Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.936
1.
BMC Microbiol ; 24(1): 171, 2024 May 18.
Article En | MEDLINE | ID: mdl-38760685

OBJECTIVE: This study aimed to discuss the distinctive features of the intestinal microbiota in neonates with hyperbilirubinemia and to comprehensively analyse the composition of the intestinal microbiota as well as the levels of free amino acids and acylcarnitines in the peripheral blood of neonates experiencing hyperbilirubinemia. RESULTS: At the phylum level, Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Chloroflexi were the five predominant microbial groups identified in both the hyperbilirubinemia and control groups. Alpha diversity analysis, encompassing seven indices, showed no statistically significant differences between the two groups. However, Beta diversity analysis revealed a significant difference in intestinal microbiota structure between the groups. Linear discriminant analysis effect size (LEfSe) indicated a significant reduction in the abundance of Gammaproteobacteria and Enterobacteriaceae within the hyperbilirubinemia group compared to that in the control group. The heatmap revealed that the control group exhibited increased abundances of Escherichia and Bifidobacterium, while the hyperbilirubinemia group exhibited increased levels of Enterococcus and Streptococcus. Regarding blood amino acids and acylcarnitines, there were greater concentrations of citrulline (Cit), arginine (Arg), ornithine (Orn), and valine (Val) in the hyperbilirubinemia group than in the control group. The hyperbilirubinemia group also exhibited significant increases in medium-chain fatty acids (C6, C8), long-chain fatty acids (C18), and free carnitine (C0). CONCLUSION: By comparing neonates with hyperbilirubinemia to those without, a significant disparity in the community structure of the intestinal microbiota was observed. The intestinal microbiota plays a crucial role in the bilirubin metabolism process. The intestinal microbiota of neonates with hyperbilirubinemia exhibited a certain degree of dysbiosis. The abundances of Bacteroides and Bifidobacterium were negatively correlated with the bilirubin concentration. Therefore, the fact that neonates with hyperbilirubinemia exhibit some variations in blood amino acid and acylcarnitine levels may provide, to a certain degree, a theoretical basis for clinical treatment and diagnosis.


Amino Acids , Bacteria , Carnitine , Gastrointestinal Microbiome , Humans , Carnitine/analogs & derivatives , Carnitine/blood , Amino Acids/blood , Infant, Newborn , Male , Female , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , RNA, Ribosomal, 16S/genetics
2.
BMC Cancer ; 24(1): 555, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702616

Periampullary cancers, including pancreatic ductal adenocarcinoma, ampullary-, cholangio-, and duodenal carcinoma, are frequently diagnosed in an advanced stage and are associated with poor overall survival. They are difficult to differentiate from each other and challenging to distinguish from benign periampullary disease preoperatively. To improve the preoperative diagnostics of periampullary neoplasms, clinical or biological markers are warranted.In this study, 28 blood plasma amino acids and derivatives from preoperative patients with benign (N = 45) and malignant (N = 72) periampullary disease were analyzed by LC-MS/MS.Principal component analysis and consensus clustering both separated the patients with cancer and the patients with benign disease. Glutamic acid had significantly higher plasma expression and 15 other metabolites significantly lower plasma expression in patients with malignant disease compared with patients having benign disease. Phenylalanine was the only metabolite associated with improved overall survival (HR = 0.50, CI 0.30-0.83, P < 0.01).Taken together, plasma metabolite profiles from patients with malignant and benign periampullary disease were significantly different and have the potential to distinguish malignant from benign disease preoperatively.


Amino Acids , Biomarkers, Tumor , Humans , Male , Female , Amino Acids/blood , Middle Aged , Aged , Biomarkers, Tumor/blood , Ampulla of Vater/pathology , Tandem Mass Spectrometry , Diagnosis, Differential , Common Bile Duct Neoplasms/blood , Common Bile Duct Neoplasms/diagnosis , Common Bile Duct Neoplasms/surgery , Common Bile Duct Neoplasms/pathology , Duodenal Neoplasms/blood , Duodenal Neoplasms/diagnosis , Duodenal Neoplasms/pathology , Duodenal Neoplasms/surgery , Adult , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/surgery , Pancreatic Neoplasms/mortality , Chromatography, Liquid , Principal Component Analysis , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/pathology
3.
Int J Mol Sci ; 25(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38791339

Previous studies have documented that FOLFOX and XELOX therapies negatively impact the metabolism of skeletal muscle and extra-muscle districts. This pilot study tested whether three-month FOLFOX or XELOX therapy produced changes in plasma amino acid levels (PAAL) (an estimation of whole-body amino acid metabolism) and in plasma levels of malondialdehyde (MDA), a marker of lipid hyper oxidation. Fourteen ambulatory, resected patients with colorectal cancer scheduled to receive FOLFOX (n = 9) or XELOX (n = 5) therapy, after overnight fasting, underwent peripheral venous blood sampling, to determine PAAL and MDA before, during, and at the end of three-month therapy. Fifteen healthy matched subjects (controls) only underwent measures of PAAL at baseline. The results showed changes in 87.5% of plasma essential amino acids (EAAs) and 38.4% of non-EAAs in patients treated with FOLFOX or XELOX. These changes in EAAs occurred in two opposite directions: EAAs decreased with FOLFOX and increased or did not decrease with XELOX (interactions: from p = 0.034 to p = 0.003). Baseline plasma MDA levels in both FOLFOX and XELOX patients were above the normal range of values, and increased, albeit not significantly, during therapy. In conclusion, three-month FOLFOX or XELOX therapy affected plasma EAAs differently but not the baseline MDA levels, which were already high.


