Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 121
1.
FASEB J ; 38(10): e23669, 2024 May 31.
Article En | MEDLINE | ID: mdl-38747734

Amomum xanthioides (AX) has been used as an edible herbal medicine to treat digestive system disorders in Asia. Additionally, Lactobacillus casei is a well-known probiotic commonly used in fermentation processes as a starter. The current study aimed to investigate the potential of Lactobacillus casei-fermented Amomum xanthioides (LAX) in alleviating metabolic disorders induced by high-fat diet (HFD) in a mouse model. LAX significantly reduced the body and fat weight, outperforming AX, yet without suppressing appetite. LAX also markedly ameliorated excessive lipid accumulation and reduced inflammatory cytokine (IL-6) levels in serum superior to AX in association with UCP1 activation and adiponectin elevation. Furthermore, LAX noticeably improved the levels of fasting blood glucose, serum insulin, and HOMA-IR through positive regulation of glucose transporters (GLUT2, GLUT4), and insulin receptor gene expression. In conclusion, the fermentation of AX demonstrates a pronounced mitigation of overnutrition-induced metabolic dysfunction, including hyperlipidemia, hyperglycemia, hyperinsulinemia, and obesity, compared to non-fermented AX. Consequently, we proposed that the fermentation of AX holds promise as a potential candidate for effectively ameliorating metabolic disorders.


Amomum , Diet, High-Fat , Fermentation , Lacticaseibacillus casei , Obesity , Animals , Diet, High-Fat/adverse effects , Mice , Obesity/metabolism , Male , Lacticaseibacillus casei/metabolism , Amomum/chemistry , Mice, Inbred C57BL , Probiotics/pharmacology , Uncoupling Protein 1/metabolism , Insulin Resistance , Mice, Obese , Adiponectin/metabolism , Insulin/metabolism , Insulin/blood , Blood Glucose/metabolism
2.
Bioorg Chem ; 147: 107375, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636437

The dried fruit of Amomum villosum is an important spice and medicinal plant that has received great attention in recent years due to its high content of bioactive components and its potential for food additives and drug development. However, the stems and leaves of A. villosum are usually disposed of as waste. Based on the study of the fruits of A. villosum, we also systematically studied its stems and leaves. Fourteen aromatic compounds (1-14) were isolated and identified from A. villosum, including five new compounds (1-5) and nine known compounds (6-14). Among them, compounds 2-5, 8-10, 12-13 were obtained from the fruits of A. villosum, and compounds 1, 6-7,11, 14 were isolated from the stems and leaves of A. villosum. Based on chemical evidence and spectral data analysis (UV, ECD, Optical rotation data, 1D and 2D-NMR, and HR-ESI-MS), the structures of new compounds were elucidated. Furthermore, all compounds were tested for their effects on the survival rate of BV-2 cells in the presence of hydrogen peroxide. Among them, compound 5 showed antioxidant effects. Through network pharmacology screening and the cell thermal shift assay (CETSA), the Phosphoglycerate Mutase 5 (PGAM5) protein was identified as the antioxidant target of compound 5. Molecular docking results showed that compound 5 maintains binding to PGAM5 by forming hydrogen bond interactions with Lys93 and Agr214. In summary, A. villosum had potential medicinal and food values due to the diverse bioactive components.


Amomum , Antioxidants , Molecular Docking Simulation , Amomum/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug , Cell Survival/drug effects , Humans , Animals , Plant Leaves/chemistry
3.
Bioorg Chem ; 145: 107190, 2024 Apr.
Article En | MEDLINE | ID: mdl-38377816

