Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Elife ; 122023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37272618

RESUMEN

Ribosomal protein (Rp) gene haploinsufficiency can result in Diamond-Blackfan Anemia (DBA), characterized by defective erythropoiesis and skeletal defects. Some mouse Rp mutations recapitulate DBA phenotypes, although others lack erythropoietic or skeletal defects. We generated a conditional knockout mouse to partially delete Rps12. Homozygous Rps12 deletion resulted in embryonic lethality. Mice inheriting the Rps12KO/+ genotype had growth and morphological defects, pancytopenia, and impaired erythropoiesis. A striking reduction in hematopoietic stem cells (HSCs) and progenitors in the bone marrow (BM) was associated with decreased ability to repopulate the blood system after competitive and non-competitive BM transplantation. Rps12KO/+ lost HSC quiescence, experienced ERK and MTOR activation, and increased global translation in HSC and progenitors. Post-natal heterozygous deletion of Rps12 in hematopoietic cells using Tal1-Cre-ERT also resulted in pancytopenia with decreased HSC numbers. However, post-natal Cre-ERT induction led to reduced translation in HSCs and progenitors, suggesting that this is the most direct consequence of Rps12 haploinsufficiency in hematopoietic cells. Thus, RpS12 has a strong requirement in HSC function, in addition to erythropoiesis.


Asunto(s)
Anemia de Diamond-Blackfan , Pancitopenia , Animales , Ratones , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Eritropoyesis/genética , Genes Esenciales , Haploinsuficiencia , Células Madre Hematopoyéticas/metabolismo , Ratones Noqueados , Pancitopenia/genética , Pancitopenia/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
2.
Haematologica ; 108(11): 3095-3109, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199130

RESUMEN

Diamond-Blackfan anemia is a rare genetic bone marrow failure disorder which is usually caused by mutations in ribosomal protein genes. In the present study, we generated a traceable RPS19-deficient cell model using CRISPR-Cas9 and homology-directed repair to investigate the therapeutic effects of a clinically applicable lentiviral vector at single-cell resolution. We developed a gentle nanostraw delivery platform to edit the RPS19 gene in primary human cord bloodderived CD34+ hematopoietic stem and progenitor cells. The edited cells showed expected impaired erythroid differentiation phenotype, and a specific erythroid progenitor with abnormal cell cycle status accompanied by enrichment of TNFα/NF-κB and p53 signaling pathways was identified by single-cell RNA sequencing analysis. The therapeutic vector could rescue the abnormal erythropoiesis by activating cell cycle-related signaling pathways and promoted red blood cell production. Overall, these results establish nanostraws as a gentle option for CRISPR-Cas9- based gene editing in sensitive primary hematopoietic stem and progenitor cells, and provide support for future clinical investigations of the lentiviral gene therapy strategy.


Asunto(s)
Anemia de Diamond-Blackfan , Humanos , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/terapia , Anemia de Diamond-Blackfan/metabolismo , Proteínas Ribosómicas/genética , Diferenciación Celular , Eritropoyesis , Células Madre/metabolismo , Antígenos CD34
3.
Stem Cells ; 41(6): 560-569, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36987811

RESUMEN

Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome associated with severe anemia, congenital malformations, and an increased risk of developing cancer. The chromatin-binding special AT-rich sequence-binding protein-1 (SATB1) is downregulated in megakaryocyte/erythroid progenitors (MEPs) in patients and cell models of DBA, leading to a reduction in MEP expansion. Here we demonstrate that SATB1 expression is required for the upregulation of the critical erythroid factors heat shock protein 70 (HSP70) and GATA1 which accompanies MEP differentiation. SATB1 binding to specific sites surrounding the HSP70 genes promotes chromatin loops that are required for the induction of HSP70, which, in turn, promotes GATA1 induction. This demonstrates that SATB1, although gradually downregulated during myelopoiesis, maintains a biological function in early myeloid progenitors.


Asunto(s)
Anemia de Diamond-Blackfan , Proteínas de Unión a la Región de Fijación a la Matriz , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Megacariocitos/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Diferenciación Celular/genética , Factores de Transcripción/metabolismo , Anemia de Diamond-Blackfan/metabolismo , Cromatina/metabolismo , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo
4.
JCI Insight ; 8(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36413407

RESUMEN

Diamond-Blackfan anemia (DBA) is a genetic blood disease caused by heterozygous loss-of-function mutations in ribosomal protein (RP) genes, most commonly RPS19. The signature feature of DBA is hypoplastic anemia occurring in infants, although some older patients develop multilineage cytopenias with bone marrow hypocellularity. The mechanism of anemia in DBA is not fully understood and even less is known about the pancytopenia that occurs later in life, in part because patient hematopoietic stem and progenitor cells (HSPCs) are difficult to obtain, and the current experimental models are suboptimal. We modeled DBA by editing healthy human donor CD34+ HSPCs with CRISPR/Cas9 to create RPS19 haploinsufficiency. In vitro differentiation revealed normal myelopoiesis and impaired erythropoiesis, as observed in DBA. After transplantation into immunodeficient mice, bone marrow repopulation by RPS19+/- HSPCs was profoundly reduced, indicating hematopoietic stem cell (HSC) impairment. The erythroid and HSC defects resulting from RPS19 haploinsufficiency were partially corrected by transduction with an RPS19-expressing lentiviral vector or by Cas9 disruption of TP53. Our results define a tractable, biologically relevant experimental model of DBA based on genome editing of primary human HSPCs and they identify an associated HSC defect that emulates the pan-hematopoietic defect of DBA.


Asunto(s)
Anemia de Diamond-Blackfan , Humanos , Animales , Ratones , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Médula Ósea/metabolismo , Antígenos CD34/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
FEBS Open Bio ; 12(7): 1419-1434, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35583751

RESUMEN

Ribosomes, the cellular organelles translating the genetic code to proteins, are assemblies of RNA chains and many proteins (RPs) arranged in precise fine-tuned interwoven structures. Mutated ribosomal genes cause ribosomopathies, including Diamond Blackfan anemia (DBA, a rare heterogeneous red-cell aplasia connected to ribosome malfunction) or failed biogenesis. Combined bioinformatical, structural, and predictive analyses of potential consequences of possibly expressed mutations in eS19, the protein product of the highly mutated RPS19, suggest that mutations in its exposed surface could alter its positioning during assembly and consequently prevent biogenesis, implying a natural selective strategy to avoid malfunctions in ribosome assembly. A search for RPS19 pseudogenes indicated > 90% sequence identity with the wild-type, hinting at its expression in cases of absent or truncated gene products.


Asunto(s)
Anemia de Diamond-Blackfan , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Humanos , Mutación/genética , ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
6.
Blood ; 139(23): 3439-3449, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35349664

RESUMEN

We follow a patient with Diamond-Blackfan anemia (DBA) mosaic for a pathogenic RPS19 haploinsufficiency mutation with persistent transfusion-dependent anemia. Her anemia remitted on eltrombopag (EPAG), but surprisingly, mosaicism was unchanged, suggesting that both mutant and normal cells responded. When EPAG was withheld, her anemia returned. In addition to expanding hematopoietic stem/progenitor cells, EPAG aggressively chelates iron. Because DBA anemia, at least in part, results from excessive intracellular heme leading to ferroptotic cell death, we hypothesized that the excess heme accumulating in ribosomal protein-deficient erythroid precursors inhibited the growth of adjacent genetically normal precursors, and that the efficacy of EPAG reflected its ability to chelate iron, limit heme synthesis, and thus limit toxicity in both mutant and normal cells. To test this, we studied Rpl11 haploinsufficient (DBA) mice and mice chimeric for the cytoplasmic heme export protein, FLVCR. Flvcr1-deleted mice have severe anemia, resembling DBA. Mice transplanted with ratios of DBA to wild-type marrow cells of 50:50 are anemic, like our DBA patient. In contrast, mice transplanted with Flvcr1-deleted (unable to export heme) and wild-type marrow cells at ratios of 50:50 or 80:20 have normal numbers of red cells. Additional studies suggest that heme exported from DBA erythroid cells might impede the nurse cell function of central macrophages of erythroblastic islands to impair the maturation of genetically normal coadherent erythroid cells. These findings have implications for the gene therapy of DBA and may provide insights into why del(5q) myelodysplastic syndrome patients are anemic despite being mosaic for chromosome 5q deletion and loss of RPS14.


