Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 708
2.
Clin Neurophysiol ; 162: 91-120, 2024 Jun.
Article En | MEDLINE | ID: mdl-38603949

This chapter discusses comprehensive neurophysiological biomarkers utilised in motor neuron disease (MND) and, in particular, its commonest form, amyotrophic lateral sclerosis (ALS). These encompass the conventional techniques including nerve conduction studies (NCS), needle and high-density surface electromyography (EMG) and H-reflex studies as well as novel techniques. In the last two decades, new methods of assessing the loss of motor units in a muscle have been developed, that are more convenient than earlier methods of motor unit number estimation (MUNE),and may use either electrical stimulation (e.g. MScanFit MUNE) or voluntary activation (MUNIX). Electrical impedance myography (EIM) is another novel approach for the evaluation that relies upon the application and measurement of high-frequency, low-intensity electrical current. Nerve excitability techniques (NET) also provide insights into the function of an axon and reflect the changes in resting membrane potential, ion channel dysfunction and the structural integrity of the axon and myelin sheath. Furthermore, imaging ultrasound techniques as well as magnetic resonance imaging are capable of detecting the constituents of morphological changes in the nerve and muscle. The chapter provides a critical description of the ability of each technique to provide neurophysiological insight into the complex pathophysiology of MND/ALS. However, it is important to recognise the strengths and limitations of each approach in order to clarify utility. These neurophysiological biomarkers have demonstrated reliability, specificity and provide additional information to validate and assess lower motor neuron dysfunction. Their use has expanded the knowledge about MND/ALS and enhanced our understanding of the relationship between motor units, axons, reflexes and other neural circuits in relation to clinical features of patients with MND/ALS at different stages of the disease. Taken together, the ultimate goal is to aid early diagnosis, distinguish potential disease mimics, monitor and stage disease progression, quantify response to treatment and develop potential therapeutic interventions.


Amyotrophic Lateral Sclerosis , Biomarkers , Electromyography , Motor Neuron Disease , Motor Neurons , Neural Conduction , Humans , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/diagnostic imaging , Motor Neurons/physiology , Motor Neuron Disease/physiopathology , Motor Neuron Disease/diagnostic imaging , Motor Neuron Disease/diagnosis , Electromyography/methods , Neural Conduction/physiology
3.
Nutrients ; 16(7)2024 Mar 31.
Article En | MEDLINE | ID: mdl-38613054

Amyotrophic lateral sclerosis (ALS) is a progressive disease with a high prevalence of malnutrition that can influence prognosis. The main objective of this study is to compare the validity of muscle ultrasonography in the diagnosis of malnutrition and the prognosis of patients with ALS. METHODS: This is a prospective observational study that analyzes the nutritional status of patients at the beginning of nutritional monitoring. The morphofunctional assessment included the examination of anthropometric variables such as weight, height, body mass index (BMI), arm circumference, and calf circumference. Additionally, electrical bioimpedanciometry (BIA) was used to measure electrical parameters and estimate other relevant metrics. Muscle ultrasonography® (quadriceps rectus femoris (QRF)) assessed muscle mass parameters, including muscle area index (MARAI), anteroposterior diameter of the QRF (Y-axis) (cm), transverse diameter of the QRF (X-axis) (cm), and the sum of the quadriceps thickness (RF+VI) (cm), as well as muscle quality parameters such as echogenicity and the Y-X index. RESULTS: A total of 37 patients diagnosed with amyotrophic lateral sclerosis (ALS) were included in this study. Of these patients, 51.4% were men. The mean age was 64.27 (12.59) years. A total of 54.1% of the patients had a bulbar onset of amyotrophic lateral sclerosis, and 45.9% had spinal onset. The percentage of subjects with malnutrition diagnosed by the Global Leadership Initiative on Malnutrition (GLIM) criteria was 45.9% of patients. There was a direct correlation between muscle mass parameters assessed by muscle ultrasonography (RF+VI) and active mass markers measured by bioimpedanciometry (body cellular mass index (BCMI) (r = 0.62; p < 0.01), fat-free mass index (FFMI) (r = 0.75; p < 0.01), and appendicular skeletal mass index (ASMI) (r = 0.69; p < 0.01)). There was a direct correlation between echogenicity and resistance (r = 0.44; p = 0.02), as well as between the fat-free mass index and the Y-X index (r = 0.36; p = 0.14). Additionally, there was a negative correlation between echogenicity and BCMI (r = -0.46; p < 0.01) and ASMI (r = 0.34; p = 0.06). Patients with low quadriceps thickness (male < 2.49 cm; female < 1.84 cm) showed an increased risk of hospital admission adjusted by age, sex, and presence of dysphagia (OR: 7.84 (CI 95%: 1.09-56.07); p-value = 0.04), and patients with low-quality mass (Y-X index < 0.35) had a higher risk of hospital admission adjusted by age, sex, and presence of dysphagia (OR: 19.83 (CI 95%: 1.77-222.46); p-value = 0.02). CONCLUSIONS: In patients with ALS, ultrasonography echogenicity was inversely related to BCMI, FFMI, and ASMI, and the Y-X index was directly related to FFMI. The lowest quartiles of quadriceps thickness and Y-X index are risk factors for hospital admission.