The fruits of Amomum villosum are often considered a medicinal and food homologous material and have been found to have therapeutic effects in chronic enteritis, gastroenteritis, and duodenal ulcer. The aim of this study is to discover the anti-inflammatory active ingredients from dried ripe fruits of A. villosum and to elucidate the molecular mechanisms. We verified that the inhibitory activity of the ethyl acetate extract was superior to Dexamethasone (Dex), so we ultimately chose to study the ethyl acetate extract from the fruits of A. villosum. A total of 33 compounds were isolated from its ethyl acetate extract, including nine known diterpenoids (compounds 1-9), twelve known sesquiterpenoids (compounds 10-21), ten known phenolics (compounds 22, 23, 25-29, 31-33) and two new phenolics (24 and 30). On the basis of chemical evidences and spectral data analysis (UV, ECD, Optical rotation data, 1D and 2D-NMR, HR-ESI-MS, NMR chemical shift calculations), the structures of new compounds were elucidated. Among these compounds, isocoronarin D (5) was found to have good anti-inflammatory activity. Further research has found that isocoronarin D can down-regulate the protein levels of COX2 and NOS2, activate Nrf2/Keap1 and suppress NF-κB signaling pathway in LPS-induced RAW264.7 cells. In addition, isocoronarin D inhibited inflammasome assembly during inflammasome activation by hampering the binding of NLRP3 and ASC. Further evidence revealed that isocoronarin D suppressed the assembly of the NLRP3 inflammasome via blocking the formation of ASC specks. From these results, isocoronarin D may be the important bioactive compound of A. villosum and exhibits anti-inflammatory effects by regulating the NF-κB/Nrf2/NLRP3 axis in macrophages.


Acetates , Amomum , Diterpenes , Imidazoles , Sulfonamides , Thiophenes , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Amomum/chemistry , Terpenes , NF-kappa B/metabolism , Kelch-Like ECH-Associated Protein 1 , Fruit/chemistry , NF-E2-Related Factor 2/metabolism , Anti-Inflammatory Agents/pharmacology , Lipopolysaccharides/pharmacology
4.
Phytochemistry ; 219: 113982, 2024 Mar.
Article En | MEDLINE | ID: mdl-38215812

Ten previously undescribed compounds were isolated from the fruits of Amomum tsao-ko (Zingiberaceae), including nine undescribed flavanol-fatty alcohol hybrids (1-6, 10-11, 13), and a flavanol-monoterpenoid hybrid (14), along with seven known flavanol hybrids (7-9, 12, 15-17). The structures of these compounds were determined using various analyses, such as HRESIMS, 1D/2D NMR, and ECD calculations. In terms of biological activity, compounds 1, 2, 5, and 6 exhibited inhibitions of human pancreatic lipase (HPL), with IC50 values ranging from 0.017 to 0.193 mM. Some of these values were found to be stronger than that of the positive control, orlistat (IC50, 0.067 mM). Molecular docking studies were also conducted to investigate the interactions between these compounds and HPL. The docking simulations revealed the importance of the orientation of the 3,4-dihydroxyphenyl in binding with HPL. Additionally, compound 9 demonstrated cytotoxicity against HepG2, with a CC50 value of 14.96 ± 0.62 µM as determined by the MTT assay. Flow cytometry analysis indicated that compound 9 induced apoptosis in HepG2 cells. Western blot results showed an up-regulation of apoptosis-related proteins, such as p53 protein, Bax and Caspase-3 proteins, while the expression of Bcl-2 protein was down-regulated.


Amomum , Humans , Amomum/chemistry , Fatty Alcohols/analysis , Molecular Docking Simulation , Fruit/chemistry , Lipase
5.
Drug Dev Ind Pharm ; 50(2): 150-162, 2024 Feb.
Article En | MEDLINE | ID: mdl-38194223

OBJECTIVE: This study aims to investigate the quality consistency between traditional decoction (TD) of Amomum villosum and its dispensing granule decoction (DGD). Fifteen batches of TD and nine batches of dispensing granules (manufactured by A, B, and C) were prepared and evaluated for their consistency. METHODS: Firstly, The chemical similarity of TD and DGD was examined using GC and HPLC, coupled with hierarchical cluster analysis (HCA), criteria importance though intercrieria correlation(CRITIC) weighting method, and principal component analysis (PCA). Secondly, the gastrointestinal motility experiments in mice, along with the CRITIC weighting method, were employed to assess the bioequivalence of TD and DGD of Amomum villosum. Finally, the entropy weight technique-gray relative analysis(GRA) method was used to compare the quality of Amomum villosum decoctions. RESULTS: ①The CRITIC weighting method indicated significantly higher scores for TD than DGD (p < 0.01). HCA and PCA results demonstrated a clear distinction between TD and DGD. ②Gastrointestinal motility test results revealed no significant difference between TD and DGD in other indicators (p > 0.05).③Gray relative analysis results showed that the relative correlation of TD was more significant than that of DGD. CONCLUSION: The chemical composition of DGD and TD differed. The biological activity of DGD-A/B was consistent with that of TD, while the difference between DGD-C and TD was significant. A comprehensive evaluation showed that TD exhibited better quality than DGD. DGD manufacturers should optimize the preparation process to enhance product quality.


