Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 421
1.
Cell Rep ; 43(4): 113995, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38527061

The tumor microenvironment (TME) is restricted in metabolic nutrients including the semi-essential amino acid arginine. While complete arginine deprivation causes T cell dysfunction, it remains unclear how arginine levels fluctuate in the TME to shape T cell fates. Here, we find that the 20-µM low arginine condition, representing the levels found in the plasma of patients with cancers, confers Treg-like immunosuppressive capacities upon activated T cells. In vivo mouse tumor models and human single-cell RNA-sequencing datasets reveal positive correlations between low arginine condition and intratumoral Treg accumulation. Mechanistically, low arginine-activated T cells engage in metabolic and transcriptional reprogramming, using the ATF4-SLC7A11-GSH axis, to preserve their suppressive function. These findings improve our understanding of the role of arginine in human T cell biology with potential applications for immunotherapy strategies.


Activating Transcription Factor 4 , Arginine , CD4-Positive T-Lymphocytes , Arginine/metabolism , Activating Transcription Factor 4/metabolism , Animals , Humans , Mice , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Tumor Microenvironment/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Female , Amino Acid Transport Systems, Basic/metabolism , Amino Acid Transport Systems, Basic/genetics
2.
Anim Sci J ; 94(1): e13861, 2023.
Article En | MEDLINE | ID: mdl-37551564

We investigated the effects of a low-protein diet and feed restriction on the mRNA expression of cationic amino acid transporters (CATs) in the longissimus dorsi (LD), rhomboideus (RH), and biceps femoris (BF) muscles of pigs. Eighteen piglets were divided into three groups: a control (CP21%), low-protein diet (LP, CP16%), and feed-restricted diet (FR, CP21%, 76% feed intake of control pigs) groups. The expression levels of CAT-1 in the LD and BF muscles of LP pigs were higher than that of control pigs, whereas that of FR pigs showed no difference. The CAT-2A expression levels in the RH muscle of FR pigs were higher than that of control pigs. The free lysine concentrations in all muscles of LP and FR pigs were lower than that of control pigs. To examine the factors that affect CATs mRNA expression, we evaluated the effects of lysine, arginine, insulin-like growth factor-I, and dexamethasone on the expression of CATs in C2C12 myotubes. CAT-1 expression levels increased in lysine and/or arginine deprivation. We show that CAT-1 and CAT-2A expression levels in skeletal muscles differ in response to dietary treatments and CAT-1 expression in skeletal muscles appears to increase in response to low free lysine concentrations.


Amino Acid Transport Systems, Basic , Lysine , Swine/genetics , Animals , Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism , Lysine/metabolism , Diet, Protein-Restricted/veterinary , Diet/veterinary , Arginine/metabolism , Arginine/pharmacology , Muscle, Skeletal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Animal Feed/analysis
3.
Amino Acids ; 55(10): 1213-1222, 2023 Oct.
Article En | MEDLINE | ID: mdl-37572157

Amino acids are essential for the survival of all living organisms and living cells. Amino acid transporters mediate the transport and absorption of amino acids, and the dysfunction of these proteins can induce human diseases. Cationic amino acid transporters (CAT family, SLC7A1-4, and SLC7A14) are considered to be a group of transmembrane transporters, of which SLC7A1-3 are essential for arginine transport in mammals. Numerous studies have shown that CAT family-mediated arginine transport is involved in signal crosstalk between malignant tumor cells and immune cells, especially T cells. The modulation of extracellular arginine concentration has entered a number of clinical trials and achieved certain therapeutic effects. Here, we review the role of CAT family on tumor cells and immune infiltrating cells in malignant tumors and explore the therapeutic strategies to interfere with extracellular arginine concentration, to elaborate its application prospects. CAT family members may be used as biomarkers for certain cancer entities and might be included in new ideas for immunotherapy of malignant tumors.


Amino Acid Transport Systems, Basic , Neoplasms , Animals , Humans , Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism , Arginine/metabolism , Amino Acids/metabolism , Cationic Amino Acid Transporter 1/metabolism , Biological Transport , Cationic Amino Acid Transporter 2/metabolism , Mammals/metabolism , Tumor Microenvironment
4.
Urolithiasis ; 51(1): 101, 2023 Aug 10.
Article En | MEDLINE | ID: mdl-37561200

BACKGROUND: Cystine stone is a Mendelian genetic disease caused by SLC3A1 or SLC7A9. In this study, we aimed to estimate the genetic prevalence of cystine stones and compare it with the clinical prevalence to better understand the disease etiology. METHODS: We analyzed genetic variants in the general population using the 1000 Genomes project and the Human Gene Mutation Database to extract all SLC3A1 and SLC7A9 pathogenic variants. All variants procured from both databases were intersected. Pathogenic allele frequency, carrier rate, and affected rate were calculated and estimated based on Hardy-Weinberg equilibrium. RESULTS: We found that 9 unique SLC3A1 pathogenic variants were carried by 26 people and 5 unique SLC7A9 pathogenic variants were carried by 12 people, all of whom were heterozygote carriers. No homozygote, compoun d heterozygote, or double heterozygote was identified in the 1000 Genome database. Based on the Hardy-Weinberg equilibrium, the calculated genetic prevalence of cystine stone disease is 1 in 30,585. CONCLUSION: The clinical prevalence of cystine stone has been previously reported as 1 in 7,000, a notably higher figure than the genetic prevalence of 1 in 30,585 calculated in this study. This suggests that the etiology of cystine stone is more complex than what our current genetic knowledge can explain. Possible factors that may contribute to this difference include novel causal genes, undiscovered pathogenic variants, alternative inheritance models, founder effects, epigenetic modifications, environmental factors, or other modifying factors. Further investigation is needed to fully understand the etiology of cystine stone.


Amino Acid Transport Systems, Basic , Cystine , Cystinuria , Humans , Amino Acid Transport Systems, Basic/genetics , Cystine/metabolism , Cystinuria/genetics , Gene Frequency , Genetics, Population , Mutation
5.
Urolithiasis ; 51(1): 94, 2023 Jul 13.
Article En | MEDLINE | ID: mdl-37439839

Cystinuria is a genetic disorder caused by defects in the b0,+ transporter system, which is composed of rBAT and b0,+AT coded by SLC3A1 and SLC7A9, respectively. Variants in SLC3A1 and SLC7A9 follow autosomal recessive inheritance and autosomal dominant inheritance with reduced penetrance, respectively, which complicates the interpretation of cystinuria-related variants. Here, we report seven different SLC3A1 variants and six different SLC7A9 variants. Among these variants were two novel variants previously not reported: SLC3A1 c.223C > T and SLC7A9 c.404A > G. In silico analysis using REVEL correlated well with the functional loss upon SLC7A9 variants with scores of 0.8560-0.9200 and 0.4970-0.5239 for severe and mild decrease in transport activity, respectively. In addition, DynaMut2 was able to predict a decreased protein expression level resulting from the SLC7A9 variant c.313G > A with a ΔΔGStability -2.93 kcal/mol. Our study adds to the literature as additional cases of a variant allow applying the PM3 criterion with higher strength level. In addition, we suggest the clinical utility of REVEL and DynaMut2 in interpreting SLC3A1 and SLC7A9 variants. While a decreased protein expression level is not embraced in the current variant interpretation guidelines, we believe in silico protein stability predicting tools could serve as evidence of protein function loss.


Cystinuria , Humans , Cystinuria/genetics , Amino Acid Transport Systems, Basic/genetics , Mutation
6.
PLoS One ; 18(5): e0286032, 2023.
Article En | MEDLINE | ID: mdl-37205704

Identifying essential targets in the genome-scale metabolic networks of cancer cells is a time-consuming process. The present study proposed a fuzzy hierarchical optimization framework for identifying essential genes, metabolites and reactions. On the basis of four objectives, the present study developed a framework for identifying essential targets that lead to cancer cell death and evaluating metabolic flux perturbations in normal cells that have been caused by cancer treatment. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. We applied nested hybrid differential evolution to solve the trilevel MDM problem to identify essential targets in genome-scale metabolic models for five consensus molecular subtypes (CMSs) of colorectal cancer. We used various media to identify essential targets for each CMS and discovered that most targets affected all five CMSs and that some genes were CMS-specific. We obtained experimental data on the lethality of cancer cell lines from the DepMap database to validate the identified essential genes. The results reveal that most of the identified essential genes were compatible with the colorectal cancer cell lines obtained from DepMap and that these genes, with the exception of EBP, LSS, and SLC7A6, could generate a high level of cell death when knocked out. The identified essential genes were mostly involved in cholesterol biosynthesis, nucleotide metabolisms, and the glycerophospholipid biosynthetic pathway. The genes involved in the cholesterol biosynthetic pathway were also revealed to be determinable, if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in the cholesterol biosynthetic pathway became non-essential if such a reaction was induced. Furthermore, the essential gene CRLS1 was revealed as a medium-independent target for all CMSs.


Colorectal Neoplasms , Genes, Essential , Humans , Genes, Essential/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Amino Acid Transport Systems, Basic/genetics
7.
Haematologica ; 108(8): 2029-2043, 2023 08 01.
Article En | MEDLINE | ID: mdl-36861414

RNA-binding proteins (RBP) have emerged as essential regulators that control gene expression and modulate multiple cancer traits. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from transformation of T-cell progenitors that normally undergo discrete steps of differentiation in the thymus. The implications of essential RBP during T-cell neoplastic transformation remain largely unclear. Systematic evaluation of RBP identifies RNA helicase DHX15, which facilitates the disassembly of the spliceosome and release of lariat introns, as a T-ALL dependency factor. Functional analysis using multiple murine T-ALL models demonstrates the essential importance of DHX15 in tumor cell survival and leukemogenesis. Moreover, single-cell transcriptomics reveals that DHX15 depletion in T-cell progenitors hinders burst proliferation during the transition from doublenegative to double-positive cells (CD4-CD8- to CD4+CD8+). Mechanistically, abrogation of DHX15 perturbs RNA splicing and leads to diminished levels of SLC7A6 and SLC38A5 transcripts due to intron retention, thereby suppressing glutamine import and mTORC1 activity. We further propose a DHX15 signature modulator drug ciclopirox and demonstrate that it has prominent anti-T-ALL efficacy. Collectively, our data highlight the functional contribution of DHX15 to leukemogenesis through regulation of established oncogenic pathways. These findings also suggest a promising therapeutic approach, i.e., splicing perturbation by targeting spliceosome disassembly, may achieve considerable anti-tumor efficacy.


Leukemia , RNA Helicases , Humans , Animals , Mice , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Splicing , Spliceosomes/genetics , Leukemia/metabolism , Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism
8.
Aging (Albany NY) ; 15(4): 1039-1051, 2023 02 24.
Article En | MEDLINE | ID: mdl-36880835

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a poor prognosis. Reprogramming of amino acid metabolism is one of the characteristics of PDAC, in which arginine metabolism is significantly altered in PDAC cells and is involved in important signaling pathways. Current studies have identified arginine deprivation as a potential strategy for PDAC treatment. In this study, we performed Liquid Chromatograph Mass Spectrometer (LC-MS)-based non-targeted metabolomic analysis on PDAC cell lines with stable Rio Kinase 3 (RIOK3) knockdown and PDAC tissues with different RIOK3 expressions and found that RIOK3 expression was significantly correlated with arginine metabolism in PDAC. Subsequent RNA sequencing (RNA-Seq) and Western blot analysis showed that RIOK3 knockdown significantly inhibited the expression of arginine transporter solute carrier family 7 member 2 (SLC7A2). Further studies revealed that RIOK3 promoted arginine uptake, mechanistic target of rapamycin complex 1 (mTORC1) activation, cell invasion, and metastasis in PDAC cells via SLC7A2. Finally, we found that patients with high expression of both RIOK3 and infiltrating Treg cells had a worse prognosis. Overall, our study found that RIOK3 in PDAC cells promotes arginine uptake and mTORC1 activation through upregulation of SLC7A2 expression, and also provides a new therapeutic target for therapeutic strategies targeting arginine metabolism.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Protein Serine-Threonine Kinases , Humans , Amino Acid Transport Systems, Basic/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Prognosis , Signal Transduction , Protein Serine-Threonine Kinases/genetics , Pancreatic Neoplasms
9.
Cell Commun Signal ; 21(1): 9, 2023 01 13.
Article En | MEDLINE | ID: mdl-36639771

