Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.537
1.
Food Res Int ; 188: 114442, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823830

The long-term stability of red wine color depends on the formation of polymeric pigments from anthocyanins. Although there is still a lot of uncertainty about the specific structure of this diverse group of pigments, there is consensus that they are reaction products of anthocyanins and other polyphenols. Interactions between anthocyanins and pectic polysaccharides have been suggested to stabilize anthocyanins. This study explores the impact of such interactions by adding pectin during red winemaking. The results demonstrate that these interactions induce the formation of additional polymeric pigments which enhance the pigment stability during fermentation and aging. While initial pigment formation is higher in wines with added pectin, a notable proportion of the complexes degrades in the later stages of fermentation. Presumably, tannins form insoluble complexes with pectin, reducing tannin concentration by more than 300 mg/L. Anthocyanin concentrations decrease by over 400 mg/L, and polymeric pigments double. Anthocyanins that form polymeric pigments with pectic polysaccharides expand the range of pigments in red wines with possible consequences for the sensory properties of the wine. These findings highlight the complex interactions between pectin, anthocyanins, and tannins, and their influence on pigment formation and wine composition during fermentation and aging.


Anthocyanins , Fermentation , Pectins , Tannins , Wine , Anthocyanins/chemistry , Anthocyanins/analysis , Pectins/chemistry , Wine/analysis , Tannins/chemistry , Color , Food Handling/methods , Pigments, Biological/chemistry , Polymers/chemistry
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732065

The research investigates the influence of different lighting conditions and soil treatments, in particular the application of food polymers separately and in combination with spores of Trichoderma consortium, on the growth and development of herbs-Thymus vulgaris and Thymus serpyllum. The metabolic analysis focuses on detecting changes in the levels of biologically active compounds such as chlorophyll a and b, anthocyanins, carotenoids, phenolic compounds (including flavonoids), terpenoids, and volatile organic compounds with potential health-promoting properties. By investigating these factors, the study aims to provide insights into how environmental conditions affect the growth and chemical composition of selected plants and to shed light on potential strategies for optimising the cultivation of these herbs for the improved quality and production of bioactive compounds. Under the influence of additional lighting, the growth of T. vulgaris and T. serpyllum seedlings was greatly accelerated, resulting in an increase in shoot biomass and length, and in the case of T. vulgaris, an increase in carotenoid and anthocyanin contents. Regarding secondary metabolites, the most pronounced changes were observed in total antioxidant capacity and flavonoid content, which increased significantly under the influence of additional lighting. The simultaneous or separate application of Trichoderma and food polymers resulted in an increase in flavonoid content in the leaves of both Thymus species. The increase in terpenoid content under supplemental light appears to be related to the presence of Trichoderma spores as well as food polymers added to the soil. However, the nature of these changes depends on the thyme species. Volatile compounds were analysed using an electronic nose (E-nose). Eight volatile compounds (VOCs) were tentatively identified in the vapours of T. vulgaris and T. serpyllum: α-pinene, myrcene, α-terpinene, γ-terpinene; 1,8-cineole (eucalyptol), thymol, carvacrol, and eugenol. Tendencies to increase the percentage of thymol and γ-terpinene under supplemental lighting were observed. The results also demonstrate a positive effect of food polymers and, to a lesser extent, Trichoderma fungi on the synthesis of VOCs with health-promoting properties. The effect of Trichoderma and food polymers on individual VOCs was positive in some cases for thymol and γ-terpinene.


Carotenoids , Light , Thymus Plant , Trichoderma , Volatile Organic Compounds , Thymus Plant/chemistry , Thymus Plant/metabolism , Trichoderma/metabolism , Trichoderma/growth & development , Carotenoids/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Chlorophyll/metabolism , Terpenes/metabolism , Flavonoids/metabolism , Flavonoids/analysis , Antioxidants/metabolism , Anthocyanins/metabolism , Anthocyanins/analysis , Chlorophyll A/metabolism , Plant Leaves/metabolism , Plant Leaves/chemistry , Plant Leaves/growth & development
3.
Sci Rep ; 14(1): 11508, 2024 05 20.
Article En | MEDLINE | ID: mdl-38769439

There is a growing trend towards enhancing the post-harvest shelf life and maintaining the nutritional quality of horticultural products using eco-friendly methods. Raspberries are valued for their diverse array of phenolic compounds, which are key contributors to their health-promoting properties. However, raspberries are prone to a relatively short post-harvest lifespan. The present study aimed to investigate the effect of exogenous melatonin (MEL; 0, 0.001, 0.01, and 0.1 mM) on decay control and shelf-life extension. The results demonstrated that MEL treatment significantly reduced the fruit decay rate (P ≤ 0.01). Based on the findings, MEL treatment significantly increased titratable acidity (TA), total phenolics content (TPC), total flavonoid content (TFC), and total anthocyanin content (TAC). Furthermore, the MEL-treated samples showed increased levels of rutin and quercetin content, as well as antioxidant activity as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reduction activity potential (FRAP). Additionally, the samples exhibited higher levels of phenylalanine ammonia-lyase (PAL) and catalase (CAT) enzymes compared to the control samples. Moreover, the levels of pH, total soluble solids (TSS), and IC50 were decreased in the MEL-treated samples (P ≤ 0.01). The highest amount of TA (0.619 g/100 ml juice), rutin (16.722 µg/ml juice) and quercetin (1.467 µg/ml juice), and PAL activity (225.696 nm/g FW/min) was observed at 0.001 mM treatment, while, the highest amount of TAC (227.235 mg Cy-g/100 ml juice) at a concentration of 0.01 mM and CAT (0.696 u/g FW) and TAL activities (9.553 nm/100 g FW) at a concentration of 0.1 mM were obtained. Considering the lack of significant differences in the effects of melatonin concentrations and the low dose of 0.001 mM, this concentration is recommended for further research. The hierarchical cluster analysis (HCA) and principal component analysis (PCA) divided the treatments into three groups based on their characteristics. Based on the Pearson correlation between TPC, TFC, TAC, and TAA, a positive correlation was observed with antioxidant (DPPH and FRAP) and enzyme (PAL and CAT) activities. The results of this study have identified melatonin as an eco-friendly compound that enhances the shelf life of raspberry fruits by improving phenolic compounds, as well as antioxidant and enzyme activities.


Antioxidants , Fruit , Melatonin , Phytochemicals , Rubus , Antioxidants/metabolism , Antioxidants/analysis , Melatonin/pharmacology , Rubus/chemistry , Phytochemicals/analysis , Phytochemicals/chemistry , Fruit/chemistry , Fruit/drug effects , Phenols/analysis , Flavonoids/analysis , Catalase/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Anthocyanins/analysis
4.
Food Res Int ; 186: 114382, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729736

Black carrot anthocyanins have gained increasing attention as natural coloring agent, owing to their higher stability than anthocyanins from berries. The stability has been attributed to their higher degree of acylation. This study investigated the impact of acylation on the stability of individual anthocyanins during storage in light and darkness. We hypothesized that the acylated anthocyanins would be more stable than the non-acylated ones. The major five anthocyanins were fractioned by semi-preparative HPLC and stored at pH 4.5 in light and darkness to investigate how acylation affected the stability. The stability was evaluated by absorption spectroscopy and mass spectrometry (MS). Two of the anthocyanins were non-acylated; 3-xylosyl(glucosyl)galactoside and cyanidin 3-xylosylgalactoside, and three were acylated; cyanidin 3-xylosyl(sinapolyglucosyl)galacto-side, cyanidin 3-xylosyl(feruloylglu-cosyl)galactoside, and cyanidin 3-xylosyl(coumaroyl-glucosyl)galactoside. Both methods (spectroscopy and MS) showed a clear effect of acylation when stored in light, but surprisingly the two non-acylated anthocyanins, showed higher stability than the three acylated ones.


Anthocyanins , Daucus carota , Light , Anthocyanins/chemistry , Anthocyanins/analysis , Acylation , Daucus carota/chemistry , Daucus carota/radiation effects , Chromatography, High Pressure Liquid , Darkness , Food Storage/methods , Mass Spectrometry , Hydrogen-Ion Concentration
5.
Molecules ; 29(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731406

The effects of canopy treatment with chitosan and the effects of the vineyard location on the quality parameters, volatile and non-volatile profiles, and sensory profile of Pinot Noir wines from South Tyrol (Italy) were studied. Multivariate statistical analysis was applied to identify the most relevant compounds associated with the variability in phenolics and anthocyanins (analyzed by UHPLC-MS), volatile components (HS-SPME-GCxGC-ToF/MS), and basic enological parameters. A clear separation of low-altitude wines (350 m.a.s.l.), which had a high concentration of most of the identified volatile compounds, compared to high-altitude wines (800 and 1050-1150 m.a.s.l.) was pointed out. Low altitude minimized the concentration of the most significant anthocyanins in wines from a valley bottom, presumably due to reduced sun exposure. Wines obtained from chitosan-treated canopies, and, more particularly, those subjected to multiple treatments per year showed a higher amount of the main non-volatile phenolics and were sensorially described as having "unpleasant flavors" and "odors", which might suggest that grape metabolism is slightly altered compared to untreated grapevines. Thus, optimization of the treatment with chitosan should be further investigated.


Anthocyanins , Chitosan , Phenols , Vitis , Volatile Organic Compounds , Wine , Anthocyanins/analysis , Chitosan/chemistry , Wine/analysis , Vitis/chemistry , Phenols/analysis , Volatile Organic Compounds/analysis , Italy , Chromatography, High Pressure Liquid
6.
J Agric Food Chem ; 72(22): 12725-12737, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38776412

Potential alcohol, as obtained by grape maturity, affects the extraction of phenolics during winemaking. The extent to which potential alcohol is correlated to phenolic and sensory characteristics of red wine was investigated. Decoupling of the ripening kinetics of grape constituents due to climate change emphasizes this question. The impact of potential alcohol, as naturally obtained by grape maturity or adjusted by sugar addition, representing high sugar but low phenolic maturity, on wine characteristics was investigated for two varieties over two vintages. Enhancement of potential alcohol to late harvest conditions did not achieve the sensory characteristics of wine made from phenolic mature grapes. An experimental model was developed revealing the contribution of potential alcohol to phenolic and sensory characteristics. In Pinot noir, anthocyanins correlated well with natural potential alcohol but were not influenced by enhanced potential alcohol. In Cabernet Sauvignon, polymeric pigments provided the most accurate information about grape maturity perception in wine.


Fruit , Phenols , Taste , Vitis , Wine , Vitis/chemistry , Vitis/growth & development , Wine/analysis , Phenols/chemistry , Fruit/chemistry , Fruit/growth & development , Humans , Anthocyanins/chemistry , Anthocyanins/analysis , Male , Female , Ethanol/analysis , Adult
7.
Food Chem ; 452: 139573, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38718454

Grapes were packaged by different Poly (L-lactic acid)-based packaging films (PLTL-PLEL) and stored at 5 °C for 35 days to investigate the effects of equilibrium modified atmosphere packaging on the quality of "Kyoho" grapes during storage. Changes in physiochemical quality, antioxidant content and senescence of grapes were studied. Furthermore, UPLC-Q-TOF-MS/MS was used to observe and identify key factors influencing the variation of grape anthocyanins under different atmosphere conditions. Alterations in gas components and enzyme activities significantly impacted anthocyanin levels, highlighting oxygen concentration as the primary influence on total anthocyanin levels. The PLTL-PLEL50 packaging resulted in an approximate 5.7% lower weight loss and increased soluble solids by approximately 14.4%, vitamin C, total phenols and flavonoids reaching 60.2 mg/100 g, 8.4 mg/100 g and 7.2 mg/100 g, respectively. This packaging also preserved higher anthocyanin levels, with malvidin-3-glucoside and peonidin-3-glucoside at 0.55 µg/mL and 1.62 µg/mL, respectively, on the 35th day of storage.


Anthocyanins , Food Packaging , Polyesters , Vitis , Anthocyanins/chemistry , Anthocyanins/analysis , Food Packaging/instrumentation , Vitis/chemistry , Polyesters/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Fruit/chemistry , Antioxidants/chemistry , Tandem Mass Spectrometry
8.
Sci Rep ; 14(1): 11082, 2024 05 15.
Article En | MEDLINE | ID: mdl-38744893

To investigate the effect of horsetail extract containing high silicon on morphological traits, growth, content, and compositions of essential oil of sweet basil (Ocimum basilicum L.) an experiment turned into carried out in the shape of a randomized complete block design with three replications. Foliar treatment of horsetail extract with zero, 0.5, 1, and 2% concentrations was applied on 6-8 leaf plants. The assessed traits include plant height, number of leaves per plant, number of sub-branches, leaf area index, plant fresh weight, plant dry weight, total anthocyanin, the content of total phenol and total flavonoid, antioxidant activity, essential oil content, and compounds were measured. The findings demonstrated that the increase of silicon-containing horsetail extract enhanced the improved increase in growth and phytochemical trait values. The use of horsetail extract in the 2% treatment increased plant height, the number of leaves per plant, the number of sub-branches, leaf area index, fresh weight, and dry weight of the plant by 49.79, 45.61, 91.09, 99.78, 52.78 and 109.25%, respectively, compared to the control. The highest content of total phenol (2.12 mg GAE/g DW), total flavonoid (1.73 mg RE/g DW), total anthocyanin (0.83 mg C3G/g DW), and antioxidant activity (184.3 µg/ml) was observed in the 2% extract treatment. The content of essential oil increased with increasing the concentration of horsetail extract, so the highest amount of essential oil was obtained at the concentration of 2%, which increased by 134.78% compared to the control. By using GC-MS, the essential oil was analyzed. The main components of the essential oil include methyl eugenol (12.93-25.93%), eugenol (17.63-27.51%), 1,8-cineole (15.63-20.84%), linalool (8.31-19.63%) and (Z)-caryophyllene (6.02-14.93%). Increasing the concentration of horsetail extract increased the compounds of eugenol, 1,8-cineole, and linalool in essential oil compared to the control, but decreased the compounds of methyl eugenol and (Z)-caryophyllene. Foliar spraying of horsetail extract, which contains high amounts of silicon, as a stimulant and biological fertilizer, can be a beneficial ingredient in increasing the yield and production of medicinal plants, especially in organic essential oil production.


Antioxidants , Ocimum basilicum , Oils, Volatile , Plant Extracts , Plant Leaves , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Ocimum basilicum/chemistry , Ocimum basilicum/growth & development , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/analysis , Antioxidants/pharmacology , Plant Leaves/chemistry , Plant Leaves/growth & development , Flavonoids/analysis , Phenols/analysis , Anthocyanins/analysis
9.
J Agric Food Chem ; 72(20): 11629-11639, 2024 May 22.
Article En | MEDLINE | ID: mdl-38739462

Blueberries (Vaccinium section Cyanococcus) have a wealth of bioactive compounds, including anthocyanins and other antioxidants, that offer significant health benefits. Preserving these compounds and maintaining the sensory and nutritional qualities of blueberry products such as juice during cold market storage is critical to meet consumer expectations for nutritious, safe, and minimally processed food. In this study, we compared the effects of two preservation processing techniques, high-temperature short-time (HTST) and continuous flow high-pressure homogenization (CFHPH), on blueberry juice quality during storage at 4 °C. Our findings revealed that inlet temperature (Tin) of CFHPH processing at 4 °C favored anthocyanin retention, whereas Tin at 22 °C favored ascorbic acid retention. After 45 days of storage, CFHPH (300 MPa, 1.5 L/min, 4 °C) juice retained up to 54% more anthocyanins compared to control at 0 day. In contrast, HTST treatment (95 °C, 15 s) initially increased anthocyanin concentrations but led to their subsequent degradation over time, while also significantly degrading ascorbic acid. Furthermore, CFHPH (300 MPa, 4 °C) juice had significantly lower polyphenol oxidase activity (>80% less than control), contributing to the overall quality of the juice. This innovative processing technique has the potential to improve commercial blueberry juice, and help meet the rising demand for healthy and appealing food choices.


Anthocyanins , Ascorbic Acid , Blueberry Plants , Cold Temperature , Food Storage , Fruit and Vegetable Juices , Fruit , Anthocyanins/chemistry , Anthocyanins/analysis , Blueberry Plants/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Fruit and Vegetable Juices/analysis , Fruit/chemistry , Pressure , Food Preservation/methods , Food Preservation/instrumentation , Food Handling/methods , Food Handling/instrumentation , Antioxidants/chemistry , Antioxidants/analysis
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124497, 2024 Oct 05.
Article En | MEDLINE | ID: mdl-38795527

Smart packaging materials have been used to protect human health from environmental hazards by sending real-time colorimetric signals for changes in the food packaging environment. However, the colorimetric material sensors use synthetic sensor dyes, which are toxic, expensive, non-biodegradable, and difficult to prepare. Herein, a simple strategy is presented for the development of an environmentally-friendly halochromic wood able to change color upon exposure to spoilage of food. A combination of anthocyanin (Ac)/aluminum (Al) mordant (Ac/Al) nanoparticles and cellulose nanowhiskers (CNW)-reinforced polyvinyl alcohol (PVA) was infiltrated into a delignified wood to produce a translucent wood with halochromic properties. CNW were employed as reinforcement agent to improve the mechanical performance of PVA. Additionally, CNW function as a dispersing agent to prevent agglomeration of Ac/Al nanoparticles. The diameters of CNW are in the range of 12-19 nm, whereas Ac/Al particles showed diameters of 9-22 nm. The smart wood changed color from purplish to colorless when exposed to food spoilage. A hypsochromic change from 539 nm to 370 nm was shown by the anthocyanin receptor when the spoilage level of food increased. This could be attributed to the pH-driven molecular switching of anthocyanin, leading to charge delocalization.


Anthocyanins , Cellulose , Food Packaging , Polyvinyl Alcohol , Wood , Anthocyanins/chemistry , Anthocyanins/analysis , Cellulose/chemistry , Polyvinyl Alcohol/chemistry , Wood/chemistry , Food Packaging/methods , Colorimetry/methods , Nanoparticles/chemistry , Color , Green Chemistry Technology/methods
11.
Food Chem ; 451: 139495, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38692244

Our previous study revealed stem inclusion fermentation reduced anthocyanin, and increased tannin and aroma compounds responsible for green notes. This study further investigated the effect of clone selection and whole bunch fermentation on Pinot noir wine composition, with focus on tannin composition. Three treatments were conducted using two clones (AM10/5 and UCD5) in 2021 and 2022: 100% destemmed (DS), 30% whole bunch (WB30), and 60% whole bunch (WB60). WB60 increased stem and skin derived tannins but reduced seed derived tannin proportion in wines. Clone selection had an impact on tannin composition and an even greater impact on tannin concentration, colour, and aroma compounds. AM10/5 produced wines with higher tannin, polymeric pigments and darker colour. AM10/5 wines also had higher concentration of phenylethyl alcohol, but lower concentrations of 3-isobutyl-2-methoxypyrazine and ethyl esters, indicating more floral but less fruity and green notes.


Color , Fermentation , Odorants , Tannins , Wine , Wine/analysis , Tannins/analysis , Odorants/analysis , Pinus/chemistry , Volatile Organic Compounds/chemistry , Fruit/chemistry , Anthocyanins/analysis , Anthocyanins/chemistry
12.
J Hazard Mater ; 470: 134164, 2024 May 15.
Article En | MEDLINE | ID: mdl-38583200

Strawberry, a globally popular crop whose fruit are known for their taste and health benefits, were used to evaluate the effects of polyethylene microplastics (PE-MPs) on plant physiology and fruit quality. Plants were grown in 2-L pots with natural soil mixed with PE-MPs at two concentrations (0.2% and 0.02%; w/w) and sizes (⌀ 35 and 125 µm). Plant physiological responses, root histochemical and anatomical analyses as well as fruit biometric and quality features were conducted. Plants subjected to ⌀ 35 µm/0.2% PE-MPs exhibited the most severe effects in terms of CO2 assimilation due to stomatal limitations, along with the highest level of oxidative stress in roots. Though no differences were observed in plant biomass, the impact on fruit quality traits was severe in ⌀ 35 µm/0.2% MPs treatment resulting in a drop in fruit weight (-42%), soluble solid (-10%) and anthocyanin contents (-25%). The smallest sized PE-MPs, adsorbed on the root surface, impaired plant water status by damaging the radical apparatus, which finally resulted in alteration of plant physiology and fruit quality. Further research is required to determine if these alterations also occur with other MPs and to understand more deeply the MPs influence on fruit physio-chemistry.


Fragaria , Fruit , Microplastics , Plant Roots , Polyethylene , Fragaria/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Fruit/drug effects , Polyethylene/toxicity , Microplastics/toxicity , Soil Pollutants/toxicity , Anthocyanins/analysis , Oxidative Stress/drug effects
13.
Ultrason Sonochem ; 105: 106872, 2024 May.
Article En | MEDLINE | ID: mdl-38599128

The present study aimed to investigate the potential of ultrasonic treatment during fermentation for enhancing the quality of fortified wines with varying time and power settings. Chemical analysis and sensory evaluation were conducted to assess the impact of ultrasonic treatment on wine quality. Results showed that ultrasonic treatment could increase total anthocyanin and total phenol content, reduce anthocyanin degradation rate, and improve color stability. Moreover, ethyl carbamate content was lower in the ultrasonic group after aging compared to non-ultrasonic group. A combination of 200 W for 20 min resulted in higher sensory scores and more coordinated taste, while a combination of 400 W for 40 min produced higher levels of volatile compounds (21860.12 µg/L) leading to a richer and more elegant aroma. Therefore, ultrasound can be used as a potential technology to improve the quality of wine.


Anthocyanins , Fermentation , Wine , Wine/analysis , Anthocyanins/analysis , Taste , Food Quality , Ultrasonic Waves , Color , Food, Fortified/analysis , Phenols/analysis
14.
Int J Biol Macromol ; 268(Pt 1): 131602, 2024 May.
Article En | MEDLINE | ID: mdl-38626836

The use of biopolymers as matrices and anthocyanins as pH-sensing indicators has generated increasing interest in freshness detection. Nevertheless, the weak mechanical properties and color stability of biopolymer-based smart packaging systems restrict their practicality. In this study, a nanocellulose hydrogel colorimetric film with enhanced stretchability, antifatigue properties, and color stability was prepared using soy hull nanocellulose (SHNC), polyvinyl alcohol (PVA), sodium alginate (SA), and anthocyanin (Anth) as raw materials. This hydrogel colorimetric film was used to detect beef freshness. The structure and properties (e.g., mechanical, thermal stability and hydrophobicity) of these hydrogel colorimetric films were characterized using different techniques. Fourier-transform infrared spectroscopy revealed the presence of hydrogen and ester bonds in the hydrogel colorimetric films, whereas scanning electron microscopy revealed the fish scale-like and honeycomb network structure of the hydrogel colorimetric films. Mechanical testing demonstrated that the SHNC/PVA/SA/Anth-2 hydrogel colorimetric film exhibited excellent tensile properties (elongation = 261 %), viscoelasticity (storage modulus of 11.25 kPa), and mechanical strength (tensile strength = 154 kPa), and the hydrogel colorimetric film exhibited excellent mechanical properties after repeated tensile tests. Moreover, the hydrogel colorimetric film had high transparency, excellent anti-UV linearity, thermal stability and hydrophobicity, and had displayed visually discernible color response to pH buffer solution and volatile NH3 by naked eyes, which was highly correlated with the TVB-N and pH values. Notably, the release of anthocyanin in distilled water decreased from 81.23 % to 19.87 %. The designed SHNC/PVA/SA/Anth hydrogel colorimetric films exhibited potential application as smart packaging film or gas-sensing labels in monitoring the freshness of meat products.


Cellulose , Colorimetry , Red Meat , Cellulose/chemistry , Colorimetry/methods , Red Meat/analysis , Animals , Cattle , Food Packaging , Anthocyanins/chemistry , Anthocyanins/analysis , Hydrogels/chemistry , Polyvinyl Alcohol/chemistry , Tensile Strength , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Nanostructures/chemistry
15.
Molecules ; 29(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38675555

Anthocyanins, a subclass of flavonoids known for their vibrant colors and health-promoting properties, are pivotal in the nutritional science and food industry. This review article delves into the analytical methodologies for anthocyanin detection and quantification in food matrices, comparing quantitative and topical techniques. Quantitative methods, including High-performance Liquid Chromatography (HPLC) and Mass Spectrometry (MS), offer precise quantification and profiling of individual anthocyanins but require sample destruction, limiting their use in continuous quality control. Topical approaches, such as Near-infrared Spectroscopy (NIR) and hyperspectral imaging, provide rapid, in situ analysis without compromising sample integrity, ideal for on-site food quality assessment. The review highlights the advancements in chromatographic techniques, particularly Ultra-high-performance Liquid Chromatography (UHPLC) coupled with modern detectors, enhancing resolution and speed in anthocyanin analysis. It also emphasizes the growing importance of topical techniques in the food industry for their efficiency and minimal sample preparation. By examining the strengths and limitations of both analytical realms, this article aims to shed light on current challenges and prospective advancements, providing insights into future research directions for improving anthocyanin analysis in foods.


Anthocyanins , Food Analysis , Anthocyanins/analysis , Anthocyanins/chemistry , Chromatography, High Pressure Liquid/methods , Food Analysis/methods , Mass Spectrometry/methods , Spectroscopy, Near-Infrared/methods
16.
Food Chem ; 449: 139222, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38583398

Nine varieties of purple sweet potato were steamed and used for the production of shrimp freshness indicators. The impact of purple sweet potato's variety on the structure, physical property and halochromic ability of indicators was determined. Results showed different varieties of purple sweet potato had different starch, crude fiber, pectin, protein, fat and total anthocyanin contents. The microstructure, crystallinity, moisture content, water vapor permeability, tensile strength and elongation at break of indicators were affected by crude fiber content in purple sweet potato. The color, transmission and halochromic ability of indicators was associated with the total anthocyanin content in purple sweet potato. Freshness indicators produced from Fuzi No. 1, Ganzi No. 6, Ningzi No. 2, Ningzi No. 4, Qining No. 2 and Qining No. 18 of purple sweet potato were suitable to indicate shrimp freshness. This study provides useful information on screening suitable varieties of purple sweet potato for intelligent packaging.


Ipomoea batatas , Ipomoea batatas/chemistry , Animals , Food Packaging , Anthocyanins/analysis , Anthocyanins/chemistry , Starch/chemistry , Starch/analysis , Color
17.
J Agric Food Chem ; 72(17): 9587-9598, 2024 May 01.
Article En | MEDLINE | ID: mdl-38588384

Far-red (FR) light influences plant development significantly through shade avoidance response and photosynthetic modulation, but there is limited knowledge on how FR treatments influence the growth and nutrition of vegetables at different maturity stages in controlled environment agriculture (CEA). Here, we comprehensively investigated the impacts of FR on the yield, morphology, and phytonutrients of ruby streaks mustard (RS) at microgreen, baby leaf, and flowering stages. Treatments including white control, white with supplementary FR, white followed by singularly applied FR, and enhanced white (WE) matching the extended daily light integral (eDLI) of FR were designed for separating the effects of light intensity and quality. Results showed that singular and supplemental FR affected plant development and nutrition similarly throughout the growth cycle, with light intensity and quality playing varying roles at different stages. Specifically, FR did not affect the fresh and dry weight of microgreens but increased those values for baby leaves, although not as effectively as WE. Meanwhile, FR caused significant morphological change and accelerated the development of leaves, flowers, and seedpods more dramatically than WE. With regard to phytonutrients, light treatments affected the metabolomic profiles for baby leaves more dramatically than microgreens and flowers. FR decreased the glucosinolate and anthocyanin contents in microgreens and baby leaves, while WE increased the contents of those compounds in baby leaves. This study illustrates the complex impacts of FR on RS and provides valuable information for selecting optimal lighting conditions in CEA.


Biomass , Flowers , Light , Mustard Plant , Phytochemicals , Plant Leaves , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/radiation effects , Mustard Plant/metabolism , Mustard Plant/growth & development , Mustard Plant/chemistry , Mustard Plant/radiation effects , Flowers/growth & development , Flowers/metabolism , Flowers/chemistry , Flowers/radiation effects , Phytochemicals/metabolism , Phytochemicals/chemistry , Photosynthesis/radiation effects , Anthocyanins/metabolism , Anthocyanins/analysis , Red Light
18.
J Food Sci ; 89(5): 2774-2786, 2024 May.
Article En | MEDLINE | ID: mdl-38602038