Amomum , Drugs, Chinese Herbal , Animals , Mice , Drugs, Chinese Herbal/chemistry , Amomum/chemistry , Therapeutic Equivalency , Chromatography, High Pressure Liquid/methods , Principal Component Analysis
6.
Molecules ; 28(23)2023 Nov 24.
Article En | MEDLINE | ID: mdl-38067483

The fruits of Amomum kravanh, Citrus hystrix and Piper nigrum 'Kampot' are traditionally used as spices in Cambodian cuisine. In this study, the chemical composition of essential oils (EOs) and supercritical CO2 extracts from all three species was determined using GC-MS, with two columns of different polarity (HP-5/DB-HeavyWAX). Differences between the chemical profile of the EOs and CO2 extracts were observed for all species. The greatest difference was detected in A. kravanh EO containing mainly eucalyptol (78.8/72.6%), while the CO2 extract was rich in fatty acids (13/55.92%) and long-chain alkanes (25.55/9.54%). Furthermore, the results for the CO2 extract of this species differed, where tricosane (14.74%) and oleic acid (29.26%) were the main compounds identified when utilizing the HP-5 or DB-HeavyWAX columns, respectively. Moreover, the EO and CO2 extract from P. nigrum 'Kampot' fruits and the CO2 extract from C. hystrix fruit peel, containing respective amounts 34.84/39.55% (for EO) and 54.21/55.86% (for CO2 extract) of ß-caryophyllene and 30.2/28.9% of ß-pinene, were isolated and analyzed for the first time. Generally, these findings suggest that supercritical CO2 could potentially be used for the extraction of all three spices. Nevertheless, further research determining the most efficient extraction parameters is required before its commercial application.


Amomum , Chromatography, Supercritical Fluid , Citrus , Oils, Volatile , Piper nigrum , Oils, Volatile/chemistry , Piper nigrum/chemistry , Carbon Dioxide/chemistry , Amomum/chemistry , Plant Extracts/chemistry , Plant Oils/chemistry
7.
Anal Chim Acta ; 1280: 341869, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37858569

BACKGROUND: The fruits and seeds of genus Amomum are well-known as medicinal plants and edible spices, and are used in countries such as China, India and Vietnam to treat malaria, gastrointestinal disorders and indigestion. The morphological differences between different species are relatively small, and technical characterization and identification techniques are needed. RESULTS: Fourier transform near infrared spectroscopy (FT-NIR) and gas chromatography-mass spectrometry (GC-MS), combined with principal component analysis and two-dimensional correlation analysis were used to characterize the chemical differences of Amomum tsao-ko, Amomum koenigii, and Amomum paratsaoko. The targets and pathways for the treatment of diabetes mellitus in three species were predicted using network pharmacology and screened for the corresponding pharmacodynamic components as potential quality markers. The results of "component-target-pathway" network showed that (+)-Nerolidol, 2-Nonanol, α-Terpineol, α-Pinene, 2-Nonanone had high degree values and may be the main active components. Partial least squares-discriminant analysis (PLS-DA) was further used to select for differential metabolites and was identified as a potential quality marker, 11 in total. PLS-DA and residual network (ResNet) classification models were developed for the identification of 3 species of the genus Amomum, ResNet model is more suitable for the identification study of large volume samples. SIGNIFICANCE: This study characterizes the differences between the three species in a visual way and also provides a reliable technique for their identification, while demonstrating the ability of FT-NIR spectroscopy for fast, easy and accurate species identification. The results of this study lay the foundation for quality evaluation studies of genus Amomum and provide new ideas for the development of new drugs for the treatment of diabetes mellitus.


Amomum , Diabetes Mellitus , Plants, Medicinal , Amomum/chemistry , Gas Chromatography-Mass Spectrometry/methods , Plants, Medicinal/chemistry , Fruit
8.
Chem Biodivers ; 20(9): e202301014, 2023 Sep.
Article En | MEDLINE | ID: mdl-37538044

Three new labdane-type diterpenoids, calcaratarin E, villosumtriol, and 12-epi-villosumtriol (1-3) were isolated from the fruits of Amomum villosum, along with seven known diterpenoids (4-10). Through comprehensive analysis of chemical evidence and spectral data including UV, 1D and 2D NMR, HR-ESI-MS, IR, and X-ray crystallography, the structures of these novel compounds were successfully determined. Additionally, the inhibitory effects of compounds 2-10 on NO production in lipopolysaccharide (LPS)-induced RAW264.7 cells were evaluated. Notably, compound 6 exhibited the most significant inhibitory effect with an IC50 value of 1.74±0.69 µM.


Amomum , Diterpenes , Amomum/chemistry , Fruit/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Magnetic Resonance Spectroscopy , Diterpenes/chemistry , Molecular Structure
9.
Molecules ; 28(12)2023 Jun 20.
Article En | MEDLINE | ID: mdl-37375433

Alcoholism is a worldwide health problem, and diseases caused by alcoholism are killing people every year. Amomum kravanh is a traditional Chinese medicine used to relieve hangovers. However, whether its bioactive components improve alcohol metabolism is not clear. In this study, ten new (amomumols A-J, 1-10) and thirty-five known (11-45) compounds were isolated from the fruits of Amomum kravanh by an activity-guided separation. Ten novel compounds were identified as four sesquiterpenoids (1-4), three monoterpene derivatives (5-7), two neolignans (8, 9), and a novel norsesquiterpenoid (10) with a new C14 nor-bisabolane skeleton. Their structures were determined by the comprehensive analysis of high-resolution electrospray ionization mass spectrometry (HRESIMS), nuclear magnetic resonance (NMR), and electronic circular dichroism (ECD) calculation. The effects of all isolated compounds on the activity of alcohol dehydrogenase were evaluated in vitro, and it was found that eight compounds (11, 12, 15, 18, 26, and 36-38) exhibited significant activation effects on the alcohol dehydrogenase at 50 µM.


Alcoholism , Amomum , Humans , Fruit/chemistry , Amomum/chemistry , Alcohol Dehydrogenase , Monoterpenes/chemistry
10.
J Agric Food Chem ; 71(18): 7020-7031, 2023 May 10.
Article En | MEDLINE | ID: mdl-37126773

Amomum tsao-ko is an important spice and medicinal plant that has received extensive attention in recent years for its high content of bioactive constituents with the potential for food additives and drug development. Diarylheptanoids are major and characteristic compounds in A. tsao-ko; however, the biochemical and molecular foundation of diarylheptanoids in fruit is unknown. We performed comparative metabolomics and transcriptomics studies in the ripening stages of A. tsao-ko fruit. The chemical constituents of fruit vary in different harvest periods, and the diarylheptanoids have a trend to decrease or increase with fruit development. GO enrichment analysis revealed that plant hormone signaling pathways including the ethylene-activated signaling pathway, salicylic acid, jasmonic acid, abscisic acid, and response to hydrogen peroxide were associated with fruit ripening. The biosynthetic pathways including phenylpropanoid, flavonoids, and diarylheptanoids biosynthesis were displayed in high enrichment levels in ripening fruit. The molecular networking and phytochemistry investigation of A. tsao-ko fruit has isolated and identified 10 diarylheptanoids including three new compounds. The candidate genes related to diarylheptanoids were obtained by coexpression network analysis and phylogenetic analysis. Two key genes have been verified to biosynthesize linear diarylheptanoids. This integrative approach provides gene regulation and networking associated with the biosynthesis of characteristic diarylheptanoids, which can be used to improve the quality of A. tsao-ko as food and medicine.