Asunto(s)
Anemia de Diamond-Blackfan , Anemia , Anemia/patología , Anemia de Diamond-Blackfan/metabolismo , Animales , Deleción Cromosómica , Células Eritroides/metabolismo , Eritropoyesis/genética , Femenino , Hemo/metabolismo , Humanos , Hierro/metabolismo , Ratones , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
7.
Genes (Basel) ; 13(3)2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35328001

RESUMEN

Diamond−Blackfan anemia (DBA) is one of the inherited bone marrow failure syndromes marked by erythroid hypoplasia. Underlying variants in ribosomal protein (RP) genes account for 80% of cases, thereby classifying DBA as a ribosomopathy. In addition to RP genes, extremely rare variants in non-RP genes, including GATA1, the master transcription factor in erythropoiesis, have been reported in recent years in patients with a DBA-like phenotype. Subsequently, a pivotal role for GATA-1 in DBA pathophysiology was established by studies showing the impaired translation of GATA1 mRNA downstream of the RP haploinsufficiency. Here, we report on a patient from the Dutch DBA registry, in which we found a novel hemizygous variant in GATA1 (c.220+2T>C), and an Iranian patient with a previously reported variant in the initiation codon of GATA1 (c.2T>C). Although clinical features were concordant with DBA, the bone marrow morphology in both patients was not typical for DBA, showing moderate erythropoietic activity with signs of dyserythropoiesis and dysmegakaryopoiesis. This motivated us to re-evaluate the clinical characteristics of previously reported cases, which resulted in the comprehensive characterization of 18 patients with an inherited GATA-1 defect in exon 2 that is presented in this case-series. In addition, we re-investigated the bone marrow aspirate of one of the previously published cases. Altogether, our observations suggest that DBA caused by GATA1 defects is characterized by distinct phenotypic characteristics, including dyserythropoiesis and dysmegakaryopoiesis, and therefore represents a distinct phenotype within the DBA disease spectrum, which might need specific clinical management.


Asunto(s)
Anemia de Diamond-Blackfan , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Eritropoyesis/genética , Factor de Transcripción GATA1 , Humanos , Irán , Fenotipo , Proteínas Ribosómicas/genética
8.
Blood ; 139(21): 3111-3126, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35213692

RESUMEN

The congenital bone marrow failure syndrome Diamond-Blackfan anemia (DBA) is typically associated with variants in ribosomal protein (RP) genes impairing erythroid cell development. Here we report multiple individuals with biallelic HEATR3 variants exhibiting bone marrow failure, short stature, facial and acromelic dysmorphic features, and intellectual disability. These variants destabilize a protein whose yeast homolog is known to synchronize the nuclear import of RPs uL5 (RPL11) and uL18 (RPL5), which are both critical for producing ribosomal subunits and for stabilizing the p53 tumor suppressor when ribosome biogenesis is compromised. Expression of HEATR3 variants or repression of HEATR3 expression in primary cells, cell lines of various origins, and yeast models impairs growth, differentiation, pre-ribosomal RNA processing, and ribosomal subunit formation reminiscent of DBA models of large subunit RP gene variants. Consistent with a role of HEATR3 in RP import, HEATR3-depleted cells or patient-derived fibroblasts display reduced nuclear accumulation of uL18. Hematopoietic progenitor cells expressing HEATR3 variants or small-hairpin RNAs knocking down HEATR3 synthesis reveal abnormal acceleration of erythrocyte maturation coupled to severe proliferation defects that are independent of p53 activation. Our study uncovers a new pathophysiological mechanism leading to DBA driven by biallelic HEATR3 variants and the destabilization of a nuclear import protein important for ribosome biogenesis.


