that can be used for the generation of heteromeric variants of homomeric membrane proteins. We establish the approach using GltPh, a glutamate transporter homolog that is trimeric in the native state. We use heteromeric GltPh transporters to directly demonstrate the lack of coupling in substrate binding and demonstrate how heteromeric transporters considerably simplify the application of DEER spectroscopy. Further, we demonstrate the general applicability of this approach by carrying out the in vitro assembly of VcINDY, a Na+-coupled succinate transporter and CLC-ec1, a Cl-/H+ antiporter.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Transporte de Membrana/química , Conformación Proteica , Multimerización de Proteína , Secuencia de Aminoácidos , Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Transferencia Resonante de Energía de Fluorescencia , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Homología de Secuencia de Aminoácido
20.
J Gen Physiol ; 149(12): 1091-1103, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29089418

RESUMEN

Crystal structures provide visual models of biological macromolecules, which are widely used to interpret data from functional studies and generate new mechanistic hypotheses. Because the quality of the collected x-ray diffraction data directly affects the reliability of the structural model, it is essential that the limitations of the models are carefully taken into account when making interpretations. Here we use the available crystal structures of members of the glutamate transporter family to illustrate the importance of inspecting the data that underlie the structural models. Crystal structures of glutamate transporters in multiple different conformations have been solved, but most structures were determined at relatively low resolution, with deposited models based on crystallographic data of moderate quality. We use these examples to demonstrate the extent to which mechanistic interpretations can be made safely.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Cristalografía por Rayos X/normas , Simulación del Acoplamiento Molecular/normas , Simulación de Dinámica Molecular/normas , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Sitios de Unión , Cristalografía por Rayos X/métodos , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA