Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 178
1.
Bioorg Chem ; 148: 107433, 2024 Jul.
Article En | MEDLINE | ID: mdl-38754311

Second-generation AR antagonists, such as enzalutamide, are the primary therapeutic agents for advanced prostate cancer. However, the development of both primary and secondary drug resistance leads to treatment failures and patient mortality. Bifunctional agents that simultaneously antagonize and degrade AR block the AR signaling pathway more completely and exhibit excellent antiproliferative activity against wild-type and drug-resistant prostate cancer cells. Here, we reported the discovery and optimization of a series of biphenyl derivatives as androgen receptor antagonists and degraders. These biphenyl derivatives exhibited potent antiproliferative activity against LNCaP and 22Rv1 cells. Our discoveries enrich the diversity of small molecule AR degraders and offer insights for the development of novel AR degraders for the treatment of enzalutamide-resistant prostate cancer.


Androgen Receptor Antagonists , Antineoplastic Agents , Benzamides , Biphenyl Compounds , Cell Proliferation , Drug Resistance, Neoplasm , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms , Receptors, Androgen , Humans , Male , Benzamides/pharmacology , Benzamides/chemistry , Benzamides/chemical synthesis , Nitriles/chemistry , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/chemistry , Biphenyl Compounds/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Receptors, Androgen/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Molecular Structure , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/chemistry , Androgen Receptor Antagonists/chemical synthesis , Androgen Receptor Antagonists/therapeutic use , Drug Discovery , Drug Screening Assays, Antitumor , Dose-Response Relationship, Drug , Cell Line, Tumor
2.
Eur J Med Chem ; 271: 116400, 2024 May 05.
Article En | MEDLINE | ID: mdl-38626524

The androgen receptor AR antagonists, such as enzalutamide and apalutamide, are efficient therapeutics for the treatment of prostate cancer (PCa). Even though they are effective at first, resistance to both drugs occurs frequently. Resistance is mainly driven by aberrations of the AR signaling pathway including AR gene amplification and the expression of AR splice variants (e.g. AR-V7). This highlights the urgent need for alternative therapeutic strategies. Here, a total of 24 compounds were synthesized and biologically evaluated to disclose compound 20i, exhibiting potent AR antagonistic activities (IC50 = 172.85 ± 21.33 nM), promising AR/AR-V7 protein degradation potency, and dual targeting site of probably AR (ligand-binding domain, LBD and N-terminal domain, NTD). It potently inhibits cell growth with IC50 values of 4.87 ± 0.52 and 2.07 ± 0.34 µM in the LNCaP and 22RV1 cell lines, respectively, and exhibited effective tumor growth inhibition (TGI = 50.9 %) in the 22RV1 xenograft study. These data suggest that 20i has the potential for development as an AR/AR-V7 inhibitor with degradation ability to treat advanced prostate cancer.


Antineoplastic Agents , Cell Proliferation , Prostatic Neoplasms , Receptors, Androgen , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Cell Proliferation/drug effects , Receptors, Androgen/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Structure-Activity Relationship , Molecular Structure , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/chemistry , Androgen Receptor Antagonists/chemical synthesis , Drug Screening Assays, Antitumor , Dose-Response Relationship, Drug , Cell Line, Tumor , Mice , Mice, Nude , Proteolysis/drug effects
3.
Adv Sci (Weinh) ; 11(19): e2309261, 2024 May.
Article En | MEDLINE | ID: mdl-38481034

Androgen receptor (AR) antagonists are widely used for the treatment of prostate cancer (PCa), but their therapeutic efficacy is usually compromised by the rapid emergence of drug resistance. However, the lack of the detailed interaction between AR and its antagonists poses a major obstacle to the design of novel AR antagonists. Here, funnel metadynamics is employed to elucidate the inherent regulation mechanisms of three AR antagonists (hydroxyflutamide, enzalutamide, and darolutamide) on AR. For the first time it is observed that the binding of antagonists significantly disturbed the C-terminus of AR helix-11, thereby disrupting the specific internal hydrophobic contacts of AR-LBD and correspondingly the communication between AR ligand binding pocket (AR-LBP), activation function 2 (AF2), and binding function 3 (BF3). The subsequent bioassays verified the necessity of the hydrophobic contacts for AR function. Furthermore, it is found that darolutamide, a newly approved AR antagonist capable of fighting almost all reported drug resistant AR mutants, can induce antagonistic binding structure. Subsequently, docking-based virtual screening toward the dominant binding conformation of AR for darolutamide is conducted, and three novel AR antagonists with favorable binding affinity and strong capability to combat drug resistance are identified by in vitro bioassays. This work provides a novel rational strategy for the development of anti-resistant AR antagonists.