Asunto(s)
Anemia de Diamond-Blackfan , Proteínas , Transporte Activo de Núcleo Celular/genética , Anemia de Diamond-Blackfan/metabolismo , Humanos , Mutación , Proteínas/genética , Proteínas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Int J Mol Sci ; 23(3)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163808

RESUMEN

Diamond-Blackfan anaemia (DBA) is a red blood cell aplasia that in the majority of cases is associated with ribosomal protein (RP) aberrations. However, the mechanism by which this disorder leads to such a specific phenotype remains unclear. Even more elusive is the reason why non-specific agents such as glucocorticosteroids (GCs), also known as glucocorticoids, are an effective therapy for DBA. In this review, we (1) explore why GCs are successful in DBA treatment, (2) discuss the effect of GCs on erythropoiesis, and (3) summarise the GC impact on crucial pathways deregulated in DBA. Furthermore, we show that GCs do not regulate DBA erythropoiesis via a single mechanism but more likely via several interdependent pathways.


Asunto(s)
Anemia de Diamond-Blackfan/tratamiento farmacológico , Redes Reguladoras de Genes/efectos de los fármacos , Glucocorticoides/uso terapéutico , Anemia de Diamond-Blackfan/metabolismo , Eritropoyesis/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Humanos , Resultado del Tratamiento
10.
Haematologica ; 107(2): 446-456, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33440921

RESUMEN

Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure disorder in which pure red blood cell aplasia is associated with physical malformations and a predisposition to cancer. Twentyfive percent of patients with DBA have mutations in a gene encoding ribosomal protein S19 (RPS19). Our previous proof-of-concept studies demonstrated that DBA phenotype could be successfully treated using lentiviral vectors in Rps19-deficient DBA mice. In our present study, we developed a clinically applicable single gene, self-inactivating lentiviral vector, containing the human RPS19 cDNA driven by the human elongation factor 1a short promoter, which can be used for clinical gene therapy development for RPS19-deficient DBA. We examined the efficacy and safety of the vector in a Rps19-deficient DBA mouse model and in human primary RPS19-deficient CD34+ cord blood cells. We observed that transduced Rps19-deficient bone marrow cells could reconstitute mice long-term and rescue the bone marrow failure and severe anemia observed in Rps19-deficient mice, with a low risk of mutagenesis and a highly polyclonal insertion site pattern. More importantly, the vector can also rescue impaired erythroid differentiation in human primary RPS19-deficient CD34+ cord blood hematopoietic stem cells. Collectively, our results demonstrate the efficacy and safety of using a clinically applicable lentiviral vector for the successful treatment of Rps19-deficient DBA in a mouse model and in human primary CD34+ cord blood cells. These findings show that this vector can be used to develop clinical gene therapy for RPS19-deficient DBA patients.


Asunto(s)
Anemia de Diamond-Blackfan , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Anemia de Diamond-Blackfan/terapia , Animales , Sangre Fetal/metabolismo , Terapia Genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Mutación , ARN Interferente Pequeño/genética , Proteínas Ribosómicas/genética
11.
Exp Hematol ; 99: 44-53.e2, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34126174

RESUMEN

Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by a functional haploinsufficiency of genes coding for ribosomal proteins. Among these genes, the ribosomal protein S19 (RPS19) gene is the most frequently mutated. Previously, a mouse model deficient in RPS19 was developed by our laboratory, which recapitulates the hematopoietic disease phenotype by manifesting pathologic features and clinical symptoms of DBA. Characterization of this model revealed that chronic RPS19 deficiency leads to exhaustion of hematopoietic stem cells and subsequent bone marrow (BM) failure. In this study, we evaluated a nonmyeloablative conditioning protocol for BM transplants in RPS19-deficient mice by transplanting wild-type BM cells to RPS19-deficient recipients given no conditioning or sublethal doses of irradiation before transplant. We describe full correction of the hematopoietic phenotype in mice given sublethal doses of irradiation, as well as in animals completely devoid of any preceding irradiation. In comparison, wild-type animals receiving the same preconditioning regimen and number of transplanted cells exhibited significantly lower engraftment levels. Thus, robust engraftment and repopulation of transplanted cells can be achieved in reduced-intensity conditioned RPS19-deficient recipients. As gene therapy studies with autologous gene-corrected hematopoietic stem cells are emerging, we propose the results described here can guide determination of the level of conditioning for such a protocol in RPS19-deficient DBA. On the basis of our findings, a relatively mild conditioning strategy would plausibly be sufficient to achieve sufficient levels of engraftment and clinical success.