Amino Acids , Antineoplastic Combined Chemotherapy Protocols , Colorectal Neoplasms , Fluorouracil , Oxaloacetates , Humans , Colorectal Neoplasms/blood , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/surgery , Male , Female , Middle Aged , Amino Acids/blood , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Aged , Fluorouracil/therapeutic use , Leucovorin/therapeutic use , Capecitabine/therapeutic use , Malondialdehyde/blood , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Organoplatinum Compounds/therapeutic use , Pilot Projects , Oxidation-Reduction , Adult , Lipid Peroxidation/drug effects , Lipid Metabolism/drug effects
4.
Sci Rep ; 14(1): 11222, 2024 05 16.
Article En | MEDLINE | ID: mdl-38755170

Homocysteine (Hcy) and Hcy-thiolactone (HTL) affect fibrin clot properties and are linked to cardiovascular disease. Factors that influence fibrin clot properties and stroke are not fully understood. To study sulfur-containing amino acid metabolites, fibrin clot lysis time (CLT) and maximum absorbance (Absmax) in relation to stroke, we analyzed plasma and urine from 191 stroke patients (45.0% women, age 68 ± 12 years) and 291 healthy individuals (59.7% women, age 50 ± 17 years). Plasma and urinary levels of sulfur-containing amino acid metabolites and fibrin clot properties were significantly different in stroke patients compared to healthy individuals. Fibrin CLT correlated with fibrin Absmax in healthy males (R2 = 0.439, P = 0.000), females (R2 = 0.245, P = 0.000), female stroke patients (R2 = 0.187, P = 0.000), but not in male stroke patients (R2 = 0.008, P = ns). Fibrin CLT correlated with age in healthy females but not males while fibrin Absmax correlated with age in both sexes; these correlations were absent in stroke patients. In multiple regression analysis in stroke patients, plasma (p)CysGly, pMet, and MTHFR A1298C polymorphism were associated with fibrin Absmax, while urinary (u)HTL, uCysGly, and pCysGly were significantly associated with fibrin CLT. In healthy individuals, uHTL and uGSH were significantly associated with fibrin Absmax, while pGSH, and CBS T833C 844ins68 polymorphism were associated with fibrin CLT. In logistic regression, uHTL, uHcy, pCysGly, pGSH, MTHFR C677T polymorphism, and Absmax were independently associated with stroke. Our findings suggest that HTL and other sulfur-containing amino acid metabolites influence fibrin clot properties and the risk of stroke.


Fibrin , Homocysteine , Ischemic Stroke , Humans , Male , Female , Homocysteine/blood , Homocysteine/analogs & derivatives , Homocysteine/metabolism , Homocysteine/urine , Aged , Middle Aged , Fibrin/metabolism , Ischemic Stroke/blood , Ischemic Stroke/metabolism , Ischemic Stroke/urine , Adult , Fibrin Clot Lysis Time , Risk Factors , Amino Acids, Sulfur/blood , Amino Acids, Sulfur/metabolism , Amino Acids, Sulfur/urine , Amino Acids/urine , Amino Acids/blood , Amino Acids/metabolism , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Case-Control Studies , Aged, 80 and over , Stroke/metabolism , Stroke/blood , Stroke/urine
5.
Food Funct ; 15(10): 5613-5626, 2024 May 20.
Article En | MEDLINE | ID: mdl-38722062

Modification of dairy proteins during processing impacts structural assemblies, influencing textural and nutritional properties of dairy products, and release and availability of amino acids during digestion. By modifying only pH, acid heat-set bovine dairy gels with divergent textural properties were developed to alter protein digestion. In vitro assay confirmed faster digestion of protein from a firm gel (pH 5.65) versus a soft gel (pH 6.55). We hypothesised that firm gel (FIRM-G; pH 5.6) would result in greater indispensable amino acid (IAA) appearance in circulation over 5 h and corresponding differences in gastric myoelectrical activity relative to soft gel (SOFT-G; pH 6.2). In a randomised, single-blind cross-over trial, healthy females (n = 20) consumed 150 g of each gel; plasma amino acid appearance was assessed over 5 hours. Iso-nitrogenous, iso-caloric gels were prepared from identical mixtures of bovine milk and whey protein concentrates; providing 17.7 g (FIRM-G) and 18.9 g (SOFT-G) of protein per serving. Secondary outcomes included gastric myoelectrical activity measured by body surface gastric mapping, glycaemic, triglyceridaemic, and subjective appetite and digestive responses. Overall plasma IAA (area under the curve) did not differ between gels. However, plasma IAA concentrations were higher, and increased more rapidly over time after SOFT-G compared with FIRM-G (1455 ± 53 versus 1350 ± 62 µmol L-1 at 30 min, p = 0.024). Similarly, total, branched-chain and dispensable amino acids were higher at 30 min with SOFT-G than FIRM-G (total: 3939 ± 97 versus 3702 ± 127 µmol L-1, p = 0.014; branched-chain: 677 ± 30 versus 619 ± 34 µmol L-1, p = 0.047; dispensable: 2334 ± 53 versus 2210 ± 76 µmol L-1, p = 0.032). All other measured parameters were similar between gels. Peak postprandial aminoacidaemia was higher and faster following ingestion of SOFT-G. Customised plasma amino acid appearance from dairy is achievable by altering gel coagulum structure using pH during processing and may have minimal influence on related postprandial responses, with implications for targeting food design for optimal health. The Clinical Trial Registry number is ACTRN12622001418763 (https://www.anzctr.org.au) registered November 7, 2022.