Androgen Receptor Antagonists , Benzamides , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/chemistry , Humans , Benzamides/pharmacology , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Male , Receptors, Androgen/metabolism , Receptors, Androgen/chemistry , Receptors, Androgen/genetics , Nitriles/pharmacology , Molecular Dynamics Simulation , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Pyrazoles/pharmacology , Pyrazoles/chemistry , Molecular Docking Simulation/methods , Amides/pharmacology , Amides/chemistry , Flutamide/analogs & derivatives
4.
Bioorg Chem ; 146: 107309, 2024 May.
Article En | MEDLINE | ID: mdl-38537338

Prostate Cancer (PCa) easily progress to metastatic Castration-Resistant Prostate Cancer (mCRPC) that remains a significant cause of cancer-related death. Androgen receptor (AR)-dependent transcription is a major driver of prostate tumor cell proliferation. Proteolysis-targeting chimaera (PROTAC) technology based on Hydrophobic Tagging (HyT) represents an intriguing strategy to regulate the function of therapeutically androgen receptor proteins. In the present study, we have designed, synthesized, and evaluated a series of PROTAC-HyT AR degraders using AR antagonists, RU59063, which were connected with adamantane-based hydrophobic moieties by different alkyl chains. Compound D-4-6 exhibited significant AR protein degradation activity, with a degradation rate of 57 % at 5 µM and nearly 90 % at 20 µM in 24 h, and inhibited the proliferation of LNCaP cells significantly with an IC50 value of 4.77 ± 0.26 µM in a time-concentration-dependent manner. In conclusion, the present study lays the foundation for the development of a completely new class of therapeutic agents for the treatment of mCRPC, and further design and synthesis of AR-targeting degraders are currently in progress for better degradation rate.


Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Receptors, Androgen/chemistry , Prostatic Neoplasms, Castration-Resistant/drug therapy , Cell Line, Tumor , Androgen Receptor Antagonists/chemistry , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Proteolysis
5.
J Steroid Biochem Mol Biol ; 239: 106476, 2024 May.
Article En | MEDLINE | ID: mdl-38311010

A new chemical scaffold with antagonistic activity towards the androgen receptor (AR) was identified. The parent compound, (3-Methoxy-N-[1-methyl-2-(4-phenyl-1-piperazinyl)-2-(2-thienyl)ethyl]benzamide) referred to as MEL-6, binds in the ligand binding pocket of AR and induces an antagonistic conformation of the ligand binding domain, even in presence of the antagonist-to-agonist switch mutations W741C, T877A and F876L-T877A. MEL-6 has antiproliferative effects on several AR positive prostate cancer cell lines. We further identified AR as the specific target of MEL-6 since it demonstrates little effect on other steroid receptors. In LNCaP cells it also inhibits the androgen-regulated transcriptome. These findings identify MEL-6 as a promising candidate for treatment of patients with prostate tumors that have become resistant to current clinically used AR antagonists. Analytical studies on the chemical composition of MEL-6 identified the presence of four isomers (two enantiomeric pairs), among which one isomer is responsible for the antiandrogenic activity. We therefore developed a synthetic route towards the selective preparation of the active enantiomeric pair. Various MEL-6-like analogues had improved metabolic stability while maintaining antiandrogenic activity. Metabolite identification of MEL-6 derivatives pinpointed N-dealkylation of the piperazine as the main mode for inactivation by liver enzymes. For further structural optimization, MEL-6 derivatives were purchased or synthesized having alterations on the N-phenyl group of the piperazine, the benzoyl group and additionally substituting the thiophen-2-yl ring of MEL-6 to a phenyl ring. This optimization process resulted in compound 12b with sustained AR inhibition and a 4-fold increased half-life due to the 1-(5-chloro-2-methylphenyl)-piperazine substitution, thienyl-to-phenyl substitution and chloro in para-position of the benzoyl group.


Androgen Receptor Antagonists , Prostatic Neoplasms , Male , Humans , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/chemistry , Ligands , Receptors, Androgen/metabolism , Prostatic Neoplasms/metabolism , Androgens , Piperazines/pharmacology , Cell Line, Tumor , Androgen Antagonists/pharmacology
6.
Med Res Rev ; 44(4): 1446-1500, 2024 Jul.
Article En | MEDLINE | ID: mdl-38279967

As a nuclear transcription factor, the androgen receptor (AR) plays a crucial role not only in normal male sexual differentiation and growth of the prostate, but also in benign prostatic hyperplasia, prostatitis, and prostate cancer. Multiple population-based epidemiological studies demonstrated that prostate cancer risk was inversely associated with increased dietary intakes of green tea, soy products, tomato, and so forth. Therefore, this review aimed to summarize the structure and function of AR, and further illustrate the structural basis for antagonistic mechanisms of the currently clinically available antiandrogens. Due to the limitations of these antiandrogens, a series of natural AR inhibitors have been identified from edible plants such as fruits and vegetables, as well as folk medicines, health foods, and nutritional supplements. Hence, this review mainly focused on recent experimental, epidemiological, and clinical studies about natural AR inhibitors, particularly the association between dietary intake of natural antiandrogens and reduced risk of prostatic diseases. Since natural products offer multiple advantages over synthetic antiandrogens, this review may provide a comprehensive and updated overview of dietary-derived AR inhibitors, as well as their potential for the nutritional intervention against prostatic disorders.


Androgen Receptor Antagonists , Receptors, Androgen , Humans , Male , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/chemistry , Animals , Diet , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/prevention & control
7.
J Med Chem ; 66(16): 11158-11186, 2023 08 24.
Article En | MEDLINE | ID: mdl-37556600

We report small molecular PROTAC compounds targeting the androgen receptor N-terminal domain (AR-NTD), which were obtained by tethering AR-NTD antagonists and different classes of E3 ligase ligands through chemical linkers. A representative compound, BWA-522, effectively induces degradation of both AR-FL and AR-V7 and is more potent than the corresponding antagonist against prostate cancer (PC) cells in vitro. We have shown that the degradation of AR-FL and AR-V7 proteins by BWA-522 can suppress the expression of AR downstream proteins and induce PC cell apoptosis. BWA-522 achieves 40.5% oral bioavailability in mice and 69.3% in beagle dogs. In a LNCaP xenograft model study, BWA-522 was also proved to be an efficacious PROTAC degrader, resulting in 76% tumor growth inhibition after oral administration of a dose of 60 mg/kg. This study indicates that BWA-522 is a promising AR-NTD PROTAC for the treatment of AR-FL- and AR-V7-dependent tumors.


Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Proteolysis Targeting Chimera , Animals , Dogs , Humans , Male , Mice , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Androgen Receptor Antagonists/chemistry , Cell Line, Tumor , Cell Proliferation , Prostatic Neoplasms/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/metabolism , Ubiquitin-Protein Ligases , Proteolysis Targeting Chimera/chemistry , Proteolysis Targeting Chimera/pharmacology
8.
Eur J Med Chem ; 257: 115490, 2023 Sep 05.
Article En | MEDLINE | ID: mdl-37209451

Prostate cancer (PC) is one of the most prevalent cancers in men worldwide, and androgen receptor (AR) is a well-validated drug target for the treatment of PC. However, PC often exhibits resistance to AR antagonists over time. Thus, it is urgent to identify novel and effective drugs for PC treatment. A series of novel thiohydantoin based AR antagonists with efficient degradation against AR were designed, synthesized, and evaluated. Based on our previous SAR and further structural optimization, a tool molecule 26h was discovered with dual mechanisms including improved antagonistic activity and potent degradation (AR-fl and AR-V7). Moreover, 26h can also effectively block AR nuclear translocation and inhibit AR/AR-V7 heterodimerization, thereby inhibiting downstream gene transcription. Importantly, 26h displayed potent robust efficacy in LNCaP (TGI: 70.70%) and 22Rv1 (TGI: 78.89%) xenograft models. This provides new design strategies and advantageous potential compounds for the treatment of prostate cancer.


Prostatic Neoplasms , Receptors, Androgen , Male , Humans , Receptors, Androgen/metabolism , Thiohydantoins/chemistry , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Androgen Receptor Antagonists/chemistry , Cell Line, Tumor , Androgen Antagonists/pharmacology , Cell Proliferation
9.
Mol Inform ; 42(8-9): e2300026, 2023 08.
Article En | MEDLINE | ID: mdl-37193651

Androgen receptor (AR) inhibition remains the primary strategy to combat the progression of prostate cancer (PC). However, all clinically used AR inhibitors target the ligand-binding domain (LBD), which is highly susceptible to truncations through splicing or mutations that confer drug resistance. Thus, there exists an urgent need for AR inhibitors with novel modes of action. We thus launched a virtual screening of an ultra-large chemical library to find novel inhibitors of the AR DNA-binding domain (DBD) at two sites: protein-DNA interface (P-box) and dimerization site (D-box). The compounds selected through vigorous computational filtering were then experimentally validated. We identified several novel chemotypes that effectively suppress transcriptional activity of AR and its splice variant V7. The identified compounds represent previously unexplored chemical scaffolds with a mechanism of action that evades the conventional drug resistance manifested through LBD mutations. Additionally, we describe the binding features required to inhibit AR DBD at both P-box and D-box target sites.


Prostatic Neoplasms , Receptors, Androgen , Male , Humans , Receptors, Androgen/metabolism , Androgens , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/chemistry , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , DNA
10.
Chem Biol Interact ; 378: 110489, 2023 Jun 01.
Article En | MEDLINE | ID: mdl-37059213

We assessed the mechanism of human androgen receptor-mediated endocrine-disrupting effect by a triazole fungicide, metconazole in this study. The internationally validated stably transfected transactivation (STTA) in vitro assay, which was established for determination of a human androgen receptor (AR) agonist/antagonist by using 22Rv1/MMTV_GR-KO cell line, alongside an in vitro reporter-gene assay to confirm AR homodimerization was used. The STTA in vitro assay results showed that metconazole is a true AR antagonist. Furthermore, the results from the in vitro reporter-gene assay and western blotting showed that metconazole blocks the nuclear transfer of cytoplasmic AR proteins by suppressing the homodimerization of AR. These results suggest that metconazole can be considered to have an AR-mediated endocrine-disrupting effect. Additionally, the evidence from this study might help identify the endocrine-disrupting mechanism of triazole fungicides containing a phenyl ring.


Androgen Receptor Antagonists , Endocrine Disruptors , Fungicides, Industrial , Protein Multimerization , Receptors, Androgen , Transcriptional Activation , Triazoles , Triazoles/chemistry , Triazoles/toxicity , Fungicides, Industrial/chemistry , Fungicides, Industrial/toxicity , Protein Multimerization/drug effects , Humans , Receptors, Androgen/chemistry , Receptors, Androgen/metabolism , Endocrine Disruptors/chemistry , Endocrine Disruptors/pharmacology , Androgen Receptor Antagonists/chemistry , Androgen Receptor Antagonists/toxicity , Cell Line, Tumor , Transcriptional Activation/drug effects , Cytotoxins/chemistry , Cytotoxins/toxicity
11.
J Med Chem ; 65(19): 13074-13093, 2022 10 13.
Article En | MEDLINE | ID: mdl-36154033

The androgen receptor (AR) antagonists are efficient therapeutics for the treatment of prostate cancer (PCa). All the approved AR antagonists to date are targeted to the ligand-binding pocket (LBP) of AR and have suffered from various drug resistances, whereas AR antagonist targeting non-LBP site of AR is conceived as a promising strategy. Through the scaffold hopping of AR LBP antagonists, the 2-chloro-4-(1H-pyrazol-1-yl)benzonitrile was designed as a new core structure for AR antagonists. A total of 46 compounds were synthesized and biologically evaluated to disclose compounds 2f, 2k, and 4c, exhibiting potent AR antagonistic activities (IC50 up to 69 nM), force against antiandrogen resistance, and untraditional targeting site of probably AR binding function 3. Therein, 4c exhibited effective tumor growth inhibition in LNCaP xenograft study upon oral administration. This work provides a novel chemical scaffold for AR antagonists and offers new perspective for the development of PCa therapy.


Prostatic Neoplasms , Receptors, Androgen , Acetamides/pharmacology , Androgen Antagonists/pharmacology , Androgen Receptor Antagonists/chemistry , Cell Line, Tumor , Cell Proliferation , Humans , Ligands , Male , Prostatic Neoplasms/pathology , Pyrazoles , Receptors, Androgen/metabolism
12.
Int J Biol Macromol ; 218: 856-865, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-35905763

Androgen receptor (AR) is a key contributing element in the prostate cancer (PCa) instigation, progression and it is among the vastly discovered target for prostate cancer. Numerous mechanisms trigger the expansion of CRPC among which the aberrant AR gene is considered as the prime factor. Recently three essential substitutions H875Y, F877L, and T878A are reported to cause resistance to Enzalutamide. However, no detailed study is available to explore the key events that contribute to the resistance. Hence, considering the applicability of structural bioinformatics and molecular simulation-based methods in the current study, we assessed the impact of these mutations on the binding of Enzalutamide. Using a long-run simulation approach the binding stability, residues flexibility, hydrogen bonding, and protein compactness for each complex were determined to reveal the dynamic variations induced by these mutations. We discovered that the binding mode of Enzalutamide is altered by these mutations which misstarget the key residues required for the antagonistic activity. Molecular simulation of each complex revealed that the wild type H11 and H12 are more flexible moving outside and provides more volume for the ligand optimization. In the mutant complexes, the H12 remained tighter pushing out enzalutamide from the key residues which then essentially misstarget the correct orientation for the antagonist activity. The binding free energy (BFE) for the wild type was computed to be -59.92 ± 0.18 kcal/mol, for H875Y the BFE was -55.92 ± 0.18 kcal/mol, -54.82 ± 0.15 kcal/mol for F877L and -53.87 ± 0.18 kcal/mol for T878A, which further demonstrate that these mutations have destabilized the binding of enzalutamide. The proteins' motion and FEL further validated the aforementioned findings where the wild type reported different dynamic features than the mutant complexes. In conclusion, this study provides a structural basis for the resistance to Enzalutamide, which can be used to design novel effective drugs using structure-based and rationale approaches.


Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Androgen Receptor Antagonists/chemistry , Androgen Receptor Antagonists/pharmacology , Benzamides , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Humans , Male , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
13.
Protein Sci ; 31(6): e4334, 2022 06.
Article En | MEDLINE | ID: mdl-35634773

Human androgen receptor contains a large N-terminal domain (AR-NTD) that is highly dynamic and this poses a major challenge for experimental and computational analysis to decipher its conformation. Misfolding of the AR-NTD is implicated in prostate cancer and Kennedy's disease, yet our knowledge of its structure is limited to primary sequence information of the chain and a few functionally important secondary structure motifs. Here, we employed an innovative combination of molecular dynamics simulations and circuit topology (CT) analysis to identify the tertiary structure of AR-NTD. We found that the AR-NTD adopts highly dynamic loopy conformations with two identifiable regions with distinct topological make-up and dynamics. This consists of a N-terminal region (NR, residues 1-224) and a C-terminal region (CR, residues 225-538), which carries a dense core. Topological mapping of the dynamics reveals a traceable time-scale dependent topological evolution. NR adopts different positioning with respect to the CR and forms a cleft that can partly enclose the hormone-bound ligand-binding domain (LBD) of the androgen receptor. Furthermore, our data suggest a model in which dynamic NR and CR compete for binding to the DNA-binding domain of the receptor, thereby regulating the accessibility of its DNA-binding site. Our approach allowed for the identification of a previously unknown regulatory binding site within the CR core, revealing the structural mechanisms of action of AR inhibitor EPI-001, and paving the way for other drug discovery applications.


Prostatic Neoplasms , Receptors, Androgen , Androgen Receptor Antagonists/chemistry , Androgen Receptor Antagonists/pharmacology , DNA , Humans , Male , Prostatic Neoplasms/metabolism , Protein Domains , Receptors, Androgen/chemistry , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
14.
Bioorg Chem ; 124: 105829, 2022 07.
Article En | MEDLINE | ID: mdl-35490582

Androgen signaling pathway plays an important role in the occurrence and development of prostate cancer (PCa), and anti-androgen drugs are one of the most effective therapies for PCa. Darolutamide 4 (ODM-201) is a promising second- generation antiandrogen because of its unique chemical structure and good activity against androgen receptor (AR). Herein, the structure-activity relationship of ODM-201 was studied, and 37 analogues were synthesized. Half of them exhibited similar or better anti-AR transcriptional activity compared to ODM-201. In addition, the inhibitory activity of compound 28t against the two resistant mutants (AR-F876L and AR-T877A) was superior to that of ODM-201. This study provides a new clue for the further optimization of ODM-201 and the development of anti-CRPC drugs.


Androgen Receptor Antagonists , Prostatic Neoplasms , Androgen Antagonists/pharmacology , Androgen Receptor Antagonists/chemistry , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Pyrazoles/chemistry
15.
J Hazard Mater ; 429: 128243, 2022 05 05.
Article En | MEDLINE | ID: mdl-35093747

Per- and poly-fluoroalkyl substances (PFASs) are used extensively in a broad range of industrial applications and consumer products. While a few legacy PFASs have been voluntarily phased out, over 5000 PFASs have been produced as replacements for their predecessors. The potential endocrine disrupting hazards of most emerging PFASs have not been comprehensively investigated. In silico molecular docking to the human androgen receptor (hAR) combined with machine learning techniques were previously applied to 5206 PFASs and predicted 23 PFASs bind the hAR. Herein, the in silico results were validated in vitro for the five candidate AR ligands that were commercially available. Three manufactured PFASs namely (9-(nonafluorobutyl)- 2,3,6,7-tetrahydro-1 H,5 H,11 H-pyrano[2,3-f]pyrido[3,2,1-ij]quinolin-11-one (NON), 2-(heptafluoropropyl)- 3-phenylquinoxaline (HEP), and 2,2,3,3,4,4,5,5,5-nonafluoro-N-(4-nitrophenyl)pentanamide (NNN) elicited significant antiandrogenic effects at relatively low concentrations. We further investigated the mechanism of AR inhibition and found that all three PFASs inhibited AR transactivation induced by testosterone through a competitive binding mechanism. We then examined the antiandrogenic effects of these PFASs on AR expression and its responsive genes. Consistently, these PFASs significantly decreased the expression of PSA and FKBP5 and increased the expression of AR, similar to the effects elicited by a known competitive AR inhibitor, hydroxyflutamide. This suggests they are competitive antagonists of AR activity and western blot analysis revealed these PFASs decreased intracellular AR protein in androgen sensitive human prostate cancer cells. Hence, the findings presented here corroborate our published in silico approach and indicate these emerging PFASs may adversely affect the human endocrine system.


Endocrine Disruptors , Fluorocarbons , Androgen Receptor Antagonists/chemistry , Androgen Receptor Antagonists/toxicity , Endocrine Disruptors/chemistry , Endocrine Disruptors/toxicity , Humans , Male , Molecular Docking Simulation , Receptors, Androgen/metabolism
16.
Acta Pharmacol Sin ; 43(1): 229-239, 2022 Jan.
Article En | MEDLINE | ID: mdl-33767381

Androgen receptor (AR), a ligand-activated transcription factor, is a master regulator in the development and progress of prostate cancer (PCa). A major challenge for the clinically used AR antagonists is the rapid emergence of resistance induced by the mutations at AR ligand binding domain (LBD), and therefore the discovery of novel anti-AR therapeutics that can combat mutation-induced resistance is quite demanding. Therein, blocking the interaction between AR and DNA represents an innovative strategy. However, the hits confirmed targeting on it so far are all structurally based on a sole chemical scaffold. In this study, an integrated docking-based virtual screening (VS) strategy based on the crystal structure of the DNA binding domain (DBD) of AR was conducted to search for novel AR antagonists with new scaffolds and 2-(2-butyl-1,3-dioxoisoindoline-5-carboxamido)-4,5-dimethoxybenzoicacid (Cpd39) was identified as a potential hit, which was competent to block the binding of AR DBD to DNA and showed decent potency against AR transcriptional activity. Furthermore, Cpd39 was safe and capable of effectively inhibiting the proliferation of PCa cell lines (i.e., LNCaP, PC3, DU145, and 22RV1) and reducing the expression of the genes regulated by not only the full-length AR but also the splice variant AR-V7. The novel AR DBD-ARE blocker Cpd39 could serve as a starting point for the development of new therapeutics for castration-resistant PCa.


Androgen Receptor Antagonists/pharmacology , DNA/antagonists & inhibitors , Drug Discovery , Molecular Docking Simulation , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/chemistry , Binding Sites/drug effects , DNA/chemistry , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Molecular Structure , Receptors, Androgen/chemistry , Structure-Activity Relationship
17.
J Med Chem ; 64(23): 17221-17238, 2021 12 09.
Article En | MEDLINE | ID: mdl-34809430

Androgen receptor (AR) has proved to be a vital drug target for treating prostate cancer. Here, we reported the discovery of a novel AR antagonist 92 targeting the AR ligand-binding pocket, but distinct from the marketed drug enzalutamide (Enz), 92 demonstrated inhibition on the AR ligand-binding domain (LBD) dimerization, which is a novel mechanism reported for the first time. First, a novel hit (26, IC50 = 5.57 µM) was identified through virtual screening based on a theoretical AR LBD dimer bound with the Enz model. Then, guided by molecular modeling, 92 was discovered with 32.7-fold improved AR antagonistic activity (IC50 = 0.17 µM). Besides showing high bioactivity and safety, 92 can inhibit AR nuclear translocation. Furthermore, 92 inhibited the formation of the AR LBD dimer, possibly through attenuating the hydrogen-bonding network between the two monomers. This interesting finding would pave the way for the discovery of a new class of AR antagonists.


Androgen Receptor Antagonists/pharmacology , Drug Discovery , Androgen Receptor Antagonists/chemistry , Binding Sites , Cell Line , Dimerization , Humans , Hydrogen Bonding , Ligands , Molecular Dynamics Simulation , Receptors, Androgen/metabolism , Transcription, Genetic/drug effects
18.
Sci Rep ; 11(1): 15887, 2021 08 05.
Article En | MEDLINE | ID: mdl-34354111

The androgen receptor (AR) is critical in the progression of prostate cancer (PCa). Small molecule antagonists that bind to the ligand binding domain (LBD) of the AR have been successful in treating PCa. However, the structural basis by which the AR antagonists manifest their therapeutic efficacy remains unclear, due to the lack of detailed structural information of the AR bound to the antagonists. We have performed accelerated molecular dynamics (aMD) simulations of LBDs bound to a set of ligands including a natural substrate (dihydrotestosterone), an agonist (RU59063) and three antagonists (bicalutamide, enzalutamide and apalutamide) as well as in the absence of ligand (apo). We show that the binding of AR antagonists at the substrate binding pocket alter the dynamic fluctuations of H12, thereby disrupting the structural integrity of the agonistic conformation of AR. Two antagonists, enzalutamide and apalutamide, induce considerable structural changes to the agonist conformation of LBD, when bound close to H12 of AR LBD. When the antagonists bind to the pocket with different orientations having close contact with H11, no significant conformational changes were observed, suggesting the AR remains in the functionally activated (agonistic) state. The simulations on a drug resistance mutant F876L bound to enzalutamide demonstrated that the mutation stabilizes the agonistic conformation of AR LBD, which compromises the efficacy of the antagonists. Principal component analysis (PCA) of the structural fluctuations shows that the binding of enzalutamide and apalutamide induce conformational fluctuations in the AR, which are markedly different from those caused by the agonist as well as another antagonist, bicalutamide. These fluctuations could only be observed with the use of aMD.


Androgen Receptor Antagonists/chemistry , Androgens/chemistry , Receptors, Androgen/ultrastructure , Androgen Receptor Antagonists/pharmacology , Androgens/metabolism , Anilides/pharmacology , Benzamides/pharmacology , Binding Sites , Dihydrotestosterone/pharmacology , Humans , Imidazoles/pharmacology , Ligands , Molecular Conformation , Molecular Dynamics Simulation , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology , Principal Component Analysis , Protein Binding , Protein Conformation , Receptors, Androgen/metabolism , Receptors, Androgen/physiology , Thiohydantoins/pharmacology , Tosyl Compounds/pharmacology
19.
J Med Chem ; 64(17): 12831-12854, 2021 09 09.
Article En | MEDLINE | ID: mdl-34431670

Proteolysis targeting chimera (PROTAC) small-molecule degraders have emerged as a promising new type of therapeutic agents, but the design of PROTAC degraders with excellent oral pharmacokinetics is a major challenge. In this study, we present our strategies toward the discovery of highly potent PROTAC degraders of androgen receptor (AR) with excellent oral pharmacokinetics. Employing thalidomide to recruit cereblon/cullin 4A E3 ligase and through the rigidification of the linker, we discovered highly potent AR degraders with good oral pharmacokinetic properties in mice with ARD-2128 being the best compound. ARD-2128 achieves 67% oral bioavailability in mice, effectively reduces AR protein and suppresses AR-regulated genes in tumor tissues with oral administration, leading to the effective inhibition of tumor growth in mice without signs of toxicity. This study supports the development of an orally active PROTAC AR degrader for the treatment of prostate cancer and provides insights and guidance into the design of orally active PROTAC degraders.


Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Drug Delivery Systems , Prostatic Neoplasms/drug therapy , Receptors, Androgen/metabolism , Administration, Oral , Androgen Receptor Antagonists/chemistry , Androgen Receptor Antagonists/pharmacokinetics , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Area Under Curve , Biological Availability , Drug Discovery , Half-Life , Humans , Injections, Intravenous , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Structure-Activity Relationship , Xenograft Model Antitumor Assays
20.
J Med Chem ; 64(15): 11045-11062, 2021 08 12.
Article En | MEDLINE | ID: mdl-34269581

A series of propanamide derivatives were designed, synthesized, and pharmacologically characterized as selective androgen receptor degraders (SARDs) and pan-antagonists that exert a broad-scope androgen receptor (AR) antagonism. Incorporating different basic heteromonocyclic B-ring structural elements in the common A-ring-linkage-B-ring nonsteroidal antiandrogen general pharmacophore contributed to a novel scaffold of small molecules with SARD and pan-antagonist activities even compared to our recently published AF-1 binding SARDs such as UT-69 (11), UT-155 (12), and UT-34 (13). Compound 26f exhibited inhibitory and degradation effects in vitro in a wide array of wtAR, point mutant, and truncation mutant-driven prostate cancers (PCs). Further, 26f inhibited tumor cell growth in a xenograft model composed of enzalutamide-resistant (EnzR) LNCaP cells. These results demonstrate an advancement toward the development of novel SARDs and pan-antagonists with efficacy against EnzR prostate cancers.


Amides/pharmacology , Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Prostatic Neoplasms/drug therapy , Receptors, Androgen/metabolism , Amides/chemical synthesis , Amides/chemistry , Androgen Receptor Antagonists/chemical synthesis , Androgen Receptor Antagonists/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzamides/pharmacology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HEK293 Cells , Humans , Male , Mice , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
...