Amyotrophic Lateral Sclerosis , Deglutition Disorders , Malnutrition , Female , Humans , Male , Middle Aged , Amyotrophic Lateral Sclerosis/diagnostic imaging , Body Mass Index , Quadriceps Muscle/diagnostic imaging , Prospective Studies
4.
J Clin Neurosci ; 124: 67-72, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657488

BACKGROUND: Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease with multi-mechanisms as; inflammation, oxidative stress, glutamate excitotoxicity, protein aggregation, etc. This study aimed to evaluate the carotid Intima-Media Thickness (IMT) in ALS and healthy groups, as a possible indicator of these mechanisms. METHODS: 42 patients with ALS along with 53 normal age and body mass index (BMI) matched participants were recruited from the Firoozgar hospital. Carotid IMT values of the participants were measured using B-mode ultrasonography. Using Pearson correlation and logistic regression adjusting with age, BMI, and gender, the IMT values were assessed. RESULTS: The mean right and left carotid IMT values of the ALS patients (0.66 ± 0.09) were significantly higher than normal participants (0.45 ± 0.10) (p < 0.001). In addition, the IMT values were highly correlated with the age (r = 0.632; p < 0.001) and the age of ALS onset (r = 0.595; p < 0.001), in contrast to the BMI. Moreover, the higher value of IMT was associated with an increasing risk of ALS with an odd ratio (OR) of 1.483 (95 % Confidence interval [1.026-2.144]). Eventually, evaluating IMT by classifying ALS patients based on the ALS Health State Scale (ALSHSS) from early to late stage revealed a non-linear increase in the OR (1.372, 1.898, 2.172, and 3.403). CONCLUSION: The increased value of the carotid IMT independent of BMI in ALS could be assessed through ultrasonography as a convenient tool to evaluate the disease severity or possible systemic inflammation.


Amyotrophic Lateral Sclerosis , Carotid Intima-Media Thickness , Humans , Amyotrophic Lateral Sclerosis/diagnostic imaging , Male , Female , Middle Aged , Adult , Aged , Ultrasonography/methods , Body Mass Index
5.
J Neurol Sci ; 459: 122945, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38564847

The pathological hallmarks of amyotrophic lateral sclerosis (ALS) are degeneration of the primary motor cortex grey matter (GM) and corticospinal tract (CST) resulting in upper motor neuron (UMN) dysfunction. Conventional brain magnetic resonance imaging (MRI) shows abnormal CST hyperintensity in some UMN-predominant ALS patients (ALS-CST+) but not in others (ALS-CST-). In addition to the CST differences, we aimed to determine whether GM degeneration differs between ALS-CST+ and ALS-CST- patients by cortical thickness (CT), voxel-based morphometry (VBM) and fractal dimension analyses. We hypothesized that MRI multifractal (MF) measures could differentiate between neurologic controls (n = 14) and UMN-predominant ALS patients as well as between patient subgroups (ALS-CST+, n = 21 vs ALS-CST-, n = 27). No significant differences were observed in CT or GM VBM in any brain regions between patients and controls or between ALS subgroups. MF analyses were performed separately on GM of the whole brain, of frontal, parietal, occipital, and temporal lobes as well as of cerebellum. Estimating MF measures D (Q = 0), D (Q = 1), D (Q = 2), Δf, Δα of frontal lobe GM classified neurologic controls, ALS-CST+ and ALS-CST- groups with 98% accuracy and > 95% in F1, recall, precision and specificity scores. Classification accuracy was only 74% when using whole brain MF measures and < 70% for other brain lobes. We demonstrate that MF analysis can distinguish UMN-predominant ALS subgroups based on GM changes, which the more commonly used quantitative approaches of CT and VBM cannot.


Amyotrophic Lateral Sclerosis , Gray Matter , Humans , Gray Matter/diagnostic imaging , Gray Matter/pathology , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Pyramidal Tracts/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods
6.
J Integr Neurosci ; 23(4): 77, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38682227

BACKGROUND: Motor neuron diseases (MNDs) are progressive neurodegenerative disorders characterized by motor impairment and non-motor symptoms. The involvement of the thalamus in MNDs, especially in conditions such as amyotrophic lateral sclerosis (ALS), and its interaction with frontotemporal dementia (FTD), has garnered increasing research interest. This systematic review analyzed magnetic resonance imaging (MRI) studies that focused on thalamic alterations in MNDs to understand the significance of these changes and their correlation with clinical outcomes. METHODS: Following PRISMA 2020 guidelines, the PubMed and Scopus databases were searched from inception to June 2023 for studies related to MRI findings in the thalamus of patients with MNDs. Eligible studies included adult patients diagnosed with ALS or other forms of MND who underwent brain MRI, with outcomes related to thalamic alterations. Studies were evaluated for risk of bias using the Newcastle-Ottawa scale. RESULTS: A total of 52 studies (including 3009 MND patients and 2181 healthy controls) used various MRI techniques, including volumetric analysis, diffusion tensor imaging, and functional MRI, to measure thalamic volume, connectivity, and other alterations. This review confirmed significant thalamic changes in MNDs, such as atrophy and microstructural degradation, which are associated with disease severity, progression, and functional disability. Thalamic involvement varies across different MND subtypes and is influenced by the presence of cognitive impairment and mutations in genes including chromosome 9 open reading frame 72 (C9orf72). The synthesis of findings across studies indicates that thalamic pathology is a prevalent early biomarker of MNDs that contributes to motor and cognitive deficits. The thalamus is a promising target for monitoring as its dysfunction underpins a variety of clinical symptoms in MNDs. CONCLUSIONS: Thalamic alterations provide valuable insights into the pathophysiology and progression of MNDs. Multimodal MRI techniques are potent tools for detecting dynamic thalamic changes, indicating structural integrity, connectivity disruption, and metabolic activity.


Magnetic Resonance Imaging , Motor Neuron Disease , Thalamus , Humans , Thalamus/diagnostic imaging , Thalamus/pathology , Thalamus/physiopathology , Motor Neuron Disease/diagnostic imaging , Motor Neuron Disease/pathology , Motor Neuron Disease/physiopathology , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology
7.
AJNR Am J Neuroradiol ; 45(4): 494-503, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38548305

BACKGROUND AND PURPOSE: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving rapid motor neuron degeneration leading to brain, primarily precentral, atrophy. Neurofilament light chains are a robust prognostic biomarker highly specific to ALS, yet associations between neurofilament light chains and MR imaging outcomes are not well-understood. We investigated the role of neurofilament light chains as mediators among neuroradiologic assessments, precentral neurodegeneration, and disability in ALS. MATERIALS AND METHODS: We retrospectively analyzed a prospective cohort of 29 patients with ALS (mean age, 56 [SD, 12] years; 18 men) and 36 controls (mean age, 49 [SD, 11] years; 18 men). Patients underwent 3T (n = 19) or 7T (n = 10) MR imaging, serum (n = 23) and CSF (n = 15) neurofilament light chains, and clinical (n = 29) and electrophysiologic (n = 27) assessments. The control group had equivalent 3T (n = 25) or 7T (n = 11) MR imaging. Two trained neuroradiologists performed blinded qualitative assessments of MR imaging anomalies (n = 29 patients, n = 36 controls). Associations between precentral cortical thickness and neurofilament light chains and clinical and electrophysiologic data were analyzed. RESULTS: We observed extensive cortical thinning in patients compared with controls. MR imaging analyses showed significant associations between precentral cortical thickness and bulbar or arm impairment following distributions corresponding to the motor homunculus. Finally, uncorrected results showed positive interactions among precentral cortical thickness, serum neurofilament light chains, and electrophysiologic outcomes. Qualitative MR imaging anomalies including global atrophy (P = .003) and FLAIR corticospinal tract hypersignal anomalies (P = .033), correlated positively with serum neurofilament light chains. CONCLUSIONS: Serum neurofilament light chains may be an important mediator between clinical symptoms and neuronal loss according to cortical thickness. Furthermore, MR imaging anomalies might have underestimated prognostic value because they seem to indicate higher serum neurofilament light chain levels.


Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Male , Humans , Middle Aged , Amyotrophic Lateral Sclerosis/diagnostic imaging , Retrospective Studies , Prospective Studies , Intermediate Filaments , Motor Neurons/pathology , Magnetic Resonance Imaging/methods , Atrophy/pathology
8.
Clin Neurophysiol ; 161: 246-255, 2024 May.
Article En | MEDLINE | ID: mdl-38448302

OBJECTIVE: Compare fasciculation rates between amyotrophic lateral sclerosis (ALS) patients and healthy controls in body regions relevant for diagnosing ALS using motor unit MRI (MUMRI) at baseline and 6 months follow-up, and relate this to single-channel surface EMG (SEMG). METHODS: Tongue, biceps brachii, paraspinals and lower legs were assessed with MUMRI and biceps brachii and soleus with SEMG in 10 healthy controls and 10 patients (9 typical ALS, 1 primary lateral sclerosis [PLS]). RESULTS: MUMRI-detected fasciculation rates in typical ALS patients were higher compared to healthy controls for biceps brachii (2.40 ± 1.90 cm-3min-1vs. 0.04 ± 0.10 cm-3min-1, p = 0.004), paraspinals (1.14 ± 1.61 cm-3min-1vs. 0.02 ± 0.02 cm-3min-1, p = 0.016) and lower legs (1.42 ± 1.27 cm-3min-1vs. 0.13 ± 0.10 cm-3min-1, p = 0.004), but not tongue (1.41 ± 1.94 cm-3min-1vs. 0.18 ± 0.18 cm-3min-1, p = 0.556). The PLS patient showed no fasciculation. At baseline, 6/9 ALS patients had increased fasciculation rates compared to healthy controls in at least 2 body regions. At follow-up every patient had increased fasciculation rates in at least 2 body regions. The MUMRI-detected fasciculation rate correlated with SEMG-detected fasciculation rates (τ = 0.475, p = 0.006). CONCLUSION: MUMRI can non-invasively image fasciculation in multiple body regions and appears sensitive to disease progression in individual patients. SIGNIFICANCE: MUMRI has potential as diagnostic tool for ALS.


Amyotrophic Lateral Sclerosis , Electromyography , Fasciculation , Magnetic Resonance Imaging , Humans , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/diagnostic imaging , Male , Female , Middle Aged , Fasciculation/physiopathology , Fasciculation/diagnostic imaging , Magnetic Resonance Imaging/methods , Aged , Electromyography/methods , Muscle, Skeletal/physiopathology , Muscle, Skeletal/diagnostic imaging , Adult , Motor Neurons/physiology , Tongue/physiopathology , Tongue/diagnostic imaging
9.
Eur J Neurol ; 31(6): e16268, 2024 Jun.
Article En | MEDLINE | ID: mdl-38465478

BACKGROUND AND PURPOSE: In amyotrophic lateral sclerosis (ALS), there is an unmet need for more precise patient characterization through quantitative, ideally operator-independent, assessments of disease extent and severity. Radially sampled averaged magnetization inversion recovery acquisitions (rAMIRA) magnetic resonance imaging enables gray matter (GM) and white matter (WM) area quantitation in the cervical and thoracic spinal cord (SC) with optimized contrast. We aimed to investigate rAMIRA-derived SC GM and SC WM areas and their association with clinical phenotype and disability in ALS. METHODS: A total of 36 patients with ALS (mean [SD] age 61.7 [12.6] years, 14 women) and 36 healthy, age- and sex-matched controls (HCs; mean [SD] age 63.1 [12.1] years, 14 women) underwent two-dimensional axial rAMIRA imaging at the inter-vertebral disc levels C2/3-C5/C6 and the lumbar enlargement level Tmax. ALS Functional Rating Scale-revised (ALSFRS-R) score, muscle strength, and sniff nasal inspiratory pressure (SNIP) were assessed. RESULTS: Compared to HCs, GM and WM areas were reduced in patients at all cervical levels (p < 0.0001). GM area (p = 0.0001), but not WM area, was reduced at Tmax. Patients with King's Stage 3 showed significant GM atrophy at all levels, while patients with King's Stage 1 showed significant GM atrophy selectively at Tmax. SC GM area was significantly associated with muscle force at corresponding myotomes. GM area at C3/C4 was associated with ALSFRS-R (p < 0.001) and SNIP (p = 0.0016). CONCLUSION: Patients with ALS assessed by rAMIRA imaging show significant cervical and thoracic SC GM and SC WM atrophy. SC GM area correlates with muscle strength and clinical disability. GM area reduction at Tmax may be an early disease sign. Longitudinal studies are warranted.


Amyotrophic Lateral Sclerosis , Atrophy , Gray Matter , Magnetic Resonance Imaging , Humans , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/complications , Female , Middle Aged , Male , Gray Matter/diagnostic imaging , Gray Matter/pathology , Aged , Atrophy/pathology , Cervical Cord/diagnostic imaging , Cervical Cord/pathology , Thoracic Vertebrae/diagnostic imaging , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Cervical Vertebrae/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology
10.
Eur J Neurol ; 31(6): e16266, 2024 Jun.
Article En | MEDLINE | ID: mdl-38469975

BACKGROUND AND PURPOSE: Thalamic alterations have been reported as a major feature in presymptomatic and symptomatic patients carrying the C9orf72 mutation across the frontotemporal dementia-amyotrophic lateral sclerosis (ALS) spectrum. Specifically, the pulvinar, a high-order thalamic nucleus and timekeeper for large-scale cortical networks, has been hypothesized to be involved in C9orf72-related neurodegenerative diseases. We investigated whether pulvinar volume can be useful for differential diagnosis in ALS C9orf72 mutation carriers and noncarriers and how underlying functional connectivity changes affect this region. METHODS: We studied 19 ALS C9orf72 mutation carriers (ALSC9+) accurately matched with wild-type ALS (ALSC9-) and ALS mimic (ALSmimic) patients using structural and resting-state functional magnetic resonance imaging data. Pulvinar volume was computed using automatic segmentation. Seed-to-voxel functional connectivity analyses were performed using seeds from a pulvinar functional parcellation. RESULTS: Pulvinar structural integrity had high discriminative values for ALSC9+ patients compared to ALSmimic (area under the curve [AUC] = 0.86) and ALSC9- (AUC = 0.77) patients, yielding a volume cutpoint of approximately 0.23%. Compared to ALSmimic, ALSC9- showed increased anterior, inferior, and lateral pulvinar connections with bilateral occipital-temporal-parietal regions, whereas ALSC9+ showed no differences. ALSC9+ patients when compared to ALSC9- patients showed reduced pulvinar-occipital connectivity for anterior and inferior pulvinar seeds. CONCLUSIONS: Pulvinar volume could be a differential biomarker closely related to the C9orf72 mutation. A pulvinar-cortical circuit dysfunction might play a critical role in disease progression and development, in both the genetic phenotype and ALS wild-type patients.


Amyotrophic Lateral Sclerosis , C9orf72 Protein , Magnetic Resonance Imaging , Mutation , Pulvinar , Aged , Female , Humans , Male , Middle Aged , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Heterozygote , Pulvinar/diagnostic imaging , Pulvinar/physiopathology , Pulvinar/pathology
11.
J Neurol ; 271(5): 2238-2257, 2024 May.
Article En | MEDLINE | ID: mdl-38367047

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by motor neuron degeneration. The development of ALS involves metabolite alterations leading to tissue lesions in the nervous system. Recent advances in neuroimaging have significantly improved our understanding of the underlying pathophysiology of ALS, with findings supporting the corticoefferent axonal disease progression theory. Current studies on neuroimaging in ALS have demonstrated inconsistencies, which may be due to small sample sizes, insufficient statistical power, overinterpretation of findings, and the inherent heterogeneity of ALS. Deriving meaningful conclusions solely from individual imaging metrics in ALS studies remains challenging, and integrating multimodal imaging techniques shows promise for detecting valuable ALS biomarkers. In addition to giving an overview of the principles and techniques of different neuroimaging modalities, this review describes the potential of neuroimaging biomarkers in the diagnosis and prognostication of ALS. We provide an insight into the underlying pathology, highlighting the need for standardized protocols and multicenter collaborations to advance ALS research.


Amyotrophic Lateral Sclerosis , Biomarkers , Neuroimaging , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/metabolism , Humans , Neuroimaging/methods , Neuroimaging/standards , Biomarkers/metabolism , Brain/diagnostic imaging , Brain/metabolism
12.
Ann Clin Transl Neurol ; 11(5): 1122-1134, 2024 May.
Article En | MEDLINE | ID: mdl-38389222

OBJECTIVE: In elderly people loneliness represents a risk factor for dementia and may negatively impact on mental and physical health. The specific contribute of loneliness to cognitive and behavioral functioning have not yet been determined in amyotrophic lateral sclerosis (ALS). Our hypothesis was that loneliness may be related to motor dysfunction with a negative impact on cognitive and behavioral decline, possibly related to specific cortical involvement. METHODS: In 200 ALS patients (ALSpts) and 50 healthy controls (HCs) we measured loneliness, mood, and quality of life (QoL). ALSpts underwent comprehensive clinical, genetic, and neuropsychological assessment to define phenotypes. Seventy-seven ALSpts performed 3T MRI scans to measure cortical thickness. Between-group, partial correlation and regression analyses were used to examined clinical, neuropsychological, and cortical signatures of loneliness. RESULTS: Feelings of loneliness were documented in 38% of ALSpts (ALS/L+pts) and in 47% of HCs. In both groups loneliness was associated with anxiety (P < 0.001), depression (P ≤ 0.005), and poor QoL (P < 0.001). ALS/L+pts had similar motor dysfunctions and cognitive abilities than non-lonely ALSpts, but distinct behavioral profiles (P ≤ 0.005) and frontoparietal involvement (P < 0.05). Loneliness in ALS is related to behavioral changes, apathy, and emotional dysregulation (P < 0.001). INTERPRETATION: Our cross-sectional study indicates that, in ALS, the satisfaction of social environment is associated with a sense of life well-being that is not limited to the motor status, proving instead that loneliness can impact on disease-related neurobehavioral changes with a possible flashback on brain architecture. This suggests that sociality could promote personal resilience against behavioral and affective decline in ALS.


Amyotrophic Lateral Sclerosis , Loneliness , Quality of Life , Humans , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/psychology , Amyotrophic Lateral Sclerosis/diagnostic imaging , Male , Loneliness/psychology , Female , Aged , Middle Aged , Magnetic Resonance Imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Depression/physiopathology
13.
CNS Neurosci Ther ; 30(2): e14616, 2024 02.
Article En | MEDLINE | ID: mdl-38334027

AIMS: To evaluate microstructural impairment in the thalamus and thalamocortical connectivity using neurite orientation dispersion and density imaging (NODDI) in amyotrophic lateral sclerosis (ALS). METHODS: This study included 47 healthy controls and 43 ALS patients, whose structural and diffusion-weighted data were collected. We used state-of-the-art parallel transport tractography to identify thalamocortical pathways in individual spaces. Thalamus was then parcellated into six subregions based on its connectivity pattern with the priori defined cortical (i.e., prefrontal/motor/somatosensory/temporal/posterior-parietal/occipital) regions. For each of the thalamic and cortical subregions and thalamo-cortical tracts, we compared the following NODDI metrics between groups: orientation dispersion index (ODI), neurite density index (NDI), and isotropic volume fraction (ISO). We also used these metrics to conduct receiver operating characteristic curve (ROC) analyses and Spearman correlation. RESULTS: In ALS patients, we found decreased ODI and increased ISO in the thalamic subregion connecting the left motor cortex and other extramotor (e.g., somatosensory and occipital) cortex (Bonferroni-corrected p < 0.05). NDI decreased in the bilateral thalamo-motor and thalamo-somatosensory tracts and in the right thalamo-posterior-parietal and thalamo-occipital tracts (Bonferroni-corrected p < 0.05). NDI reduction in the bilateral thalamo-motor tract (p = 0.017 and 0.009) and left thalamo-somatosensory tract (p = 0.029) was correlated with disease severity. In thalamo-cortical tracts, NDI yielded a higher effect size during between-group comparisons and a greater area under ROC (p < 0.05) compared with conventional diffusion tensor imaging metrics. CONCLUSIONS: Microstructural impairment in the thalamus and thalamocortical connectivity is the hallmark of ALS. NODDI improved the detection of disrupted thalamo-cortical connectivity in ALS.


Amyotrophic Lateral Sclerosis , Neurites , Humans , Diffusion Tensor Imaging/methods , Amyotrophic Lateral Sclerosis/diagnostic imaging , Thalamus/diagnostic imaging , Neural Pathways/diagnostic imaging
14.
Ann Clin Transl Neurol ; 11(4): 1000-1010, 2024 Apr.
Article En | MEDLINE | ID: mdl-38356047

OBJECTIVE: Monosynaptically cortically innervated α-motoneurons are early and strongly involved in amyotrophic lateral sclerosis (ALS). Consequently, the muscles that receive the strongest direct corticomotoneuronal input are the clinically most affected. To objectify this concept in vivo through morphological image correlates, whole-body magnetic resonance imaging (MRI) with muscle signal analysis was performed in patients with ALS compared to healthy controls. METHODS: Modified Dixon-based whole-body MRI was acquired in patients with ALS (n = 33) and matched healthy controls (n = 30). Manual labeling of limb muscle MRI was performed, and a specific subset of nine muscles, selected as pairs of muscle groups with different corticomotoneuronal input, was analyzed per subject based on their volume, fat fraction, and functional remaining muscle area (fRMA). RESULTS: Statistical analysis of 978 muscles in total revealed significantly decreased volumes, decreased fRMA, and increased fat fraction in the muscles of patients with ALS compared to controls. The clinical degree of pareses of directly innervated muscles was significantly worse than that of less directly innervated muscles in each comparison. The muscles receiving stronger direct corticomotoneuronal input showed more pronounced morphological involvement compared to those with less monosynaptic corticomotoneuronal input (fRMA, significant in three pairwise comparisons). INTERPRETATION: In conclusion, whole-body MRI-based muscle analysis provided additional evidence for a characteristic pattern of pareses in ALS. This technical approach (parameterization and quantification of muscle alterations from MRI) to patients with ALS could pave the way for the future establishment of a diagnostic algorithm of muscle MRI for ALS and may serve as a biomarker.


Amyotrophic Lateral Sclerosis , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Whole Body Imaging , Muscle, Skeletal/pathology , Paresis
15.
J Neurol ; 271(5): 2547-2559, 2024 May.
Article En | MEDLINE | ID: mdl-38282082

This study aimed to investigate the clinical stratification of amyotrophic lateral sclerosis (ALS) patients in relation to in vivo cerebral degeneration. One hundred forty-nine ALS patients and one hundred forty-four healthy controls (HCs) were recruited from the Canadian ALS Neuroimaging Consortium (CALSNIC). Texture analysis was performed on T1-weighted scans to extract the texture feature "autocorrelation" (autoc), an imaging biomarker of cerebral degeneration. Patients were stratified at baseline into early and advanced disease stages based on criteria adapted from ALS clinical trials and the King's College staging system, as well as into slow and fast progressors (disease progression rates, DPR). Patients had increased autoc in the internal capsule. These changes extended beyond the internal capsule in early-stage patients (clinical trial-based criteria), fast progressors, and in advanced-stage patients (King's staging criteria). Longitudinal increases in autoc were observed in the postcentral gyrus, corticospinal tract, posterior cingulate cortex, and putamen; whereas decreases were observed in corpus callosum, caudate, central opercular cortex, and frontotemporal areas. Both longitudinal increases and decreases of autoc were observed in non-overlapping regions within insula and precentral gyrus. Within-criteria comparisons of autoc revealed more pronounced changes at baseline and longitudinally in early- (clinical trial-based criteria) and advanced-stage (King's staging criteria) patients and fast progressors. In summary, comparative patterns of baseline and longitudinal progression in cerebral degeneration are dependent on sub-group selection criteria, with clinical trial-based stratification insufficiently characterizing disease stage based on pathological cerebral burden.


Amyotrophic Lateral Sclerosis , Disease Progression , Magnetic Resonance Imaging , Humans , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Male , Female , Middle Aged , Aged , Adult , Brain/diagnostic imaging , Brain/pathology , Severity of Illness Index , Longitudinal Studies , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology
17.
Ann Clin Transl Neurol ; 11(3): 686-697, 2024 Mar.
Article En | MEDLINE | ID: mdl-38234062

OBJECTIVE: The resting-state functional connectome has not been extensively investigated in amyotrophic lateral sclerosis (ALS) spectrum disease, in particular in relationship with patients' genetic status. METHODS: Here we studied the network-to-network connectivity of 19 ALS patients carrying the C9orf72 hexanucleotide repeat expansion (C9orf72+), 19 ALS patients not affected by C9orf72 mutation (C9orf72-), and 19 ALS-mimic patients (ALSm) well-matched for demographic and clinical variables. RESULTS: When compared with ALSm, we observed greater connectivity of the default mode and frontoparietal networks with the visual network for C9orf72+ patients (P = 0.001). Moreover, the whole-connectome showed greater node degree (P < 0.001), while sensorimotor cortices resulted isolated in C9orf72+. INTERPRETATION: Our results suggest a crucial involvement of extra-motor functions in ALS spectrum disease. In particular, alterations of the visual cortex may have a pathogenic role in C9orf72-related ALS. The prominent feature of these patients would be increased visual system connectivity with the networks responsible of the functional balance between internal and external attention.


Amyotrophic Lateral Sclerosis , Connectome , Humans , Magnetic Resonance Imaging , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , DNA Repeat Expansion/genetics , Proteins/genetics , Mutation
18.
Neurology ; 102(2): e207946, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38165325

BACKGROUND AND OBJECTIVES: There is currently no validated disease-stage biomarker for amyotrophic lateral sclerosis (ALS). The identification of quantitative and reproducible markers of disease stratification in ALS is fundamental for study design definition and inclusion of homogenous patient cohorts into clinical trials. Our aim was to assess the rearrangements of structural and functional brain connectivity underlying the clinical stages of ALS, to suggest objective, reproducible measures provided by MRI connectomics mirroring disease staging. METHODS: In this observational study, patients with ALS and healthy controls (HCs) underwent clinical evaluation and brain MRI on a 3T scanner. Patients were classified into 4 groups, according to the King's staging system. Structural and functional brain connectivity matrices were obtained using diffusion tensor and resting-state fMRI data, respectively. Whole-brain network-based statistics (NBS) analysis and comparisons of intraregional and inter-regional connectivity values using analysis of covariance models were performed between groups. Correlations between MRI and clinical/cognitive measures were tested using Pearson coefficient. RESULTS: One hundred four patients with ALS and 61 age-matched and sex-matched HCs were included. NBS and regional connectivity analyses demonstrated a progressive decrease of intranetwork and internetwork structural connectivity of sensorimotor regions at increasing ALS stages in our cohort, compared with HCs. By contrast, functional connectivity showed divergent patterns between King's stages 3 (increase in basal ganglia and temporal circuits [p = 0.04 and p = 0.05, respectively]) and 4 (frontotemporal decrease [p = 0.03]), suggesting a complex interplay between opposite phenomena in late stages of the disease. Intraregional sensorimotor structural connectivity was correlated with ALS Functional Rating Scale-revised (ALSFRS-r) score (r = 0.31, p < 0.001) and upper motor neuron burden (r = -0.25, p = 0.01). Inter-regional frontal-sensorimotor structural connectivity was also correlated with ALSFRS-r (r = 0.24, p = 0.02). No correlations with cognitive measures were found. DISCUSSION: MRI of the brain allows to demonstrate and quantify increasing disruption of structural connectivity involving the sensorimotor networks in ALS, mirroring disease stages. Frontotemporal functional disconnection seems to characterize only advanced disease phases. Our findings support the utility of MRI connectomics to stratify patients and stage brain pathology in ALS in a reproducible way, which may mirror clinical progression.


Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/diagnostic imaging , Basal Ganglia , Brain/diagnostic imaging , Diffusion , Motor Neurons , Male , Female
19.
Neurol Sci ; 45(3): 1311-1313, 2024 Mar.
Article En | MEDLINE | ID: mdl-38049549

This article reports a case of Mills' syndrome that initially manifested as atrophy of one cerebral hemisphere and decreased brain metabolism, which developed into amyotrophic lateral sclerosis in the fourth year of the disease. Mills' syndrome is a rare type of motor neuron disease, with only over 20 cases reported since 1990, but most lack imaging such as PET and DTI. This article provides a complete report of the 18F-FDG-PET and DTI images consistent with the characteristics of Mills' syndrome. In addition, we have discovered some new phenomena, which have certain clinical and teaching values. Firstly, the frontal, parietal and temporal lobes on the side of the lesion in the pyramidal tract of this patient were significantly atrophic, indicating that unilateral brain lobe atrophy may be a new feature of Mills' syndrome. Secondly, although there were no abnormalities in three EMG tests taken during the 4 years prior to the onset of the disease, amyotrophy and ALS-like EMG features appeared in the fourth year, suggesting that some Mills' syndrome may progress more rapidly to ALS. This highlights the importance of regular follow-up electromyography in Mills' syndrome patients.


Amyotrophic Lateral Sclerosis , Cerebrum , Motor Neuron Disease , Humans , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Brain/diagnostic imaging , Brain/pathology , Chronic Disease , Atrophy/pathology , Muscular Atrophy
20.
Cereb Cortex ; 34(1)2024 01 14.
Article En | MEDLINE | ID: mdl-38061694

Age at onset may be an important feature associated with distinct subtypes of amyotrophic lateral sclerosis (ALS). Little is known about the neuropathological mechanism of early-onset ALS (EO-ALS) and late-onset ALS (LO-ALS). Ninety ALS patients were divided into EO-ALS and LO-ALS group, and 128 healthy controls were matched into young controls(YCs) and old controls (OCs). A voxel-based morphometry approach was employed to investigate differences in gray matter volume (GMV). Significant age at onset-by-diagnosis interactions were found in the left parietal operculum, left precentral gyrus, bilateral postcentral gyrus, right occipital gyrus, and right orbitofrontal cortex. Post hoc analysis revealed a significant decrease in GMV in all affected regions of EO-ALS patients compared with YCs, with increased GMV in 5 of the 6 brain regions, except for the right orbitofrontal cortex, in LO-ALS patients compared with OCs. LO-ALS patients had a significantly increased GMV than EO-ALS patients after removing the aging effect. Correspondingly, GMV of the left postcentral gyrus correlated with disease severity in the 2 ALS groups. Our findings suggested that the pathological mechanisms in ALS patients with different ages at onset might differ. These findings provide unique insight into the clinical and biological heterogeneity of the 2 ALS subtypes.


Amyotrophic Lateral Sclerosis , Motor Cortex , Humans , Gray Matter/diagnostic imaging , Gray Matter/pathology , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Magnetic Resonance Imaging , Brain/pathology , Motor Cortex/pathology
...