BACKGROUND: Solute carrier family 7 member 2 (SLC7A2), a cationic amino acid transporter, is lowly expressed in ovarian and hepatocellular cancers, which is associated with their worse prognosis. However, its roles in the prognosis, drug resistance and immune infiltration in non-small-cell lung cancer (NSCLC) are unclear. METHODS: We chose SLC7A2 from RNA-Seq of paclitaxel/cisplatin-resistant A549 cells, then bioinformatics, cell lines construction, RT-qPCR, and CCK8 were performed to investigate SLC7A2 role. RESULT: We analyzed the 223 differentially expressed genes (DEGs) from RNA-Seq of paclitaxel/cisplatin-resistant A549 cells and found that SLC7A2 expression was down-regulated in NSCLC. Lower SLC7A2 expression was associated with worse recurrence-free survival (RFS) in NSCLC. SLC7A2 silencing enhanced the proliferation of NSCLC cells and their insensitivity to paclitaxel, cisplatin, and gemcitabine in vitro. Activation of AMPK has up-regulated SLC7A2 expression and enhanced the sensitivity of NSCLC cells to anti-tumor drugs, which could be attributed to E2F1's regulation. In addition, the levels of SLC7A2 expression were correlated to the numbers of infiltrated neutrophils, macrophages, dendritic cells and their marker genes, like CD86, HLA-DPA1 and ITGAM. CONCLUSIONS: SLC7A2 may act as a tumor suppressor to modulate drug sensitivity, immune infiltration and survival in NSCLC. Video abstract.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Cisplatin/pharmacology , Lung Neoplasms/pathology , Drug Resistance, Multiple , Paclitaxel/pharmacology , Amino Acid Transport Systems, Basic/genetics , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
10.
Int J Mol Sci ; 25(1)2023 12 20.
Article En | MEDLINE | ID: mdl-38203268

Skeletal muscle differentiation is a precisely coordinated process. While many of the molecular details of myogenesis have been investigated extensively, the dynamic changes and functions of amino acids and related transporters remain unknown. In this study, we conducted a comprehensive analysis of amino acid levels during different time points of C2C12 myoblast differentiation using high-performance liquid chromatography (HPLC). Our findings revealed that the levels of most amino acids exhibited an initial increase at the onset of differentiation, reaching their peak typically on the fourth or sixth day, followed by a decline on the eighth day. Particularly, arginine and branched-chain amino acids showed a prominent increase during this period. Furthermore, we used RNA-seq analysis to show that the gene encoding the arginine transporter, Slc7a2, is significantly upregulated during differentiation. Knockdown of Slc7a2 gene expression resulted in a significant decrease in myoblast proliferation and led to a reduction in the expression levels of crucial myogenic regulatory factors, hindering the process of myoblast differentiation, fusion, and subsequent myotube formation. Lastly, we assessed the expression level of Slc7a2 during aging in humans and mice and found an upregulation of Slc7a2 expression during the aging process. These findings collectively suggest that the arginine transporter SLC7A2 plays a critical role in facilitating skeletal muscle differentiation and may hold potential as a therapeutic target for sarcopenia.


Amino Acids , Antifibrinolytic Agents , Animals , Humans , Mice , Amino Acid Transport Systems, Basic/genetics , Amino Acids, Branched-Chain , Arginine , Gene Expression Profiling , Membrane Transport Proteins , RNA-Seq
11.
Urolithiasis ; 51(1): 20, 2022 Dec 26.
Article En | MEDLINE | ID: mdl-36571637

This study aimed to investigate the genotypic and phenotypic characteristics of Chinese pediatric patients with cystinuria. This was a retrospective study of 14 Chinese pediatric patients with cystine stones. All published studies of the Chinese pediatric cystinuria population were searched and enrolled based on the inclusive standard. Among the 14 pediatric patients with cystinuria, 8 were males and 6 were females. The mean age of first stone onset was 4.0 ± 3.3 years (4 months-9 years). All of the patients had multiple stones, and 57.1% (8/14) had bilateral stones. The mean maximum stone diameter was 1.7 ± 0.6 (range 0.5-2.6) cm. A total of 13 SLC3A1 gene mutations and 9 SLC7A9 gene mutations were detected, of which 41% (9/22) of mutations were novel. Patients with SLC7A9 mutations were more likely to develop bilateral stones than those with SLC3A1 mutations (100% vs. 33.3%, p = 0.03). Thirty-four SLC3A1 gene mutations and twenty-eight SLC7A9 gene mutations were found in a total of fifty-five Chinese children with cystinuria. The SLC7A9 gene mutation distribution was more dispersed, while the SLC3A1 mutation was clustered in exons 6-8. The c.647C > T (p. T216M) (4/53) and c.1113C > A (p. Y371Ter) (4/53) mutations in the SLC3A1 gene and the c.1399 + 2_3insT (3/36) mutation in the SLC7A9 gene represent potential hotspots in cystinuria. Our results present a comprehensive genetic spectrum for pediatric cystinuria patients in China. Patients with SLC7A9 mutations were more likely to develop bilateral stones than those with SLC3A1 mutations. A wide mutation spectrum and the potential mutation hotspots associated with cystinuria were also identified.


Cystinuria , Male , Female , Humans , Child , Infant , Child, Preschool , Cystinuria/genetics , Retrospective Studies , East Asian People , Mutation , Genotype , Amino Acid Transport Systems, Basic/genetics
12.
Sci Rep ; 12(1): 21832, 2022 12 17.
Article En | MEDLINE | ID: mdl-36528691

Amino acid-mediated metabolism is one of the key catabolic and anabolic processes involved in diverse cellular functions. However, the role of the semi-essential amino acid arginine in normal and malignant hematopoietic cell development is poorly understood. Here we report that a continuous supply of exogenous arginine is required for the maintenance/function of normal hematopoietic stem cells (HSCs). Surprisingly, knockout of Slc7a3 (CAT3), a major L-arginine transporter, does not affect HSCs in steady-state or under stress. Although Slc7a3 is highly expressed in naïve and activated CD8 T cells, neither T cell development nor activation/proliferation is impacted by Slc7a3 depletion. Furthermore, the Slc7a3 deletion does not attenuate leukemia development driven by Pten loss or the oncogenic Ptpn11E76K mutation. Arginine uptake assays reveal that L-arginine uptake is not disrupted in Slc7a3 knockout cells. These data suggest that extracellular arginine is critically important for HSCs, but CAT3 is dispensable for normal hematopoiesis and leukemogenesis.


Hematopoiesis , Animals , Mice , Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism , Arginine/metabolism , Biological Transport , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Membrane Transport Proteins/metabolism
13.
Genes (Basel) ; 13(11)2022 11 21.
Article En | MEDLINE | ID: mdl-36421847

Cystinuria is a genetically inherited disorder of renal and intestinal transport, featured as a high concentration of cystine in the urine. Cumulative cystine in urine would cause the formation of kidney stones, which further leads to renal colic and dysfunction. Gene screens have found that mutations in SLC3A1 or SLC7A9 gene are responsible for most cases of cystinuria, for encoding defective cystine transporters. Here, we presented the genotypic and phenotypic characteristics of one unique case of a three-generation Chinese family. The proband developed severe urolithiasis combined with renal damage. The radiography and computed tomography (CT) scan showed calculus in the left pelvic kidney. Postoperative stone analysis revealed that the stones were mainly composed of cystine. Therefore, to explore its pathogenesis, next-generation Whole Exome Sequencing (WES) and Sanger sequencing identify the proband mutated gene of the proband's family. In this article, we reported novel compound heterozygous mutations (c.818G>A and c.1011G>A) of the SLC3A1 gene in a 5-year-old child suffering from a cystine stone from a three-generation family. Bioinformatic analysis was used to predict the pathogenicity and conservation of the target mutation. Conservative sequence and evolutionary conservation analysis indicated that cystine273 and proline337 were highly conserved among species, and both mutations listed here (Cys273Tyr and Pro337Pro) were pathogenic. To conclude, our study expands the phenotypic and genotypic spectrum of SLC3A1 and indicates that genetic screening should be considered in the clinic to provide more effective and precise treatment for cystinuria.


Cystinuria , Humans , Child, Preschool , Cystinuria/genetics , Amino Acid Transport Systems, Basic/genetics , Cystine , Mutation , Genotype
14.
Parasit Vectors ; 15(1): 383, 2022 Oct 21.
Article En | MEDLINE | ID: mdl-36271393

BACKGROUND: The amino acid transporter protein cationic amino acid transporter 1 (CAT1) is part of the nutrient sensor in the fat body of mosquitoes. A member of the SLC7 family of cationic amino acid transporters, it is paramount for the detection of elevated amino acid levels in the mosquito hemolymph after a blood meal and the subsequent changes in gene expression in the fat body. METHODS: We performed a re-annotation of Aedes aegypti cationic amino acid transporters (CATs) and selected the C-terminal tail of CAT1 to perform a yeast two-hybrid screen to identify putative interactors of this protein. One interesting interacting protein we identified was general control nonderepressible 1 (GCN1). We determined the expression pattern of GCN1 in several adult organs and structures using qRT-PCR and western blots. Finally, we knocked down GCN1 using double-stranded RNA and identified changes in downstream signaling intermediates and the effects of knockdown on vitellogenesis and fecundity. RESULTS: In a screen for Ae. aegypti CAT1-interacting proteins we identified GCN1 as a putative interactor. GCN1 is highly expressed in the ovaries and fat body of the mosquito. We provide evidence that eukaryotic translation initiation factor 2 subunit alpha (eIF2α) phosphorylation changed during vitellogenesis and that RNA interference knockdown of GCN1 in whole mosquitoes reduced egg clutch sizes of treated mosquitoes relative to controls. CONCLUSIONS: Aedes aegypti CAT1 and GCN1 are likely interacting partners and GCN1 is likely necessary for proper egg development. Our data suggest that GCN1 is part of a nutrient sensor mechanism in various mosquito tissues involved in vitellogenesis.


Aedes , Animals , Aedes/genetics , Aedes/metabolism , Cationic Amino Acid Transporter 1/genetics , Cationic Amino Acid Transporter 1/metabolism , RNA, Double-Stranded/metabolism , Prokaryotic Initiation Factor-2/genetics , Prokaryotic Initiation Factor-2/metabolism , Saccharomyces cerevisiae/genetics , Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism , Amino Acids/genetics , Fertility
15.
BMC Plant Biol ; 22(1): 441, 2022 Sep 15.
Article En | MEDLINE | ID: mdl-36109698

BACKGROUND: The cationic amino acid transporters (CAT) play indispensable roles in maintaining metabolic functions, such as synthesis of proteins and nitric oxide (NO), biosynthesis of polyamine, and flow of amino acids, by mediating the bidirectional transport of cationic amino acids in plant cells. RESULTS: In this study, we performed a genome-wide and comprehensive study of 79 CAT genes in four species of cotton. Localization of genes revealed that CAT genes reside on the plasma membrane. Seventy-nine CAT genes were grouped into 7 subfamilies by phylogenetic analysis. Structure analysis of genes showed that CAT genes from the same subgroup have similar genetic structure and exon number. RNA-seq and real-time PCR indicated that the expression of most GhCAT genes were induced by salt, drought, cold and heat stresses. Cis-elements analysis of GhCAT promoters showed that the GhCAT genes promoters mainly contained plant hormones responsive elements and abiotic stress elements, which indicated that GhCAT genes may play key roles in response to abiotic stress. Moreover, we also conducted gene interaction network of the GhCAT proteins. Silencing GhCAT10D expression decreased the resistance of cotton to salt stress because of a decrease in the accumulation of NO and proline. CONCLUSION: Our results indicated that CAT genes might be related with salt tolerance in cotton and lay a foundation for further study on the regulation mechanism of CAT genes in cationic amino acids transporting and distribution responsing to abiotic stress.


Amino Acid Transport Systems, Basic , Salt Tolerance , Amino Acid Transport Systems, Basic/genetics , Amino Acids/metabolism , Gene Expression Regulation, Plant , Genomics , Nitric Oxide/metabolism , Phylogeny , Plant Growth Regulators , Plant Proteins/genetics , Plant Proteins/metabolism , Polyamines , Proline/metabolism , Salt Tolerance/genetics
16.
Life Sci Alliance ; 5(11)2022 11.
Article En | MEDLINE | ID: mdl-36114003

Solute carrier (SLC) transporters control fluxes of nutrients and metabolites across membranes and thereby represent a critical interface between the microenvironment and cellular and subcellular metabolism. Because of substantial functional overlap, the interplay and relative contributions of SLCs in response to environmental stresses remain poorly elucidated. To infer functional relationships between SLCs and metabolites, we developed a strategy to identify SLCs able to sustain cell viability and proliferation under growth-limiting concentrations of essential nutrients. One-by-one depletion of 13 amino acids required for cell proliferation enabled gain-of-function genetic screens using a SLC-focused CRISPR/Cas9-based transcriptional activation approach to uncover transporters relieving cells from growth-limiting metabolic bottlenecks. Among the transporters identified, we characterized the cationic amino acid transporter SLC7A3 as a gene that, when up-regulated, overcame low availability of arginine and lysine by increasing their uptake, whereas SLC7A5 was able to sustain cellular fitness upon deprivation of several neutral amino acids. Moreover, we identified metabolic compensation mediated by the glutamate/aspartate transporters SLC1A2 and SLC1A3 under glutamine-limiting conditions. Overall, this gain-of-function approach using human cells uncovered functional transporter-nutrient relationships and revealed that transport activity up-regulation may be sufficient to overcome environmental metabolic restrictions.


Membrane Transport Proteins , Nutrients , Amino Acid Transport Systems, Basic/genetics , Amino Acids/metabolism , Arginine/metabolism , Aspartic Acid/metabolism , Gain of Function Mutation , Glutamates/metabolism , Glutamine/metabolism , Humans , Large Neutral Amino Acid-Transporter 1 , Lysine/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Nutrients/metabolism
17.
Urolithiasis ; 50(6): 679-684, 2022 Dec.
Article En | MEDLINE | ID: mdl-35988091

Cystinuria is an autosomal metabolic disorder caused by mutations in the SLC3A1 and SLC7A9 genes, encoding the amino acid transporter proteins rBAT and b0,+AT, respectively. Based on the causative gene, cystinuria is classified into 3 types: type A (SLC3A1), type B (SLC7A9), and type AB (SLC3A1 and SLC7A9). Patients with cystinuria exhibit hyperexcretion of cystine and dibasic amino acids in the urine and develop cystine crystals due to its low solubility in the urine, often resulting in calculus formation. In this study, we present an inbred strain FVB/NJcl mice affected with cystinuria. In the affected mouse kidney, Slc7a9 expression was completely abolished because of a large sequence deletion in the promoter region of the Slc7a9 mutant allele. Slc7a9-deficient mice with FVB/NJcl genetic background developed cystine calculi in the bladder with high penetrance, as compared to the previously reported mouse models of cystinuria. This model may be useful to understand the determinants of crystal aggregation, affecting calculus formation.


Amino Acid Transport Systems, Neutral , Amino Acids, Diamino , Calculi , Cystinuria , Mice , Animals , Cystinuria/genetics , Cystinuria/metabolism , Amino Acid Transport Systems, Basic/genetics , Cystine/metabolism , Mutation , Disease Models, Animal , Amino Acids, Diamino/genetics , Amino Acid Transport Systems, Neutral/genetics
18.
Biosci Biotechnol Biochem ; 86(9): 1300-1307, 2022 Aug 24.
Article En | MEDLINE | ID: mdl-35749478

Biofilms are formed by the aggregation of microorganisms into multicellular structures that adhere to surfaces. Biofilm formation by yeast is a critical issue in clinical and industrial fields because of the strong adhesion of yeast biofilm to abiotic surfaces and tissues. Here, we clarified the arginine-mediated inhibition of biofilm formation by yeast. First, we showed that arginine inhibits biofilm formation in fungi such as Saccharomyces cerevisiae, Candida glabrata, and Cladosporium cladosporioides, but not in bacteria. In regard to the underlying mechanism, biochemical analysis indicated that arginine inhibits biofilm formation by suppressing Flo11-dependent flocculation. Intriguingly, a strain with deletion of the arginine transporter-encoding CAN1 was insensitive to arginine-mediated inhibition of biofilm formation. Finally, Can1 endocytosis appeared to be required for the inhibitory mechanism of biofilm formation by arginine. The present results could help to elucidate the molecular mechanism of yeast biofilm formation and its control.


Amino Acid Transport Systems, Basic , Arginine , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism , Arginine/pharmacology , Biofilms , Endocytosis , Membrane Glycoproteins/metabolism , Membrane Transport Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
19.
Front Immunol ; 13: 861516, 2022.
Article En | MEDLINE | ID: mdl-35711415

The hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a rare autosomal recessive inborn error of the urea cycle caused by mutations in the SLC25A15 gene. Besides the well-known metabolic complications, patients often present intercurrent infections associated with acute hyperammonemia and metabolic decompensation. However, it is currently unknown whether intercurrent infections are associated with immunological alterations besides the known metabolic imbalances. Herein, we describe the case of a 3-years-old girl affected by the HHH syndrome caused by two novel SLC25A15 gene mutations associated with immune phenotypic and functional alterations. She was admitted to the hospital with an episode of recurrent otitis, somnolence, confusion, and lethargy. Laboratory tests revealed severe hyperammonemia, elevated serum levels of liver transaminases, hemostasis alterations, hyperglutaminemia and strikingly increased orotic aciduria. Noteworthy, serum protein electrophoresis showed a reduction in the gamma globulin fraction. Direct sequencing of the SLC25A15 gene revealed two heterozygous non-conservative substitutions in the exon 5: c.649G>A (p.Gly217Arg) and c.706A>G (p.Arg236Gly). In silico analysis indicated that both mutations significantly impair protein structure and function and are consistent with the patient clinical status confirming the diagnosis of HHH syndrome. In addition, the immune analysis revealed reduced levels of serum IgG and striking phenotypic and functional alterations in the T and B cell immune compartments. Our study has identified two non-previously described mutations in the SLC25A15 gene underlying the HHH syndrome. Moreover, we are reporting for the first time functional and phenotypic immunologic alterations in this rare inborn error of metabolism that would render the patient immunocompromised and might be related to the high frequency of intercurrent infections observed in patients bearing urea cycle disorders. Our results point out the importance of a comprehensive analysis to gain further insights into the underlying pathophysiology of the disease that would allow better patient care and quality of life.


Hyperammonemia , Urea Cycle Disorders, Inborn , Amino Acid Transport Systems, Basic/genetics , Child, Preschool , Female , Humans , Hyperammonemia/complications , Hyperammonemia/diagnosis , Mitochondrial Membrane Transport Proteins , Ornithine/deficiency , Quality of Life , Urea Cycle Disorders, Inborn/complications , Urea Cycle Disorders, Inborn/diagnosis , Urea Cycle Disorders, Inborn/genetics
20.
Prostaglandins Other Lipid Mediat ; 162: 106651, 2022 10.
Article En | MEDLINE | ID: mdl-35680078

Cystinuria is a genetic disorder of cystine transport, including defective protein b0,+AT (encoded by SLC7A9), and/or rBAT (encoded by SLC3A1). Patients present hyperexcretion of cystine in the urine, recurrent cystine lithiasis, and progressive decline in kidney function. Moreover, heterodimer transport is defective. To date, little omics data are accessible regarding this metabolic disease caused by membrane proteins. Since membrane function is closely related to changes in the lipidome, we decided to explore the changes in kidney tissue of a self-established cystinuria rat model by performing lipidomic analysis by LC-MS/MS. Our results demonstrated that Slc7a9 deficiency changed the lipid profile of the renal cortex and induced vital modifications in the lipidome, including major alterations in ChE, LPA, and PA. Among those alterations, this lipidomic study highlights the lipid changes that participate in inflammatory responses during cystinuria. As a result, lipid research, perhaps has great potential, for it may lead to the identification of novel therapeutic targets for the prevention and treatment of cystinuria.


Cystinuria , Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism , Animals , Chromatography, Liquid , Cystine/metabolism , Cystinuria/genetics , Cystinuria/metabolism , Kidney/metabolism , Lipid Metabolism , Lipidomics , Lipids , Rats , Tandem Mass Spectrometry
...