Amino Acids , Cross-Over Studies , Gels , Female , Humans , Adult , Hydrogen-Ion Concentration , Amino Acids/blood , Amino Acids/chemistry , Gels/chemistry , Animals , Young Adult , Cattle , Digestion , Hot Temperature , Milk Proteins/chemistry , Single-Blind Method , Stomach/physiology , Stomach/chemistry , Milk/chemistry
6.
PLoS One ; 19(5): e0303500, 2024.
Article En | MEDLINE | ID: mdl-38814947

Untargeted metabolomics investigations have characterized metabolic disturbances associated with various diseases in domestic cats. However, the pre-analytic stability of serum metabolites in the species is unknown. Our objective was to compare serum metabolomes from healthy cats stored at -20°C for up to 12 months to samples stored at -80°C. Serum samples from 8 adult, healthy cats were stored at -20°C for 6 months, -20°C for 12 months, or -80°C for 12 months. Untargeted liquid chromatography-mass spectrometry was used to generate serum metabolite profiles containing relative abundances of 733 serum metabolites that were compared among storage conditions. Unsupervised analysis with principal component analysis and hierarchical clustering of Euclidian distances revealed separation of samples from individual cats regardless of storage condition. Linear mixed-effects models identified 75 metabolites that differed significantly among storage conditions. Intraclass correlation analysis (ICC) classified most serum metabolites as having excellent (ICC ≥ 0.9; 33%) or moderate (ICC 0.75-0.89; 33%) stability, whereas 13% had poor stability (ICC < 0.5). Biochemicals that varied significantly among storage conditions and classified with poor stability included glutathione metabolites, amino acids, gamma-glutamyl amino acids, and polyunsaturated fatty acids. The benzoate; glycine, serine and threonine; tryptophan; chemical (xenobiotics); acetylated peptide, and primary bile acid sub pathways were enriched among highly stable metabolites, whereas the monohydroxy fatty acid, polyunsaturated fatty, and monoacylglycerol sub-pathways were enriched among unstable metabolites. Our findings suggest that serum metabolome profiles are representative of the cat of origin, regardless of storage condition. However, changes in specific serum metabolites, especially glutathione, gamma-glutamyl amino acid, and fatty acid metabolites were consistent with increased sample oxidation during storage at -20°C compared with -80°C. By investigating the pre-analytic stability of serum metabolites, this investigation provides valuable insights that could aid other investigators in planning and interpreting studies of serum metabolomes in cats.


Metabolome , Metabolomics , Animals , Cats , Metabolomics/methods , Male , Female , Chromatography, Liquid , Mass Spectrometry , Amino Acids/blood , Amino Acids/metabolism
7.
Sci Rep ; 14(1): 10388, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710760

Research into the molecular basis of disease trajectory and Long-COVID is important to get insights toward underlying pathophysiological processes. The objective of this study was to investigate inflammation-mediated changes of metabolism in patients with acute COVID-19 infection and throughout a one-year follow up period. The study enrolled 34 patients with moderate to severe COVID-19 infection admitted to the University Clinic of Innsbruck in early 2020. The dynamics of multiple laboratory parameters (including inflammatory markers [C-reactive protein (CRP), interleukin-6 (IL-6), neopterin] as well as amino acids [tryptophan (Trp), phenylalanine (Phe) and tyrosine (Tyr)], and parameters of iron and vitamin B metabolism) was related to disease severity and patients' physical performance. Also, symptom load during acute illness and at approximately 60 days (FU1), and one year after symptom onset (FU2) were monitored and related with changes of the investigated laboratory parameters: During acute infection many investigated laboratory parameters were elevated (e.g., inflammatory markers, ferritin, kynurenine, phenylalanine) and enhanced tryptophan catabolism and phenylalanine accumulation were found. At FU2 nearly all laboratory markers had declined back to reference ranges. However, kynurenine/tryptophan ratio (Kyn/Trp) and the phenylalanine/tyrosine ratio (Phe/Tyr) were still exceeding the 95th percentile of healthy controls in about two thirds of our cohort at FU2. Lower tryptophan concentrations were associated with B vitamin availability (during acute infection and at FU1), patients with lower vitamin B12 levels at FU1 had a prolonged and more severe impairment of their physical functioning ability. Patients who had fully recovered (ECOG 0) presented with higher concentrations of iron parameters (ferritin, hepcidin, transferrin) and amino acids (phenylalanine, tyrosine) at FU2 compared to patients with restricted ability to work. Persistent symptoms at FU2 were tendentially associated with IFN-γ related parameters. Women were affected by long-term symptoms more frequently. Conclusively, inflammation-mediated biochemical changes appear to be related to symptoms of patients with acute and Long Covid.


Biomarkers , COVID-19 , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/blood , COVID-19/complications , COVID-19/diagnosis , Female , Male , Middle Aged , Biomarkers/blood , SARS-CoV-2/isolation & purification , Aged , Adult , Physical Functional Performance , Interleukin-6/blood , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Inflammation , Tryptophan/blood , Tryptophan/metabolism , Neopterin/blood , Phenylalanine/blood , Phenylalanine/metabolism , Amino Acids/blood
8.
Ulus Travma Acil Cerrahi Derg ; 30(5): 323-327, 2024 May.
Article En | MEDLINE | ID: mdl-38738676

BACKGROUND: We investigated the utility of specific biomarkers-namely, c-terminal telopeptide (CTX), n-telopeptide (NTX), deoxypyridinoline (DPD), and tartrate-resistant acid phosphatase (TRAP)-compared to conventional diagnostic methods. We hy-pothesized that these novel biomarkers could hold substantial value in the diagnosis, treatment, and monitoring of osteoporosis. METHODS: The study was conducted over a three-year period, from January 1, 2020, to January 1, 2023. We enrolled a total of 520 patients aged 50 years or older who had been diagnosed with osteoporosis. Patients undergoing steroid treatments, which are known to contribute to osteoporosis, were excluded from the study. Additionally, we carefully selected and matched a control group consisting of 500 patients based on demographic characteristics relevant to the diagnosis of osteoporosis. This meticulous selection process resulted in a comprehensive cohort comprising 1,020 patients. Throughout the study, patients were closely monitored for a duration of one year to track the occurrence of pathological fractures and assess their overall prognosis. RESULTS: As a result of our rigorous investigation, we identified CTX, NTX, DPD, and TRAP as pivotal biomarkers that play a crucial role in evaluating bone health, monitoring treatment effectiveness, and detecting pathological fractures in the context of osteoporosis. CONCLUSION: Our study underscores the significance of these biomarkers in advancing the diagnosis and management of osteo-porosis, offering valuable insights into the disease's progression and treatment outcomes.


Biomarkers , Bone Remodeling , Collagen Type I , Osteoporosis , Humans , Biomarkers/blood , Female , Osteoporosis/diagnosis , Male , Middle Aged , Aged , Collagen Type I/blood , Peptides/blood , Peptides/urine , Tartrate-Resistant Acid Phosphatase/blood , Amino Acids/blood , Osteoporotic Fractures/diagnosis , Fractures, Spontaneous/diagnosis , Fractures, Spontaneous/etiology
9.
Metabolomics ; 20(3): 51, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722380

INTRODUCTION: The (un)targeted analysis of endogenous compounds has gained interest in the field of forensic postmortem investigations. The blood metabolome is influenced by many factors, and postmortem specimens are considered particularly challenging due to unpredictable decomposition processes. OBJECTIVES: This study aimed to systematically investigate the influence of the time since death on endogenous compounds and its relevance in designing postmortem metabolome studies. METHODS: Femoral blood samples of 427 authentic postmortem cases, were collected at two time points after death (854 samples in total; t1: admission to the institute, 1.3-290 h; t2: autopsy, 11-478 h; median ∆t = 71 h). All samples were analyzed using an untargeted metabolome approach, and peak areas were determined for 38 compounds (acylcarnitines, amino acids, phospholipids, and others). Differences between t2 and t1 were assessed by Wilcoxon signed-ranked test (p < 0.05). Moreover, all samples (n = 854) were binned into time groups (6 h, 12 h, or 24 h intervals) and compared by Kruskal-Wallis/Dunn's multiple comparison tests (p < 0.05 each) to investigate the effect of the estimated time since death. RESULTS: Except for serine, threonine, and PC 34:1, all tested analytes revealed statistically significant changes between t1 and t2 (highest median increase 166%). Unpaired analysis of all 854 blood samples in-between groups indicated similar results. Significant differences were typically observed between blood samples collected within the first and later than 48 h after death, respectively. CONCLUSIONS: To improve the consistency of comprehensive data evaluation in postmortem metabolome studies, it seems advisable to only include specimens collected within the first 2 days after death.


Metabolome , Metabolomics , Postmortem Changes , Humans , Metabolomics/methods , Male , Female , Middle Aged , Adult , Aged , Autopsy , Aged, 80 and over , Time Factors , Amino Acids/metabolism , Amino Acids/blood , Young Adult
10.
Dokl Biol Sci ; 516(1): 36-41, 2024 Jun.
Article En | MEDLINE | ID: mdl-38619736

The pool of free amino acids (AAs) in the blood serum was studied in two European migratory bat species, Vespertilio murinus and Pipistrellus nathusii, of the Urals. Bats from this year's bloods were examined, and significant differences were observed in main metabolic groups of free AAs, including glycogenic (GGAAs), nonessential (NEAAs), essential (EAAs), and sulfur-containing (SCAAs) AAs (p < 0.05). Based on the percent content of the metabolic groups in the total AA pool, GGAAs (79.7%) and EAAs (49.4%) were found to predominate in P. nathusii, and GGAAs (74.9%) and NEAAs (58.4%), in V. murinus. No difference in AAA and BCAA contents was observed between V. murinus and P. nathusii (p > 0.05). The migratory species were shown to significantly differ in the metabolic groups of serum AAs from the resident species Myotis dasycneme (p < 0.05).


Amino Acids , Animal Migration , Chiroptera , Animals , Chiroptera/blood , Amino Acids/blood , Animal Migration/physiology
11.
J Nutr ; 154(5): 1549-1560, 2024 May.
Article En | MEDLINE | ID: mdl-38467279

BACKGROUND: Digestibility is a primary factor in determining the quality of dietary protein. Microbial protease supplementation may be a strategy for improving protein digestion and subsequent postprandial plasma amino acid availability. OBJECTIVES: To assess the effect of co-ingesting a microbial protease mixture with pea protein on postprandial plasma amino acid concentrations. DESIGN: A mixture of 3 microbial protease preparations (P3) was tested for proteolytic efficacy in an in vitro static simulation of gastrointestinal digestion. Subsequently, in a randomized, double-blind, placebo-controlled crossover trial, 24 healthy adults (27 ± 4 y; 12 females, 12 males) ingested 25 g pea protein isolate (20 g protein, 2.2 g fat) with either P3 or maltodextrin placebo (PLA). Blood samples were collected at baseline and throughout a 0‒5 h postprandial period and both the early (0-2 h) iAUC and total (0-5 h) iAUC were examined. RESULTS: Plasma glucose concentrations decreased in both conditions (P < 0.001), with higher concentrations after P3 ingestion compared with PLA (P < 0.001). Plasma insulin concentrations increased for both conditions (P < 0.001) with no difference between conditions (P = 0.331). Plasma total amino acid (TAA) concentrations increased over time (P < 0.001) with higher concentrations observed for P3 compared with PLA (P = 0.010) during the 0‒5 h period. There was a trend for elevated essential amino acid (EAA) concentrations for P3 compared with PLA (P = 0.099) during the 0‒5 h postprandial period but not for leucine (P = 0.282) or branched-chain amino acids (BCAA, P = 0.410). The early net exposure (0‒2 h iAUC) to amino acids (leucine, BCAA, EAA, and TAA) was higher for P3 compared with PLA (all, P < 0.05). CONCLUSIONS: Microbial protease co-ingestion increases plasma TAA concentrations (0-5 h) and leucine, BCAA, EAA, and TAA availability in the early postprandial period (0‒2 h) compared with ingesting pea protein with placebo in healthy adults.


Amino Acids , Cross-Over Studies , Dietary Supplements , Pea Proteins , Postprandial Period , Humans , Adult , Male , Female , Double-Blind Method , Amino Acids/blood , Amino Acids/metabolism , Young Adult , Insulin/blood , Blood Glucose/metabolism , Peptide Hydrolases/blood , Peptide Hydrolases/metabolism , Digestion/drug effects , Pisum sativum
12.
Eur J Nutr ; 63(4): 1125-1137, 2024 Jun.
Article En | MEDLINE | ID: mdl-38349552

PURPOSE: Rapid gastric emptying and intestinal absorption of beverages is essential for rapid rehydration, and certain amino acids (AA) may augment fluid delivery. Three sugar-free beverages, containing differing AA concentrations (AA + PZ), were assessed for fluid absorption kinetics against commercial sugar-free (PZ, GZ) and carbohydrate-containing (GTQ) beverages. METHODS: Healthy individuals (n = 15-17 per study) completed three randomised trials. Three beverages (550-600 mL) were ingested in each study (Study 1: AA + PZ [17.51 g/L AA], PZ, GZ; Study 2: AA + PZ [6.96 g/L AA], PZ, GZ; Study 3: AA + PZ [3.48 g/L AA], PZ, GTQ), containing 3.000 g deuterium oxide (D2O). Blood samples were collected pre-, 2-min, 5-min, and every 5-min until 60-min post-ingestion to quantify maximal D2O enrichment (Cmax), time Cmax occurred (Tmax) and area under the curve (AUC). RESULTS: Study 1: AUC (AA + PZ: 15,184 ± 3532 δ‰ vs. VSMOW; PZ: 17,328 ± 3153 δ‰ vs. VSMOW; GZ: 17,749 ± 4204 δ‰ vs. VSMOW; P ≤ 0.006) and Tmax (P ≤ 0.005) were lower for AA + PZ vs. PZ/GZ. Study 2: D2O enrichment characteristics were not different amongst beverages (P ≥ 0.338). Study 3: Cmax (AA + PZ: 440 ± 94 δ‰ vs. VSMOW; PZ: 429 ± 83 δ‰ vs. VSMOW; GTQ: 398 ± 81 δ‰ vs. VSMOW) was greater (P = 0.046) for AA + PZ than GTQ, with no other differences (P ≥ 0.106). CONCLUSION: The addition of small amounts of AA (3.48 g/L) to a sugar-free beverage increased fluid delivery to the circulation compared to a carbohydrate-based beverage, but greater amounts (17.51 g/L) delayed delivery.


Amino Acids , Beverages , Fluid Therapy , Humans , Beverages/analysis , Amino Acids/blood , Amino Acids/pharmacokinetics , Male , Adult , Female , Young Adult , Fluid Therapy/methods , Water , Cross-Over Studies , Gastric Emptying/physiology , Kinetics , Rehydration Solutions/administration & dosage , Rehydration Solutions/pharmacokinetics , Sports Nutritional Physiological Phenomena , Intestinal Absorption
13.
Br J Nutr ; 131(11): 1860-1872, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38418422

This study assessed postprandial plasma aminoacidemia, glycemia, insulinemia and appetite responses to ingestion of a novel salmon-derived protein peptide (Salmon PP) compared with milk protein isolate (Milk PI). In a randomised, participant-blind crossover design, eleven healthy adults (M = 5, F = 6; mean ± sd age: 22 ± 3 years; BMI: 24 ± 3 kg/m2) ingested 0·3 g/kg/body mass of Salmon PP or Milk PI. Arterialised blood samples were collected whilst fasted and over a 240-min postprandial period. Appetite sensations were measured via visual analogue scales. An ad libitum buffet-style test meal was administered after each trial. The incremental AUC (iAUC) plasma essential amino acid (EAA) response was similar between Salmon PP and Milk PI. The iAUC plasma leucine response was significantly greater following Milk PI ingestion (P < 0·001), whereas temporal and iAUC plasma total amino acid (P = 0·001), non-essential amino acid (P = 0·002), glycine (P = 0·0025) and hydroxyproline (P < 0·001) responses were greater following Salmon PP ingestion. Plasma insulin increased similarly above post-absorptive values following Salmon PP and Milk PI ingestion, whilst plasma glucose was largely unaltered. Indices of appetite were similarly altered following Salmon PP and Milk PI ingestion, and total energy and macronutrient intake during the ad libitum meal was similar between Salmon PP and Milk PI. The postprandial plasma EAA, glycine, proline and hydroxyproline response to Salmon PP ingestion suggest this novel protein source could support muscle and possibly connective tissue adaptive remodelling, which warrants further investigation, particularly as the plasma leucine response to Salmon PP ingestion was inferior to Milk PI.


Amino Acids , Appetite , Blood Glucose , Cross-Over Studies , Insulin , Postprandial Period , Salmon , Humans , Female , Animals , Young Adult , Appetite/drug effects , Appetite/physiology , Male , Amino Acids/blood , Adult , Blood Glucose/metabolism , Blood Glucose/analysis , Insulin/blood , Fish Proteins/blood , Milk Proteins/pharmacology , Peptides/blood , Dietary Proteins/administration & dosage
14.
Proteomics Clin Appl ; 18(3): e2300035, 2024 May.
Article En | MEDLINE | ID: mdl-38196151

PURPOSE: This study was aimed to analyze serum amino acid metabolite profiles in frailty patients, gain a better understanding of the metabolic mechanisms in frailty, and assess the diagnostic value of metabolomics-based biomarkers of frailty. EXPERIMENTAL DESIGN: This study utilized the ultra-performance liquid chromatography tandem mass spectrometry to examine amino acids associated with frailty. Additionally, we employed multivariate statistical methods, metabolomic data analysis, receiver operating characteristic (ROC) curve analysis, and pathway enrichment analysis. RESULTS: Among the assayed amino acid metabolites, we identified biomarkers for frailty. ROC curve analysis for frailty diagnosis based on the modified Fried's frailty index showed that the areas under ROC curve of tryptophan, phenylalanine, aspartic acid, and combination were 0.775, 0.679, 0.667, and 0.807, respectively. ROC curve analysis for frailty diagnosis based on Frail Scale showed that the areas under ROC curve of cystine, phenylalanine, and combination of amino acids (cystine, L-Glutamine, citrulline, tyrosine, kynurenine, phenylalanine, glutamin acid) were 0.834, 0.708, and 0.854 respectively. CONCLUSION AND CLINICAL RELEVANCE: In this study, we explored the serum amino acid metabolite profiles in frailty patients. These present metabolic analyses may provide valuable information on the potential biomarkers and the possible pathogenic mechanisms of frailty. CLINICAL SIGNIFICANCE: Frailty is a clinical syndrome, as a consequence it is challenging to identify at early course of the disease, even based on the existing frailty scales. Early diagnosis and appropriate patient management are the key to improve the survival and limit disabilities in frailty patients. Proven by the extensive laboratory and clinical studies on frailty, comprehensive analysis of metabolic levels in frail patients, identification of biomarkers and study of pathogenic pathways of metabolites contribute to the prediction and early diagnosis of frailty. In this study, we explored the serum amino acid metabolite profiles in frailty patients. These present metabolic analyses may provide valuable information on the potential biomarkers and the possible pathogenic mechanisms of frailty.


Amino Acids , Biomarkers , Frailty , Metabolomics , Tandem Mass Spectrometry , Humans , Amino Acids/blood , Biomarkers/blood , Metabolomics/methods , Male , Frailty/blood , Frailty/diagnosis , Aged , Female , Chromatography, High Pressure Liquid , Aged, 80 and over , Middle Aged , ROC Curve , Liquid Chromatography-Mass Spectrometry
15.
Br J Nutr ; 131(9): 1540-1553, 2024 May 14.
Article En | MEDLINE | ID: mdl-38220222

Whole-body tissue protein turnover is regulated, in part, by the postprandial rise in plasma amino acid concentrations, although minimal data exist on the amino acid response following non-animal-derived protein consumption. We hypothesised that the ingestion of novel plant- and algae-derived dietary protein sources would elicit divergent plasma amino acid responses when compared with vegan- and animal-derived control proteins. Twelve healthy young (male (m)/female (f): 6/6; age: 22 ± 1 years) and 10 healthy older (m/f: 5/5; age: 69 ± 2 years) adults participated in a randomised, double-blind, cross-over trial. During each visit, volunteers consumed 30 g of protein from milk, mycoprotein, pea, lupin, spirulina or chlorella. Repeated arterialised venous blood samples were collected at baseline and over a 5-h postprandial period to assess circulating amino acid, glucose and insulin concentrations. Protein ingestion increased plasma total and essential amino acid concentrations (P < 0·001), to differing degrees between sources (P < 0·001), and the increase was further modulated by age (P < 0·001). Postprandial maximal plasma total and essential amino acid concentrations were highest for pea (2828 ± 106 and 1480 ± 51 µmol·l-1) and spirulina (2809 ± 99 and 1455 ± 49 µmol·l-1) and lowest for chlorella (2053 ± 83 and 983 ± 35 µmol·l-1) (P < 0·001), but were not affected by age (P > 0·05). Postprandial total and essential amino acid availabilities were highest for pea, spirulina and mycoprotein and lowest for chlorella (all P < 0·05), but no effect of age was observed (P > 0·05). The ingestion of a variety of novel non-animal-derived dietary protein sources elicits divergent plasma amino acid responses, which are further modulated by age.


Amino Acids , Cross-Over Studies , Dietary Proteins , Insulin , Postprandial Period , Spirulina , Humans , Male , Female , Aged , Young Adult , Amino Acids/blood , Dietary Proteins/administration & dosage , Double-Blind Method , Insulin/blood , Amino Acids, Essential/blood , Amino Acids, Essential/administration & dosage , Chlorella , Blood Glucose/metabolism , Blood Glucose/analysis , Adult , Animals , Plant Proteins, Dietary/administration & dosage , Pisum sativum/chemistry , Pea Proteins/blood , Milk/chemistry , Milk Proteins/administration & dosage , Age Factors
16.
J Dairy Sci ; 107(6): 3558-3572, 2024 Jun.
Article En | MEDLINE | ID: mdl-38216043

Reducing dietary CP is a well-established means to improve N use efficiency. Yet, few studies have considered if transient restrictions in dietary CP could reduce the environmental footprint of late-lactation cows. We hypothesized that the effects of CP feeding pattern on digestibility and environmental outputs would be amplified at lower dietary CP. We tested CP levels below and near predicted requirements (low protein [LP], 13.8%; high protein [HP], 15.5%) offered in 2 feeding patterns: where diets alternated ±1.8 percentage units CP every 2 d (oscillating [OF]) or remained static. Our study used a 2 × 2 factorial design with 16 mid- to late-lactation Holsteins (mean = 128, SD = 12 DIM), divided into rumen-cannulated (n = 8) and noncannulated subsets (n = 8). For each 28-d experimental period, we recorded feed intake and milk production and took samples of orts (1×/d) and milk (2×/d) for 4 d. For the cannulated subset, we measured and sampled from the total mass of feces and urine production and collected plasma 2×/d across 4 d. For the noncannulated subset, we sampled carbon dioxide and methane emissions 3×/d for 4 d. For each subset, we fit linear mixed models with fixed effects for CP level, CP feeding pattern, the interaction of CP level and CP feeding pattern, period, and a random effect for cow. For plasma and urinary urea-N, we conducted time series analysis. Contrary to our hypothesis, we found no evidence that dietary CP level and CP feeding pattern interacted to influence N balance, nutrient digestibility, or gas emissions. Results showed HP resulted in similar milk N but increased manure N, reducing N use efficiency (milk true protein N/intake N) relative to LP. For OF, urea-N in urine and plasma peaked 46 to 52 h after the first higher-CP phase feeding. Nutrient digestibility and gas emissions were similar across treatments, except CO2 production was greater for OF-HP. In summary, measured variables were minimally affected by dietary CP alternating ±1.8 percentage units every 48 h, even when average dietary CP was fed below predicted requirements (LP). Although our findings suggest that mid- to late-lactation cows are resilient to oscillation in dietary CP, oscillating CP neither reduced the environmental footprint by improving nutrient use efficiencies nor reduced the potential for direct and indirect greenhouse gas emissions.


Amino Acids , Diet , Dietary Proteins , Digestion , Lactation , Milk , Nitrogen , Animals , Cattle , Female , Nitrogen/metabolism , Diet/veterinary , Dietary Proteins/metabolism , Amino Acids/metabolism , Amino Acids/blood , Milk/metabolism , Milk/chemistry , Greenhouse Gases , Animal Feed , Nutrients/metabolism
17.
Clin Chim Acta ; 552: 117632, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37940015

BACKGROUND: Measurement of serum amino acid (AA) concentrations is important in particular for the diagnosis and monitoring of inborn errors of AA metabolism. To ensure optimal clinical interpretation of AAs, reliable biological variation (BV) data are essential. In the present study, we derived BV data for 22 non-essential, conditionally essential, and essential AAs and assessed differences in BV of AAs related to sex. METHODS: Morning blood samples were drawn from 66 subjects (31 males and 35 females) once a week for 10 consecutive weeks. All samples were analyzed in duplicate using liquid chromatography-tandem mass-spectrometry. The data were assessed for outliers, trends, normality and variance homogeneity analysis prior to estimating within-subject (CVI) and between-subject (CVG) BV. RESULTS: CVI estimates ranged from 9.0 % for histidine (male) to 33.0 % for taurine (male). CVI estimates in males and females were significantly different for all AAs except for aspartic acid, citrulline and phenylalanine, in most cases higher in females than in males. Apart from for arginine, CVG estimates in males and females were similar. CONCLUSIONS: In this highly powered BV study, we provide updated BV estimates for 22 AAs and demonstrate that for most AAs, CVI estimates differ between males and females, with implications for interpretation and use of AAs in clinical practice.


Amino Acids , Sex Characteristics , Female , Humans , Male , Amino Acids/blood
18.
J Dairy Sci ; 106(12): 9733-9744, 2023 Dec.
Article En | MEDLINE | ID: mdl-37641280

Choline requirements for dairy cattle are unknown. However, enhanced postruminal supply of choline may increase flux through the methionine cycle to spare Met for other functions such as protein synthesis and phosphatidylcholine (PC) synthesis during periods of negative nutrient balance (NNB). The objective was to investigate the effects of postruminal choline supply during a feed restriction-induced NNB on hepatic abundance and phosphorylation of mTOR (mechanistic target of rapamycin)-related signaling proteins, hepatic lipidome and plasma AA. Ten primiparous rumen-cannulated Holstein cows (158 ± 24 DIM) were used in a replicated 5 × 5 Latin square design with 4 d of treatment and 10 d of recovery (14 d/period). Treatments were unrestricted intake with abomasal infusion of water, restricted intake (R; 60% of net energy for lactation requirements to induce NNB) with abomasal infusion of water (R0) or restriction plus abomasal infusion of 6.25, 12.5, or 25 g/d choline ion. Liver tissue was collected via biopsy on d 5 after infusions ended and used for Western blot analysis to measure proteins involved in mTOR signaling and untargeted lipidomics. Blood was collected on d 1 to 5 for plasma AA analysis. Statistical contrasts for protein and AA data were A0 versus R0 (CONT1), R0 versus the average of choline dose (CONT2) and tests of linear and quadratic effects of choline dose. Analysis of lipidomic data were performed with the web-based metabolomic processing tool MetaboAnalyst 5.0. Ratios of p-RPS6KB1:tRPS6KB1, p-EEF2:tEEF2, and p-EIF2:tEIF2 were greater with R (CONT1). Among those, supply of choline led to decreases in p-EEF2:tEEF2 (CONT2), p-EIF2:tEIF2 and tended to decrease p-EIF4BP1:tEIF4BP1. However, the effect was quadratic only for p-EEF2:tEEF2 and p-EIF2A:tEIF2A, reaching a nadir at 6.25 to 12.5 g/d choline ion. The ratio of p-RPS6KB1:tRPS6KB1 was not affected by supply of choline and was close to 2-fold greater at 25 g/d choline versus A0. Plasma Met concentration decreased with R (CONT1), but increased linearly with choline. Restriction also increased plasma 3-methyl-histidine (CONT1). The partial least squares discriminant analysis model of liver lipids distinguished treatments, with 13.4% of lipids being modified by treatment. One-way ANOVA identified 109 lipids with a false discovery rate ≤0.05. The largest group identified was PC species; all 35 detected decreased with R versus A0, but there were few differences among choline treatments. Overall, data suggested that dephosphorylation of EEF2 and EIF2A due to enhanced choline supply potentially helped maintain or increase protein synthesis during NNB. While activation of mTOR was not altered by choline, this idea of increased protein synthesis is partly supported by the increased circulating Met. However, enhanced postruminal choline had limited effects on the species of lipid produced during a period of NNB.


Amino Acids , Choline , Liver , Choline/blood , Choline/metabolism , Liver/metabolism , Female , Animals , Cattle , Signal Transduction , Amino Acids/blood , Amino Acids/metabolism , Lactation , Peripartum Period/blood , Peripartum Period/metabolism , Food Deprivation , Biopsy/veterinary , Lipids/blood , Proteins , Rumen/metabolism
19.
BMC Geriatr ; 23(1): 427, 2023 07 12.
Article En | MEDLINE | ID: mdl-37438737

BACKGROUND: The mass and strength of skeletal muscle decline with age, leading to its progressive dysfunction. High-throughput metabolite profiling provides the opportunity to reveal metabolic mechanisms and the identification of biomarkers. However, the role of amino acid metabolism in possible sarcopenia remains unclear. OBJECTIVES: The aim of this study included exploring variations in plasma amino acid concentrations in elderly individuals who have possible sarcopenia and further attempting to characterize a distinctive plasma amino acid profile through targeted metabolomics. METHODS: A cross-sectional, correlational research design was used for this study. Thirty possible-sarcopenic elderly participants were recruited (n = 30), as determined by the Asian Working Group for Sarcopenia (AWGS). Meanwhile, a reference group of non-sarcopenic (sex-, age-, and Appendicular Skeletal muscle Mass Index (ASMI)-matched non-sarcopenic controls, n = 36) individuals was included to compare the potential differences in metabolic fingerprint of the plasma amino acids associated with sarcopenia. Both groups were conducted the body composition analysis, physical function examination, and plasma amino acid-targeted metabolomics. The amino acids in plasma were measured using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS). Also, orthogonal partial least-squares-discriminant analysis (OPLS-DA) was applied to characterize the plasma amino acid profile. RESULTS: With respect to Handgrip Strength (HGS), the Five-Repetition Chair Stand Test (CS-5), the Six-Minute Walking Test (6MWT), the arm curl, the 30 s-Chair Stand Test (CST), the 2-Minute Step Test (2MST), the Timed Up-and-Go Test (TUGT), there was a decline in skeletal muscle function in the possible-sarcopenic group compared to the non-sarcopenic group. The mean plasma concentrations of arginine, asparagine, phenylalanine, serine, lysine, glutamine, and threonine were significantly lower in the possible sarcopenia group, whereas cirulline, proline, serine, and glutamic acid concentrations were higher. According to the multi-analysis, glutamine, serine, lysine, threonine, and proline were determined as the potential markers that indicated possible sarcopenia. CONCLUSIONS: The findings characterize significantly altered plasma amino acid metabolisms in the elderly with possible sarcopenia, which aids to screening people who are at a high risk of developing condition, and motivating to design new preventive and therapeutic approaches.


Amino Acids , Sarcopenia , Aged , Humans , Amino Acids/blood , Chromatography, Liquid , Cross-Sectional Studies , Glutamine , Hand Strength , Lysine , Sarcopenia/diagnosis , Tandem Mass Spectrometry
20.
J Biol Chem ; 299(6): 104764, 2023 06.
Article En | MEDLINE | ID: mdl-37121548

N-acyl amino acids are a large family of circulating lipid metabolites that modulate energy expenditure and fat mass in rodents. However, little is known about the regulation and potential cardiometabolic functions of N-acyl amino acids in humans. Here, we analyze the cardiometabolic phenotype associations and genomic associations of four plasma N-acyl amino acids (N-oleoyl-leucine, N-oleoyl-phenylalanine, N-oleoyl-serine, and N-oleoyl-glycine) in 2351 individuals from the Jackson Heart Study. We find that plasma levels of specific N-acyl amino acids are associated with cardiometabolic disease endpoints independent of free amino acid plasma levels and in patterns according to the amino acid head group. By integrating whole genome sequencing data with N-acyl amino acid levels, we identify that the genetic determinants of N-acyl amino acid levels also cluster according to the amino acid head group. Furthermore, we identify the CYP4F2 locus as a genetic determinant of plasma N-oleoyl-leucine and N-oleoyl-phenylalanine levels in human plasma. In experimental studies, we demonstrate that CYP4F2-mediated hydroxylation of N-oleoyl-leucine and N-oleoyl-phenylalanine results in metabolic diversification and production of many previously unknown lipid metabolites with varying characteristics of the fatty acid tail group, including several that structurally resemble fatty acid hydroxy fatty acids. These studies provide a structural framework for understanding the regulation and disease associations of N-acyl amino acids in humans and identify that the diversity of this lipid signaling family can be significantly expanded through CYP4F-mediated ω-hydroxylation.


Amino Acids , Cytochrome P450 Family 4 , Oleic Acids , Humans , Amino Acids/blood , Amino Acids/chemistry , Cardiovascular Diseases , Cytochrome P450 Family 4/metabolism , Fatty Acids/metabolism , Leucine , Phenylalanine , Oleic Acids/blood
...