Banana is one of the most consumed and popular fruits in all regions of the world, being cultivated mainly in tropical countries. It is not only a rich source of vitamins A, C, and B, calcium, iron, potassium, phosphorus, and other vitamins and nutrients, but it also contains several types of antioxidants with high nutritional value. In this context, the current study aimed to quantify the content of ascorbic acid, flavonoids, pigments, and minerals present in "Nanicão" bananas during the ripening process. As demonstrated, the level of flavonoids was higher in ripe and overripe fruits, whereas the mineral composition was high only at ripening stage 4 (more yellow than green) a stage that should be prioritized when recommending fruit consumption to the population deficient in these minerals. Regarding pigments, there was a reduction in chlorophylls a and b and an increase in carotenoids and anthocyanins in peels and pulps. PRACTICAL APPLICATION: Flavonoids are phenolic, bioactive compounds with proven antioxidant and anti-inflammatory activity and products of the plant's secondary metabolism. The degradation of chlorophylls and synthesis of carotenoids and anthocyanins, and as a consequence of the latter pigment, the increase in flavonoids in the pulp was evident during the monitoring of ripening, mainly in the fruit peels in relation to pigments. Minerals are essential elements, the main ones provided in balanced diets and important for dietary and nutritional health.


Antioxidants , Carotenoids , Flavonoids , Fruit , Minerals , Musa , Flavonoids/analysis , Fruit/chemistry , Musa/chemistry , Minerals/analysis , Antioxidants/analysis , Carotenoids/analysis , Pigments, Biological/analysis , Chlorophyll/analysis , Ascorbic Acid/analysis , Nutritive Value , Anthocyanins/analysis
19.
Talanta ; 274: 125997, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38569369

Cyanidin-3-O-glucoside (C3G), a natural antioxidant, plays multiple physiological or pathological roles in maintaining human health; thereby, designing advanced sensors to achieve specific recognition and high-sensitivity detection of C3G is significant. Herein, an imprinted-type electrochemiluminescence (ECL) sensing platform was developed using core-shell Ru@SiO2-CMIPs, which were prepared by covalent organic framework (COF)-based molecularly imprinted polymers (CMIPs) embedded in luminescent Ru@SiO2 cores. The C3G-imprinted COF shell not only helps generate a steady-enhanced ECL signal, but also enables specific recognition of C3G. When C3G is bound to Ru@SiO2-CMIPs with abundant imprinted cavities, resonance energy transfer (RET) behavior is triggered, resulting in a quenched ECL response. The constructed Ru@SiO2-CMIPs nanoprobes exhibit ultra-high sensitivity, absolute specificity, and an ultra-low detection limit (0.15 pg mL-1) for analyzing C3G in food matrices. This study provides a means to construct an efficient and reliable molecular imprinting-based ECL sensor for food analysis.


Anthocyanins , Electrochemical Techniques , Glucosides , Luminescent Measurements , Metal-Organic Frameworks , Molecular Imprinting , Ruthenium , Silicon Dioxide , Anthocyanins/chemistry , Anthocyanins/analysis , Silicon Dioxide/chemistry , Luminescent Measurements/methods , Electrochemical Techniques/methods , Ruthenium/chemistry , Glucosides/chemistry , Glucosides/analysis , Metal-Organic Frameworks/chemistry , Limit of Detection , Molecularly Imprinted Polymers/chemistry
20.
J Agric Food Chem ; 72(13): 7383-7396, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38526294

The need to reduce the use of pesticides in viticulture is increasing the interest in wines produced using fungal-resistant grapevine varieties, which are characterized by relevant contents of both monoglucoside and diglucoside anthocyanins. Aging in wooden barrels induces oxygen permeation into wine, but little is known about diglucoside anthocyanin evolution. Cabernet cortis wine was subjected to addition of oxygen and oak chips, and the anthocyanin changes were followed for 1 month. Decreases of 90% total monoglucosides, 80% acylated monoglucosides, 65% diglucosides, and 90% acylated diglucosides were observed. Monoglucosides formed pyranoanthocyanins, and the lower steric hindrance favored their polymerization with flavanols. Instead, the decrease in diglucosides was correlated to the number of hydroxyl groups of ring B, indicating the predominant oxidation of aglycones. However, three flavonol-anthocyanin-diglucoside derivatives named (epi)catechin-ethyl-Mv-dihexoside, (epi)catechin-ethyl-Pn-dihexoside, and (epi)catechin-Mv-dihexoside A-type were identified in wine for the first time. These research findings are useful for tuning suitable oenological practices to stabilize the color of these wines (type of barrel, aging times, oxygenation practices) and lower the malvin content, which currently is recommended by the OIV at a maximum of 15 mg/L and is a critical issue for their commercialization.


Catechin , Vitis , Wine , Wine/analysis , Anthocyanins/analysis , Oxygen , Oxidative Stress , Fungi
...