Asunto(s)
Anemia de Diamond-Blackfan/metabolismo , Trasplante de Médula Ósea , Aloinjertos , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/patología , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Proteínas Ribosómicas/deficiencia , Proteínas Ribosómicas/metabolismo , Acondicionamiento Pretrasplante
12.
Pediatr Hematol Oncol ; 38(6): 515-527, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33622161

RESUMEN

Diamond-Blackfan anemia (DBA) is mainly caused by pathogenic variants in ribosomal proteins and 22 responsible genes have been identified to date. The most common causative gene of DBA is RPS19 [NM_001022.4]. Nearly 180 RPS19 variants have been reported, including three deep intronic variants outside the splicing consensus sequence (c.72-92A > G, c.356 + 18G > C, and c.411 + 6G > C). We also identified one case with a c.412-3C > G intronic variant. Without conducting transcript analysis, the pathogenicity of these variants is unknown. However, it is difficult to assess transcripts because of their fragility. In such cases, in vitro functional splicing assays can be used to assess pathogenicity. Here, we report functional splicing analysis results of four RPS19 deep intronic variants identified in our case and in previously reported cases. One splicing consensus variant (c.411 + 1G > A) was also examined as a positive control. Aberrant splicing with a 2-bp insertion between exons 5 and 6 was identified in the patient samples and minigene assay results also identified exon 6 skipping in our case. The exon 6 skipping transcript was confirmed by further evaluation using quantitative RT-PCR. Additionally, minigene assay analysis of three reported deep intronic variants revealed that none of them showed aberrant splicing and that these variants were not considered to be pathogenic. In conclusion, the minigene assay is a useful method for functional splicing analysis of inherited disease.


Asunto(s)
Anemia de Diamond-Blackfan , Mutación , Empalme del ARN , Proteínas Ribosómicas , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Humanos , Recién Nacido , Masculino , Proteínas Ribosómicas/biosíntesis , Proteínas Ribosómicas/genética
13.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348919

RESUMEN

Molecular pathophysiology of Diamond-Blackfan anemia (DBA) involves disrupted erythroid-lineage proliferation, differentiation and apoptosis; with the activation of p53 considered as a key component. Recently, oxidative stress was proposed to play an important role in DBA pathophysiology as well. CRISPR/Cas9-created Rpl5- and Rps19-deficient murine erythroleukemia (MEL) cells and DBA patients' samples were used to evaluate proinflammatory cytokines, oxidative stress, DNA damage and DNA damage response. We demonstrated that the antioxidant defense capacity of Rp-mutant cells is insufficient to meet the greater reactive oxygen species (ROS) production which leads to oxidative DNA damage, cellular senescence and activation of DNA damage response signaling in the developing erythroblasts and altered characteristics of mature erythrocytes. We also showed that the disturbed balance between ROS formation and antioxidant defense is accompanied by the upregulation of proinflammatory cytokines. Finally, the alterations detected in the membrane of DBA erythrocytes may cause their enhanced recognition and destruction by reticuloendothelial macrophages, especially during infections. We propose that the extent of oxidative stress and the ability to activate antioxidant defense systems may contribute to high heterogeneity of clinical symptoms and response to therapy observed in DBA patients.


Asunto(s)
Anemia de Diamond-Blackfan/patología , Daño del ADN , Eritrocitos/patología , Mediadores de Inflamación/metabolismo , Inflamación/patología , Estrés Oxidativo , Adulto , Anemia de Diamond-Blackfan/inmunología , Anemia de Diamond-Blackfan/metabolismo , Animales , Estudios de Casos y Controles , Niño , Eritrocitos/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Pronóstico , Adulto Joven
14.
Acta Biochim Pol ; 67(4): 465-473, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33245225

RESUMEN

Maintenance of the cellular homeostasis is firmly linked with protein synthesis. Therefore, it is tightly controlled at multiple levels. An advancement in quantitative techniques, mainly over the last decade, shed new light on the regulation of protein production, which pointed the ribosome as a new player. Ribosomes are macromolecular machines that synthesize polypeptide chains using mRNA as a template. The enormous complexity of ribosomes provides many possibilities of changes in their composition and consecutively in their target specificity. However, it is not clear how this specialization is enforced by the cell and which stimuli provoke that diversity. This review presents an overview of currently available knowledge about ribosome heterogeneity, focusing on changes in protein composition, and their role in the control of translation specificity. Importantly, besides the potential advantage of ribosome-mediated regulation of protein synthesis, its failure can play a crucial role in disease development.


Asunto(s)
Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Anemia de Diamond-Blackfan/patología , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Heterogeneidad Genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Plantas/genética , Plantas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , ARN Mensajero/metabolismo , Proteínas Ribosómicas/clasificación , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patología
15.
Blood ; 136(11): 1262-1273, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32702755

RESUMEN

Diamond-Blackfan anemia (DBA) was the first ribosomopathy described and is a constitutional inherited bone marrow failure syndrome. Erythroblastopenia is the major characteristic of the disease, which is a model for ribosomal diseases, related to a heterozygous allelic variation in 1 of the 20 ribosomal protein genes of either the small or large ribosomal subunit. The salient feature of classical DBA is a defect in ribosomal RNA maturation that generates nucleolar stress, leading to stabilization of p53 and activation of its targets, resulting in cell-cycle arrest and apoptosis. Although activation of p53 may not explain all aspects of DBA erythroid tropism, involvement of GATA1/HSP70 and globin/heme imbalance, with an excess of the toxic free heme leading to reactive oxygen species production, account for defective erythropoiesis in DBA. Despite significant progress in defining the molecular basis of DBA and increased understanding of the mechanistic basis for DBA pathophysiology, progress in developing new therapeutic options has been limited. However, recent advances in gene therapy, better outcomes with stem cell transplantation, and discoveries of putative new drugs through systematic drug screening using large chemical libraries provide hope for improvement.


Asunto(s)
Anemia de Diamond-Blackfan , Anomalías Múltiples/genética , Adenosina Desaminasa/sangre , Adenosina Desaminasa/genética , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Anemia de Diamond-Blackfan/terapia , Preescolar , Anomalías Congénitas/genética , Diagnóstico Diferencial , Manejo de la Enfermedad , Resistencia a Medicamentos , Eritrocitos/enzimología , Retardo del Crecimiento Fetal/etiología , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/fisiología , Heterogeneidad Genética , Terapia Genética , Glucocorticoides/uso terapéutico , Proteínas HSP70 de Choque Térmico/metabolismo , Trasplante de Células Madre Hematopoyéticas , Humanos , Lactante , Recién Nacido , Péptidos y Proteínas de Señalización Intercelular/sangre , Péptidos y Proteínas de Señalización Intercelular/genética , Modelos Biológicos , Mutación , Síndromes Neoplásicos Hereditarios/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/fisiología , Proteína p53 Supresora de Tumor/fisiología
16.
J Clin Invest ; 130(4): 2097-2110, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31961825