Amomum , Amomum/genetics , Amomum/chemistry , Fruit/genetics , Fruit/chemistry , Diarylheptanoids , Phylogeny , Transcriptome , Metabolomics
11.
Molecules ; 28(6)2023 Mar 13.
Article En | MEDLINE | ID: mdl-36985573

A new bicyclic nonene, tsaokoic acid (1), was isolated from the fruits of Amomum tsao-ko, together with three known compounds (2-4). The structure of 1 was elucidated by analyzing spectroscopic data including 1D and 2D NMR spectra and compounds 2-4 were identified as tsaokoin, vanillin, and tsaokoarylone, respectively, by comparing their NMR spectra with previously reported data. Compounds 1-4 showed possible inhibitory activity against acetylcholinesterase (AChE) in silico molecular docking simulations. They were submitted to in vitro assay system and exhibited moderate inhibitory activity with IC50 values of 32.78, 41.70, 39.25, and 31.13 µM, respectively.


Amomum , Fruit , Fruit/chemistry , Amomum/chemistry , Acetylcholinesterase , Molecular Docking Simulation , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/analysis , Molecular Structure
12.
Bioorg Chem ; 131: 106281, 2023 02.
Article En | MEDLINE | ID: mdl-36434951

Amomum villosum Lour. is a medicinal and edible plant, whose medicinal parts are dried and mature fruits, and its stems and leaves are always treated as waste. HPLC-MS/MS analysis showed that the chemical components contained in the stems/leaves of A. villosum and those in fruits are quite different. To discover potential active ingredients from the stems/leaves of A. villosum, phytochemical evaluation of the stems/leaves of A. villosum was conducted to isolate and identify-four undescribed compounds (1, 2a, 2b, and 3) along with 41 known ones (4a, 4b, 5a, 5b, and 6-42). All isolated compounds were assessed for their anti-inflammatory and antioxidant activities. Among them, compounds 5b, 33, 34, and 38 exhibited anti-inflammatory activity, and compounds 1, 4a, 4b, 6, 7, 15, 33, 35, 37, and 41 showed antioxidant effects. Among them, the new compound 1 showed a significant antioxidant effect via activation of NRF2/HO-1 pathways. Therefore, the leaves and stems of A. villosum may be served as a potential medicine or dietary supplement for preventing and treating diseases resulting from inflammation and oxidative stress.


Amomum , Zingiberaceae , Antioxidants/pharmacology , Amomum/chemistry , Tandem Mass Spectrometry , Anti-Inflammatory Agents/pharmacology
13.
Carbohydr Polym ; 294: 119822, 2022 Oct 15.
Article En | MEDLINE | ID: mdl-35868771

AVLP-2, a novel acidic polysaccharide, was isolated and purified from Amomum villosum Lour. The structural characteristics of the polysaccharides were characterized using monosaccharide composition, methylation, FT-IR, and NMR techniques. Results showed that AVLP-2 comprises galactose and glucose monomers, has a molecular weight of 10.488 kDa, and has backbone structures →4)-α-d-GalAp-(1→3,4)-α-d-GalAp-(1→, →4)-α-d-GalAp-(1→6)-α-d-Galp-(1→, and n→6)-α-d-Galp-(1→4)-ß-d-Glcp-(1→, with α-d-Galp-(1→ branches. Furthermore, AVLP-2 had a significant protective effect against oxidative stress in alcohol-induced injury and LPS inflammation models GES-1 cells by regulating the levels of ROS and inflammatory factors. In the animal experiments, AVLP-2 improved the oxidative stress status of the gastric mucosa by increasing SOD activity and GSH levels and inhibiting the excessive generation of malondialdehyde in tissues. The levels of MPO, IL-1ß, IL-10, and NF-κB p65 were downregulated, while that of TNF-α was upregulated by AVLP-2 treatment, thereby reducing the alcohol-induced inflammation.


Amomum , Amomum/chemistry , Animals , Ethanol , Gastric Mucosa , Inflammation , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Spectroscopy, Fourier Transform Infrared
14.
Phytochemistry ; 199: 113204, 2022 Jul.
Article En | MEDLINE | ID: mdl-35421433

The dried fruit of Amomum villosum (Amomi Fructus) is an important spices and traditional Chinese medicine. In this study, the EtOH extract of Amomi Fructus was revealed with hypoglycemic effects on db/db mice by increasing plasma insulin levels. After extracted with EtOAc, the EtOAc fraction showed increased activity in stimulating glucagon-like peptide-1 (GLP-1) secretion compared with the EtOH extract. In order to clarify the antidiabetic constituents, four undescribed norlignans, amovillosumins A‒D, were isolated from the EtOAc fraction, and the subsequent chiral resolution yielded three pairs of enantiomers. Their structures were determined by extensive spectroscopic data (1D and 2D NMR, HRESIMS, IR, UV and [α]D) and ECD calculations. Amovillosumins A and B significantly stimulated GLP-1 secretion by 375.1% and 222.7% at 25.0 µM, and 166.9% and 62.7% at 12.5 µM, representing a new type of GLP-1 secretagogues.


Amomum , Zingiberaceae , Amomum/chemistry , Animals , Fruit/chemistry , Glucagon-Like Peptide 1/analysis , Mice , Plant Extracts/analysis , Secretagogues/analysis
15.
Molecules ; 27(3)2022 Jan 28.
Article En | MEDLINE | ID: mdl-35164174

Since the potential of (3:1) mixtures of Atractylodes macrocephala and Amomum villosum extracts has been proposed in the management of obesity, the purpose of present study was to investigate the effects of AME:AVE (3:1) mixture on weight loss, obesity-related biochemical parameters, adipogenesis and lipogenesis related proteins in 3T3-L1 cells and HFD-induced obesity in a mouse model. Treatment with AME:AVE (3:1) mixture inhibited lipid accumulation. Furthermore, the treatment with 75 and 150 mg/kg of AME:AVE (3:1) significantly decreased the body weight gain, white adipose tissue (WAT) weight, and plasma glucose level in HFD-induced obese mice. Moreover, treatment with 75 and 150 mg/kg AME:AVE (3:1) also significantly lowered the size of adipocytes in adipose tissue and reduced the lipid accumulation in liver. AME:AVE (3:1) treatment significantly decreased the expression of proteins related to adipogenesis and lipogenesis in 3T3-L1 adipocytes and WAT of HFD-induced obese mice. These results suggest that the AME:AVE herbal mixture (3:1) has anti-obesity effects, which may be elicited by regulating the expression of adipogenesis and lipogenesis-related proteins in adipocytes and WAT in HFD-induced obesity in mice.


Adipocytes/drug effects , Amomum , Anti-Obesity Agents/therapeutic use , Atractylodes , Obesity/drug therapy , Plant Extracts/therapeutic use , 3T3-L1 Cells , Amomum/chemistry , Animals , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Atractylodes/chemistry , Diet, High-Fat/adverse effects , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Plant Extracts/chemistry , Plant Extracts/pharmacology
16.
J Nat Med ; 76(2): 435-450, 2022 Mar.
Article En | MEDLINE | ID: mdl-35075577

Previously, to develop an objective identification method for Amomi Semen (AS), the nucleotide sequences of nrDNA ITS region and two cpDNA regions of nine Amomum taxa specimens from Southeast Asia and China were determined, and the generated phylogenetic tree showed six taxa specimens were divided into four groups. In this study, 51 crude drug samples of AS in Japanese markets were classified into four groups or species based on their ITS sequences. Approximately 67% of samples were derived from A. villosum var. xanthioides or A. xanthioides, A. villosum var. villosum and A. longiligulare prescribed in Japanese Pharmacopoeia, and the rest were mixed with A. uliginosum and A. microcarpum. Subsequently, the essential oil compositions of Amomum taxa specimens and AS samples were determined by GC-MS to characterize each group or species. Group 1(A. xanthioides) samples were characterized by containing higher amount of camphor(6) than bornyl acetate(9), and a specific germacrene D-4-ol; group 2(Chinese A. villosum var. villosum and var. xanthioides) by containing higher amount of 9 than 6, a specific isobornyl acetate; group 3(Laotian A. villosum var. villosum and A. longiligulare) by containing higher amount of 6 than 9, and a characteristic neointermedeol, except for A. longiligulare specimen from Hainan, China; group 4(A. uliginosum) by containing equivalent amount of 6 and 9, and the specific (E,E)-farnesyl acetate and (E,E)-farnesol. A. microcarpum samples were discriminated from the above groups by absence of 6 and 9, and with higher amount of (E)-nerolidol. There was a good correlation between genetic classification and chemical discrimination.


Amomum , Drugs, Chinese Herbal , Oils, Volatile , Amomum/chemistry , Amomum/genetics , Gas Chromatography-Mass Spectrometry , Phylogeny
17.
Nat Prod Res ; 36(10): 2570-2574, 2022 May.
Article En | MEDLINE | ID: mdl-33759661

Amomum maximum Roxb. rhizome is a fork medicine mainly used in South and Southeast Asia. In present study, the hypoglycaemic effects of the ethanolic extract of A. maximum rhizome were demonstrated both on α-glucosidase assay in vitro and streptozotocin (STZ)-induced postprandial hyperglycaemia in mice. Furthermore, six labdane diterpenes, amoxanthin A (1), ottensinin (2), coronarin D (3), coronarin D methyl ether (4), isocoronarin D (5), and zerumin (6), were isolated from its ethyl acetate sub-fraction with the guidance of α-glucosidase inhibitory activity. Among these compounds, 2 and 6 exhibited significant inhibitory effect on α-glucosidase, as well as on STZ-induced high postprandial blood glucose levels in mice. Additionally, molecular docking analysis revealed that 2 and 6 could firmly bind to the active sites of α-glucosidase. These results suggest that compounds 2 and 6 are the main anti-hyperglycaemic agents present in A. maximum, which may demonstrate potential beneficial effects in diabetes management.


Amomum , Diterpenes , Hyperglycemia , Amomum/chemistry , Animals , Diterpenes/chemistry , Hypoglycemic Agents/analysis , Hypoglycemic Agents/pharmacology , Mice , Molecular Docking Simulation , Plants, Edible , Rhizome/chemistry , alpha-Glucosidases/metabolism
18.
Food Funct ; 13(1): 437-450, 2022 Jan 04.
Article En | MEDLINE | ID: mdl-34918725

Amomum tsao-ko Crevost et Lemarie (A. tsao-ko) is a well-known dietary spice and traditional Chinese medicine. This study aimed to identify the flavonoids in A. tsao-ko and evaluate their antioxidant and antidiabetic activities in in vitro and in vivo studies. A. tsao-ko methanol extracts possessed a high flavonoid content (1.21 mg QE per g DW) and a total of 29 flavonoids were identified by employing UPLC-MS/MS. In vitro, A. tsao-ko demonstrated antioxidant activity (ORAC value of 34276.57 µM TE/100 g DW, IC50 of ABTS of 3.49 mg mL-1 and FRAP value of 207.42 µM Fe2+ per g DW) and α-amylase and α-glucosidase inhibitory ability with IC50 values of 14.23 and 1.76 mg mL-1, respectively. In vivo, type 2 diabetes mellitus (T2DM) models were induced by a combined high-fat diet (HFD) and streptozotocin (STZ) injection in rats. Treatment with the A. tsao-ko extract (100 mg freeze-dried powder per kg bw) for 6 weeks could significantly improve impaired glucose tolerance, decrease the levels of fasting blood glucose (FBG), insulin, and malondialdehyde (MDA), and increase the superoxide dismutase (SOD) level. Histopathology revealed that the A. tsao-ko extract preserved the architecture and function of the pancreas. In conclusion, the flavonoid composition of A. tsao-ko exhibits excellent antioxidant and antidiabetic activity in vitro and in vivo. A. tsao-ko could be a novel natural material and developed as a related functional food and medicine in T2DM management.


Amomum/chemistry , Antioxidants , Diabetes Mellitus, Experimental , Flavonoids , Hypoglycemic Agents , Animals , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Blood Glucose/drug effects , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Drugs, Chinese Herbal , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/pharmacology , Hypoglycemic Agents/analysis , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Male , Pancreas/drug effects , Pancreas/pathology , Rats , Rats, Sprague-Dawley , Specific Pathogen-Free Organisms
19.
Chem Biodivers ; 19(1): e202100443, 2022 Jan.
Article En | MEDLINE | ID: mdl-34855291

The chemical compositions of essential oils (EOs) prepared from six spices including cinnamon, amomum tsao-ko, cardamom, amomum, black pepper and white pepper were analyzed by gas chromatography-mass spectrometry (GC/MS), which led to identify almost 200 volatile compounds. All EOs of spices showed cholinesterase inhibitory activity. Among them, pepper EO showed most potent acetylcholinesterase (AChE) inhibitory activity with IC50 values of 8.54 µg/mL (black pepper EO) and 5.02 µg/mL (white pepper EO). Molecular docking and in vitro validation suggested that 3-carene, α-pinene and ß-pinene with IC50 value of 1.73, 2.66, and 14.75 µg/mL, respectively, might be active constituents of spices oil in inhibiting AChE. Furthermore, amomum tsao-ko EO and amomum EO can improve behavioral disorder in dementia zebrafish induced by aluminum trichloride (AlCl3 ).


Amomum/chemistry , Cholinesterase Inhibitors/chemistry , Elettaria/chemistry , Oils, Volatile/chemistry , Piper nigrum/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Aluminum Chloride/toxicity , Amomum/metabolism , Animals , Behavior, Animal/drug effects , Binding Sites , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Dementia/chemically induced , Dementia/drug therapy , Disease Models, Animal , Elettaria/metabolism , Gas Chromatography-Mass Spectrometry , Molecular Docking Simulation , Oils, Volatile/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Piper nigrum/metabolism , Zebrafish
20.
Molecules ; 26(23)2021 Nov 26.
Article En | MEDLINE | ID: mdl-34885744

A worldwide increase in the incidence of fungal infections, emergence of new fungal strains, and antifungal resistance to commercially available antibiotics indicate the need to investigate new treatment options for fungal diseases. Therefore, the interest in exploring the antifungal activity of medicinal plants has now been increased to discover phyto-therapeutics in replacement to conventional antifungal drugs. The study was conducted to explore and identify the mechanism of action of antifungal agents of edible plants, including Cinnamomum zeylanicum, Cinnamomum tamala, Amomum subulatum, Trigonella foenumgraecum, Mentha piperita, Coriandrum sativum, Lactuca sativa, and Brassica oleraceae var. italica. The antifungal potential was assessed via the disc diffusion method and, subsequently, the extracts were assessed for phytochemicals and total antioxidant activity. Potent polyphenols were detected using high-performance liquid chromatography (HPLC) and antifungal mechanism of action was evaluated in silico. Cinnamomum zeylanicum exhibited antifungal activity against all the tested strains while all plant extracts showed antifungal activity against Fusarium solani. Rutin, kaempferol, and quercetin were identified as common polyphenols. In silico studies showed that rutin displayed the greatest affinity with binding pocket of fungal 14-alpha demethylase and nucleoside diphosphokinase with the binding affinity (Kd, -9.4 and -8.9, respectively), as compared to terbinafine. Results indicated that Cinnamomum zeylanicum and Cinnamomum tamala exert their antifungal effect possibly due to kaempferol and rutin, respectively, or possibly by inhibition of nucleoside diphosphokinase (NDK) and 14-alpha demethylase (CYP51), while Amomum subulatum and Trigonella foenum graecum might exhibit antifungal potential due to quercetin. Overall, the study demonstrates that plant-derived products have a high potential to control fungal infections.


Antifungal Agents/chemistry , Biological Products/chemistry , Mycoses/drug therapy , Polyphenols/chemistry , Amomum/chemistry , Antifungal Agents/pharmacology , Antioxidants/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Brassica/chemistry , Cinnamomum zeylanicum/chemistry , Coriandrum/chemistry , Lactuca/chemistry , Mentha piperita/chemistry , Mycoses/microbiology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Edible/chemistry , Plants, Medicinal/chemistry , Polyphenols/isolation & purification , Polyphenols/pharmacology , Quercetin/chemistry , Quercetin/isolation & purification , Quercetin/pharmacology , Trigonella/chemistry
...