RESUMEN

Despite the effective clinical use of steroids for the treatment of Diamond Blackfan anemia (DBA), the mechanisms through which glucocorticoids regulate human erythropoiesis remain poorly understood. We report that the sensitivity of erythroid differentiation to dexamethasone is dependent on the developmental origin of human CD34+ progenitor cells, specifically increasing the expansion of CD34+ progenitors from peripheral blood (PB) but not cord blood (CB). Dexamethasone treatment of erythroid-differentiated PB, but not CB, CD34+ progenitors resulted in the expansion of a newly defined CD34+CD36+CD71hiCD105med immature colony-forming unit-erythroid (CFU-E) population. Furthermore, proteomics analyses revealed the induction of distinct proteins in dexamethasone-treated PB and CB erythroid progenitors. Dexamethasone treatment of PB progenitors resulted in the specific upregulation of p57Kip2, a Cip/Kip cyclin-dependent kinase inhibitor, and we identified this induction as critical; shRNA-mediated downregulation of p57Kip2, but not the related p27Kip1, significantly attenuated the impact of dexamethasone on erythroid differentiation and inhibited the expansion of the immature CFU-E subset. Notably, in the context of DBA, we found that steroid resistance was associated with dysregulated p57Kip2 expression. Altogether, these data identify a unique glucocorticoid-responsive human erythroid progenitor and provide new insights into glucocorticoid-based therapeutic strategies for the treatment of patients with DBA.


Asunto(s)
Anemia de Diamond-Blackfan/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/biosíntesis , Dexametasona/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Células Precursoras Eritroides/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Adulto , Anemia de Diamond-Blackfan/tratamiento farmacológico , Anemia de Diamond-Blackfan/patología , Antígenos CD/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/biosíntesis , Células Precursoras Eritroides/patología , Femenino , Humanos , Masculino
17.
Blood ; 133(12): 1358-1370, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30700418

RESUMEN

Diamond-Blackfan anemia (DBA) is a congenital erythroblastopenia that is characterized by a blockade in erythroid differentiation related to impaired ribosome biogenesis. DBA phenotype and genotype are highly heterogeneous. We have previously identified 2 in vitro erythroid cell growth phenotypes for primary CD34+ cells from DBA patients and following short hairpin RNA knockdown of RPS19, RPL5, and RPL11 expression in normal human CD34+ cells. The haploinsufficient RPS19 in vitro phenotype is less severe than that of 2 other ribosomal protein (RP) mutant genes. We further documented that proteasomal degradation of HSP70, the chaperone of GATA1, is a major contributor to the defect in erythroid proliferation, delayed erythroid differentiation, increased apoptosis, and decreased globin expression, which are all features of the RPL5 or RPL11 DBA phenotype. In the present study, we explored the hypothesis that an imbalance between globin and heme synthesis may be involved in pure red cell aplasia of DBA. We identified disequilibrium between the globin chain and the heme synthesis in erythroid cells of DBA patients. This imbalance led to accumulation of excess free heme and increased reactive oxygen species production that was more pronounced in cells of the RPL5 or RPL11 phenotype. Strikingly, rescue experiments with wild-type HSP70 restored GATA1 expression levels, increased globin synthesis thereby reducing free heme excess and resulting in decreased apoptosis of DBA erythroid cells. These results demonstrate the involvement of heme in DBA pathophysiology and a major role of HSP70 in the control of balanced heme/globin synthesis.


Asunto(s)
Anemia de Diamond-Blackfan/patología , Diferenciación Celular , Células Eritroides/patología , Factor de Transcripción GATA1/metabolismo , Globinas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Hemo/metabolismo , Anemia de Diamond-Blackfan/metabolismo , Proliferación Celular , Células Cultivadas , Células Eritroides/metabolismo , Femenino , Estudios de Seguimiento , Haploinsuficiencia , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Fenotipo , Pronóstico , ARN Interferente Pequeño , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
18.
Dev Biol ; 446(1): 17-19, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30513308

RESUMEN

The term cell competition has been used to describe the phenomenon whereby particular cells can be eliminated during tissue growth only when more competitive cells are available to replace them. Multiple examples implicate differential activity of p53 in cell competition in mammals, but p53 has not been found to have the same role in Drosophila, where the phenomenon of cell competition was first recognized. Recent studies now show that Drosophila cells harboring mutations in Ribosomal protein (Rp) genes, which are eliminated by cell competition with wild type cells, activate a p53 target gene, Xrp1. In Diamond Blackfan Anemia, human Rp mutants activate p53 itself, through a nucleolar stress pathway. These results suggest a link between mammalian and Drosophila Rp mutants, translation, and cell competition.


Asunto(s)
Comunicación Celular , Proteínas de Drosophila/metabolismo , Proteínas Ribosómicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Animales , Supervivencia Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Mutación , Proteínas Ribosómicas/genética , Proteína p53 Supresora de Tumor/genética
19.
Br J Haematol ; 184(2): 123-133, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30515771

RESUMEN

Diamond-Blackfan anaemia (DBA) is a rare inherited marrow failure disorder, characterized by hypoplastic anaemia, congenital anomalies and a predisposition to cancer as a result of ribosomal dysfunction. Historically, treatment is based on glucocorticoids and/or blood transfusions, which is accompanied by significant toxicity and long-term sequelae. Currently, stem cell transplantation is the only curative option for the haematological DBA phenotype. Whereas this procedure has been quite successful in the last decade in selected patients, novel therapies and biological insights are still warranted to improve clinical care for all DBA patients. In addition to paediatric haematologists, other physicians (e.g. endocrinologist, gynaecologist) should ideally be involved in the care of this chronic condition from an early age, to improve lifelong management of haematological and non-haematological symptoms, and screen for DBA-associated malignancies. Here we provide an overview of current knowledge and recommendations for the day-to-day care of DBA patients.


Asunto(s)
Anemia de Diamond-Blackfan/terapia , Transfusión Sanguínea , Glucocorticoides/uso terapéutico , Trasplante de Células Madre Hematopoyéticas , Adolescente , Aloinjertos , Anemia de Diamond-Blackfan/metabolismo , Anemia de Diamond-Blackfan/patología , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino
20.
Blood ; 133(5): 457-469, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30530752

RESUMEN

Erythropoiesis is the complex, dynamic, and tightly regulated process that generates all mature red blood cells. To understand this process, we mapped the developmental trajectories of progenitors from wild-type, erythropoietin-treated, and Flvcr1-deleted mice at single-cell resolution. Importantly, we linked the quantity of each cell's surface proteins to its total transcriptome, which is a novel method. Deletion of Flvcr1 results in high levels of intracellular heme, allowing us to identify heme-regulated circuitry. Our studies demonstrate that in early erythroid cells (CD71+Ter119neg-lo), heme increases ribosomal protein transcripts, suggesting that heme, in addition to upregulating globin transcription and translation, guarantees ample ribosomes for globin synthesis. In later erythroid cells (CD71+Ter119lo-hi), heme decreases GATA1, GATA1-target gene, and mitotic spindle gene expression. These changes occur quickly. For example, in confirmatory studies using human marrow erythroid cells, ribosomal protein transcripts and proteins increase, and GATA1 transcript and protein decrease, within 15 to 30 minutes of amplifying endogenous heme synthesis with aminolevulinic acid. Because GATA1 initiates heme synthesis, GATA1 and heme together direct red cell maturation, and heme stops GATA1 synthesis, our observations reveal a GATA1-heme autoregulatory loop and implicate GATA1 and heme as the comaster regulators of the normal erythroid differentiation program. In addition, as excessive heme could amplify ribosomal protein imbalance, prematurely lower GATA1, and impede mitosis, these data may help explain the ineffective (early termination of) erythropoiesis in Diamond Blackfan anemia and del(5q) myelodysplasia, disorders with excessive heme in colony-forming unit-erythroid/proerythroblasts, explain why these anemias are macrocytic, and show why children with GATA1 mutations have DBA-like clinical phenotypes.


Asunto(s)
Células Precursoras Eritroides/citología , Eritropoyesis , Factor de Transcripción GATA1/metabolismo , Hemo/metabolismo , Adulto , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Animales , Vías Biosintéticas , Células Cultivadas , Células Precursoras Eritroides/metabolismo , Factor de Transcripción GATA1/genética , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Proteínas de Transporte de Membrana/genética , Ratones , Receptores Virales/genética , Análisis de la Célula Individual , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA