Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220039, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36633281

RESUMEN

Anthranilate phosphoribosyltransferase catalyses the second reaction in the biosynthesis of tryptophan from chorismate in microorganisms and plants. The enzyme is homodimeric with the active site located in the hinge region between two domains. A range of structures in complex with the substrates, substrate analogues and inhibitors have been determined, and these have provided insights into the catalytic mechanism of this enzyme. Substrate 5-phospho-d-ribose 1-diphosphate (PRPP) binds to the C-terminal domain and coordinates to Mg2+, in a site completed by two flexible loops. Binding of the second substrate anthranilate is more complex, featuring multiple binding sites along an anthranilate channel. This multi-modal binding is consistent with the substrate inhibition observed at high concentrations of anthranilate. A series of structures predict a dissociative mechanism for the reaction, similar to the reaction mechanisms elucidated for other phosphoribosyltransferases. As this enzyme is essential for some pathogens, efforts have been made to develop inhibitors for this enzyme. To date, the best inhibitors exploit the multiple binding sites for anthranilate. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.


Asunto(s)
Antranilato Fosforribosiltransferasa , ortoaminobenzoatos , Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/metabolismo , Sitios de Unión , Dominio Catalítico , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo
2.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 3): 61-69, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33682790

RESUMEN

Anthranilate phosphoribosyltransferase (AnPRT) catalyzes the transfer of the phosphoribosyl group of 5'-phosphoribosyl-1'-pyrophosphate (PRPP) to anthranilate to form phosphoribosyl-anthranilate. Crystal structures of AnPRTs from bacteria and archaea have previously been determined; however, the structure of Saccharomyces cerevisiae AnPRT (ScAnPRT) still remains unsolved. Here, crystal structures of ScAnPRT in the apo form as well as in complex with its substrate PRPP and the substrate analogue 4-fluoroanthranilate (4FA) are presented. These structures demonstrate that ScAnPRT exhibits the conserved structural fold of type III phosphoribosyltransferase enzymes and shares the similar mode of substrate binding found across the AnPRT protein family. In addition, crystal structures of ScAnPRT mutants (ScAnPRTSer121Ala and ScAnPRTGly141Asn) were also determined. These structures suggested that the conserved residue Ser121 is critical for binding PRPP, while Gly141 is dispensable for binding 4FA. In summary, these structures improved the preliminary understanding of the substrate-binding mode of ScAnPRT and laid foundations for future research.


Asunto(s)
Antranilato Fosforribosiltransferasa/química , Saccharomyces cerevisiae/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Difosfatos/metabolismo , Multimerización de Proteína , Estructura Secundaria de Proteína , ortoaminobenzoatos/metabolismo
3.
Biochem Biophys Res Commun ; 521(4): 991-996, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31727369

RESUMEN

Mycobacterium fortuitum has emerged as a nosocomial infectious agent and biofilm formation attributed for the presence of this bacterium in hospital environment. Transposon random mutagenesis was used to identify membrane-proteins for biofilm formation in M. fortuitum. Ten mutants were shortlisted from a library of 450 mutants for examine their biofilm forming ability. Comparative biofilm ability with respect to wild type M. fortuitum ATCC 6841 showed an altered and delayed biofilm formation in one mutant namely, MT721. Sequence analysis revealed mutation in anthranilate phosphoribosyl transferase (MftrpD), which is associated with tryptophan operon. Functional interaction study of TrpD protein through STRING showed its interaction with chorismate utilizing proteins, majorly involved in synthesis of aromatic amino acid and folic acid, suggesting that biofilm establishment and maintenance requires components of central metabolism. Our study indicates important role of MftrpD in establishment and maintenance of biofilm by M. fortuitum, which may further be explored for drug discovery studies against mycobacterial infections.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Elementos Transponibles de ADN/genética , Mutagénesis Insercional/genética , Mutación/genética , Mycobacterium fortuitum/genética , Mycobacterium fortuitum/fisiología , Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Ácido Corísmico/metabolismo , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína
4.
Proteins ; 87(10): 815-825, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31134642

RESUMEN

It is an important goal of computational biology to correctly predict the association state of a protein based on its amino acid sequence and the structures of known homologues. We have pursued this goal on the example of anthranilate phosphoribosyltransferase (AnPRT), an enzyme that is involved in the biosynthesis of the amino acid tryptophan. Firstly, known crystal structures of naturally occurring homodimeric AnPRTs were analyzed using the Protein Interfaces, Surfaces, and Assemblies (PISA) service of the European Bioinformatics Institute (EBI). This led to the identification of two hydrophobic "hot spot" amino acids in the protein-protein interface that were predicted to be essential for self-association. Next, in a comprehensive multiple sequence alignment (MSA), naturally occurring AnPRT variants with hydrophilic or charged amino acids in place of hydrophobic residues in the two hot spot positions were identified. Representative variants were characterized in terms of thermal stability, enzymatic activity, and quaternary structure. We found that AnPRT variants with charged residues in both hot spot positions exist exclusively as monomers in solution. Variants with hydrophilic amino acids in one hot spot position occur in both forms, monomer and dimer. The results of the present study provide a detailed characterization of the determinants of the AnPRT monomer-dimer equilibrium and show that analysis of hot spots in combination with MSAs can be a valuable tool in prediction of protein quaternary structures.


Asunto(s)
Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/metabolismo , Bacterias/enzimología , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Antranilato Fosforribosiltransferasa/genética , Dominio Catalítico , Biología Computacional , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Multimerización de Proteína
5.
Biochim Biophys Acta Proteins Proteom ; 1866(2): 264-274, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28844746

RESUMEN

Phosphoribosyltransferases (PRTs) bind 5'-phospho-α-d-ribosyl-1'-pyrophosphate (PRPP) and transfer its phosphoribosyl group (PRib) to specific nucleophiles. Anthranilate PRT (AnPRT) is a promiscuous PRT that can phosphoribosylate both anthranilate and alternative substrates, and is the only example of a type III PRT. Comparison of the PRPP binding mode in type I, II and III PRTs indicates that AnPRT does not bind PRPP, or nearby metals, in the same conformation as other PRTs. A structure with a stereoisomer of PRPP bound to AnPRT from Mycobacterium tuberculosis (Mtb) suggests a catalytic or post-catalytic state that links PRib movement to metal movement. Crystal structures of Mtb-AnPRT in complex with PRPP and with varying occupancies of the two metal binding sites, complemented by activity assay data, indicate that this type III PRT binds a single metal-coordinated species of PRPP, while an adjacent second metal site can be occupied due to a separate binding event. A series of compounds were synthesized that included a phosphonate group to probe PRPP binding site. Compounds containing a "bianthranilate"-like moiety are inhibitors with IC50 values of 10-60µM, and Ki values of 1.3-15µM. Structures of Mtb-AnPRT in complex with these compounds indicate that their phosphonate moieties are unable to mimic the binding modes of the PRib or pyrophosphate moieties of PRPP. The AnPRT structures presented herein indicated that PRPP binds a surface cleft and becomes enclosed due to re-positioning of two mobile loops.


Asunto(s)
Antranilato Fosforribosiltransferasa/química , Proteínas Bacterianas/química , Mycobacterium tuberculosis/enzimología , Sitios de Unión , Cristalografía por Rayos X , Estructura Secundaria de Proteína
6.
BMC Bioinformatics ; 18(1): 274, 2017 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-28545394

RESUMEN

BACKGROUND: Large enzyme families may contain functionally diverse members that give rise to clusters in a sequence similarity network (SSN). In prokaryotes, the genome neighborhood of a gene-product is indicative of its function and thus, a genome neighborhood network (GNN) deduced for an SSN provides strong clues to the specific function of enzymes constituting the different clusters. The Enzyme Function Initiative ( http://enzymefunction.org/ ) offers services that compute SSNs and GNNs. RESULTS: We have implemented AGeNNT that utilizes these services, albeit with datasets purged with respect to unspecific protein functions and overrepresented species. AGeNNT generates refined GNNs (rGNNs) that consist of cluster-nodes representing the sequences under study and Pfam-nodes representing enzyme functions encoded in the respective neighborhoods. For cluster-nodes, AGeNNT summarizes the phylogenetic relationships of the contributing species and a statistic indicates how unique nodes and GNs are within this rGNN. Pfam-nodes are annotated with additional features like GO terms describing protein function. For edges, the coverage is given, which is the relative number of neighborhoods containing the considered enzyme function (Pfam-node). AGeNNT is available at https://github.com/kandlinf/agennt . CONCLUSIONS: An rGNN is easier to interpret than a conventional GNN, which commonly contains proteins without enzymatic function and overly specific neighborhoods due to phylogenetic bias. The implemented filter routines and the statistic allow the user to identify those neighborhoods that are most indicative of a specific metabolic capacity. Thus, AGeNNT facilitates to distinguish and annotate functionally different members of enzyme families.


Asunto(s)
Enzimas/metabolismo , Interfaz Usuario-Computador , Algoritmos , Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/genética , Antranilato Fosforribosiltransferasa/metabolismo , Biocatálisis , Análisis por Conglomerados , Enzimas/química , Enzimas/genética , Redes Reguladoras de Genes , Histidina/biosíntesis , Internet , Anotación de Secuencia Molecular , Timidina Fosforilasa/química , Timidina Fosforilasa/genética , Timidina Fosforilasa/metabolismo
7.
Extremophiles ; 21(1): 73-83, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27757697

RESUMEN

Regulation of amino acid metabolism (RAM) domains are widely distributed among prokaryotes. In most cases, a RAM domain fuses with a DNA-binding domain to act as a transcriptional regulator. The extremely thermophilic bacterium, Thermus thermophilus, only carries a single gene encoding a RAM domain-containing protein on its genome. This protein is a stand-alone RAM domain protein (SraA) lacking a DNA-binding domain. Therefore, we hypothesized that SraA, which senses amino acids through its RAM domain, may interact with other proteins to modify its functions. In the present study, we identified anthranilate phosphoribosyltransferase (AnPRT), the second enzyme in the tryptophan biosynthetic pathway, as a partner protein that interacted with SraA in T. thermophilus. In the presence of tryptophan, SraA was assembled to a decamer and exhibited the ability to form a stable hetero-complex with AnPRT. An enzyme assay revealed that AnPRT was only inhibited by tryptophan in the presence of SraA. This result suggests a novel feedback control mechanism for tryptophan biosynthesis through an inter-RAM domain interaction in bacteria.


Asunto(s)
Antranilato Fosforribosiltransferasa/metabolismo , Proteínas Bacterianas/metabolismo , Thermus thermophilus/enzimología , Triptófano/biosíntesis , Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Retroalimentación Fisiológica , Unión Proteica , Multimerización de Proteína , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
8.
Biochemistry ; 54(39): 6082-92, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26356348

RESUMEN

Anthranilate phosphoribosyltransferase (AnPRT) is essential for the biosynthesis of tryptophan in Mycobacterium tuberculosis (Mtb). This enzyme catalyzes the second committed step in tryptophan biosynthesis, the Mg²âº-dependent reaction between 5'-phosphoribosyl-1'-pyrophosphate (PRPP) and anthranilate. The roles of residues predicted to be involved in anthranilate binding have been tested by the analysis of six Mtb-AnPRT variant proteins. Kinetic analysis showed that five of six variants were active and identified the conserved residue R193 as being crucial for both anthranilate binding and catalytic function. Crystal structures of these Mtb-AnPRT variants reveal the ability of anthranilate to bind in three sites along an extended anthranilate tunnel and expose the role of the mobile ß2-α6 loop in facilitating the enzyme's sequential reaction mechanism. The ß2-α6 loop moves sequentially between a "folded" conformation, partially occluding the anthranilate tunnel, via an "open" position to a "closed" conformation, which supports PRPP binding and allows anthranilate access via the tunnel to the active site. The return of the ß2-α6 loop to the "folded" conformation completes the catalytic cycle, concordantly allowing the active site to eject the product PRA and rebind anthranilate at the opening of the anthranilate tunnel for subsequent reactions. Multiple anthranilate molecules blocking the anthranilate tunnel prevent the ß2-α6 loop from undergoing the conformational changes required for catalysis, thus accounting for the unusual substrate inhibition of this enzyme.


Asunto(s)
Antranilato Fosforribosiltransferasa/química , Proteínas Bacterianas/química , Mycobacterium tuberculosis/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Estructura Secundaria de Proteína
9.
J Biol Chem ; 290(32): 19527-39, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26063803

RESUMEN

We present the crystal structure and biochemical characterization of Escherichia coli YbiB, a member of the hitherto uncharacterized TrpD2 protein family. Our results demonstrate that the functional diversity of proteins with a common fold can be far greater than predictable by computational annotation. The TrpD2 proteins show high structural homology to anthranilate phosphoribosyltransferase (TrpD) and nucleoside phosphorylase class II enzymes but bind with high affinity (KD = 10-100 nM) to nucleic acids without detectable sequence specificity. The difference in affinity between single- and double-stranded DNA is minor. Results suggest that multiple YbiB molecules bind to one longer DNA molecule in a cooperative manner. The YbiB protein is a homodimer that, therefore, has two electropositive DNA binding grooves. But due to negative cooperativity within the dimer, only one groove binds DNA in in vitro experiments. A monomerized variant remains able to bind DNA with similar affinity, but the negative cooperative effect is eliminated. The ybiB gene forms an operon with the DNA helicase gene dinG and is under LexA control, being induced by DNA-damaging agents. Thus, speculatively, the TrpD2 proteins may be part of the LexA-controlled SOS response in bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/química , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Respuesta SOS en Genética , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/genética , Antranilato Fosforribosiltransferasa/metabolismo , Proteínas Bacterianas/genética , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , ADN Bacteriano/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Operón , Pentosiltransferasa/química , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/genética , Transducción de Señal , Homología Estructural de Proteína
10.
Biochem J ; 461(1): 87-98, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24712732

RESUMEN

AnPRT (anthranilate phosphoribosyltransferase), required for the biosynthesis of tryptophan, is essential for the virulence of Mycobacterium tuberculosis (Mtb). AnPRT catalyses the Mg2+-dependent transfer of a phosphoribosyl group from PRPP (5'-phosphoribosyl-1'-pyrophosphate) to anthranilate to form PRA (5'-phosphoribosyl anthranilate). Mtb-AnPRT was shown to catalyse a sequential reaction and significant substrate inhibition by anthranilate was observed. Antimycobacterial fluoroanthranilates and methyl-substituted analogues were shown to act as alternative substrates for Mtb-AnPRT, producing the corresponding substituted PRA products. Structures of the enzyme complexed with anthranilate analogues reveal two distinct binding sites for anthranilate. One site is located over 8 Å (1 Å=0.1 nm) from PRPP at the entrance to a tunnel leading to the active site, whereas in the second, inner, site anthranilate is adjacent to PRPP, in a catalytically relevant position. Soaking the analogues for variable periods of time provides evidence for anthranilate located at transient positions during transfer from the outer site to the inner catalytic site. PRPP and Mg2+ binding have been shown to be associated with the rearrangement of two flexible loops, which is required to complete the inner anthranilate-binding site. It is proposed that anthranilate first binds to the outer site, providing an unusual mechanism for substrate capture and efficient transfer to the catalytic site following the binding of PRPP.


Asunto(s)
Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Antranilato Fosforribosiltransferasa/farmacología , Proteínas Bacterianas/farmacología , Catálisis , Cristalización , Modelos Moleculares , Mycobacterium tuberculosis/patogenicidad , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/fisiología , Factores de Virulencia/química , Factores de Virulencia/metabolismo , Factores de Virulencia/farmacología
11.
Chembiochem ; 15(6): 852-64, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24623674

RESUMEN

The emergence of extensively drug-resistant strains of Mycobacterium tuberculosis (Mtb) highlights the need for new therapeutics to treat tuberculosis. We are attempting to fast-track a targeted approach to drug design by generating analogues of a validated hit from molecular library screening that shares its chemical scaffold with a current therapeutic, the anti-arthritic drug Lobenzarit (LBZ). Our target, anthranilate phosphoribosyltransferase (AnPRT), is an enzyme from the tryptophan biosynthetic pathway in Mtb. A bifurcated hydrogen bond was found to be a key feature of the LBZ-like chemical scaffold and critical for enzyme inhibition. We have determined crystal structures of compounds in complex with the enzyme that indicate that the bifurcated hydrogen bond assists in orientating compounds in the correct conformation to interact with key residues in the substrate-binding tunnel of Mtb-AnPRT. Characterising the inhibitory potency of the hit and its analogues in different ways proved useful, due to the multiple substrates and substrate binding sites of this enzyme. Binding in a site other than the catalytic site was found to be associated with partial inhibition. An analogue, 2-(2-5-methylcarboxyphenylamino)-3-methylbenzoic acid, that bound at the catalytic site and caused complete, rather than partial, inhibition of enzyme activity was found. Therefore, we designed and synthesised an extended version of the scaffold on the basis of this observation. The resultant compound, 2,6-bis-(2-carboxyphenylamino)benzoate, is a 40-fold more potent inhibitor of the enzyme than the original hit and provides direction for further structure-based drug design.


Asunto(s)
Antituberculosos/química , Mycobacterium tuberculosis/enzimología , Triptófano/biosíntesis , ortoaminobenzoatos/química , Antranilato Fosforribosiltransferasa/antagonistas & inhibidores , Antranilato Fosforribosiltransferasa/metabolismo , Antituberculosos/metabolismo , Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad , ortoaminobenzoatos/metabolismo , ortoaminobenzoatos/farmacología
12.
Biochemistry ; 52(10): 1776-87, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23363292

RESUMEN

Anthranilate phosphoribosyltransferase (AnPRT, EC 2.4.2.18) is a homodimeric enzyme that catalyzes the reaction between 5'-phosphoribosyl 1'-pyrophosphate (PRPP) and anthranilate, as part of the tryptophan biosynthesis pathway. Here we present the results of the first chemical screen for inhibitors against Mycobacterium tuberculosis AnPRT (Mtb-AnPRT), along with crystal structures of Mtb-AnPRT in complex with PRPP and several inhibitors. Previous work revealed that PRPP is bound at the base of a deep cleft in Mtb-AnPRT and predicted two anthranilate binding sites along the tunnel leading to the PRPP binding site. Unexpectedly, the inhibitors presented here almost exclusively bound at the entrance of the tunnel, in the presumed noncatalytic anthranilate binding site, previously hypothesized to have a role in substrate capture. The potencies of the inhibitors were measured, yielding Ki values of 1.5-119 µM, with the strongest inhibition displayed by a bianthranilate compound that makes hydrogen bond and salt bridge contacts with Mtb-AnPRT via its carboxyl groups. Our results reveal how the substrate capture mechanism of AnPRT can be exploited to inhibit the enzyme's activity and provide a scaffold for the design of improved Mtb-AnPRT inhibitors that may ultimately form the basis of new antituberculosis drugs with a novel mode of action.


Asunto(s)
Antranilato Fosforribosiltransferasa/antagonistas & inhibidores , Antranilato Fosforribosiltransferasa/química , Mycobacterium tuberculosis/enzimología , Antranilato Fosforribosiltransferasa/genética , Antituberculosos/farmacología , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Fosforribosil Pirofosfato/metabolismo , Especificidad por Sustrato , ortoaminobenzoatos/metabolismo
13.
ACS Chem Biol ; 8(1): 242-8, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23101964

RESUMEN

Anthranilate phosphoribosyl transferase (TrpD) has been well characterized for its role in the tryptophan biosynthetic pathway. Here, we characterized a new reaction catalyzed by TrpD that resulted in the formation of the purine/thiamine intermediate metabolite phosphoribosylamine (PRA). The data showed that 4- and 5-carbon enamines served as substrates for TrpD, and the reaction product was predicted to be a phosphoribosyl-enamine adduct. Isotopic labeling data indicated that the TrpD reaction product was hydrolyzed to PRA. Variants of TrpD that were proficient for tryptophan synthesis were unable to support PRA formation in vivo in Salmonella enterica. These protein variants had substitutions at residues that contributed to binding substrates anthranilate or phosphoribosyl pyrophosphate (PRPP). Taken together the data herein identified a new reaction catalyzed by a well-characterized biosynthetic enzyme, and both illustrated the robustness of the metabolic network and identified a role for an enamine that accumulates in the absence of reactive intermediate deaminase RidA.


Asunto(s)
Aminas/química , Antranilato Fosforribosiltransferasa/química , Fosforribosil Pirofosfato/química , Ribosamonofosfatos/química , Tiamina/química , Tiamina/biosíntesis
14.
Biochemistry ; 51(28): 5633-41, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22737967

RESUMEN

The analysis of a multiple-sequence alignment (MSA) with correlation methods identifies pairs of residue positions whose occupation with amino acids changes in a concerted manner. It is plausible to assume that positions that are part of many such correlation pairs are important for protein function or stability. We have used the algorithm H2r to identify positions k in the MSAs of the enzymes anthranilate phosphoribosyl transferase (AnPRT) and indole-3-glycerol phosphate synthase (IGPS) that show a high conn(k) value, i.e., a large number of significant correlations in which k is involved. The importance of the identified residues was experimentally validated by performing mutagenesis studies with sAnPRT and sIGPS from the archaeon Sulfolobus solfataricus. For sAnPRT, five H2r mutant proteins were generated by replacing nonconserved residues with alanine or the prevalent residue of the MSA. As a control, five residues with conn(k) values of zero were chosen randomly and replaced with alanine. The catalytic activities and conformational stabilities of the H2r and control mutant proteins were analyzed by steady-state enzyme kinetics and thermal unfolding studies. Compared to wild-type sAnPRT, the catalytic efficiencies (k(cat)/K(M)) were largely unaltered. In contrast, the apparent thermal unfolding temperature (T(M)(app)) was lowered in most proteins. Remarkably, the strongest observed destabilization (ΔT(M)(app) = 14 °C) was caused by the V284A exchange, which pertains to the position with the highest correlation signal [conn(k) = 11]. For sIGPS, six H2r mutant and four control proteins with alanine exchanges were generated and characterized. The k(cat)/K(M) values of four H2r mutant proteins were reduced between 13- and 120-fold, and their T(M)(app) values were decreased by up to 5 °C. For the sIGPS control proteins, the observed activity and stability decreases were much less severe. Our findings demonstrate that positions with high conn(k) values have an increased probability of being important for enzyme function or stability.


Asunto(s)
Aminoácidos/química , Antranilato Fosforribosiltransferasa/química , Proteínas Arqueales/química , Indol-3-Glicerolfosfato Sintasa/química , Alineación de Secuencia , Sulfolobus solfataricus/enzimología , Sustitución de Aminoácidos , Antranilato Fosforribosiltransferasa/genética , Proteínas Arqueales/genética , Catálisis , Entropía , Estabilidad de Enzimas , Calor , Indol-3-Glicerolfosfato Sintasa/genética , Cinética , Modelos Moleculares , Mutación , Conformación Proteica , Desplegamiento Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
15.
Chembiochem ; 12(10): 1581-8, 2011 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-21455924

RESUMEN

The anthranilate phosphoribosyl transferase from the hyperthermophilic archaeon Sulfolobus solfataricus (sAnPRT, encoded by strpD), which catalyzes the third step in tryptophan biosynthesis, is a thermostable homodimer with low enzymatic activity at room temperature. We have combined two mutations leading to the monomerization and two mutations leading to the activation of sAnPRT. The resulting "activated monomer" sAnPRT-I36E-M47D+D83G-F149S, which is much more labile than wild-type sAnPRT, was stabilized by a combination of random mutagenesis and metabolic library selection using the extremely thermophilic bacterium Thermus thermophilus as host. This approach led to the identification of five mutations that individually increased the thermal stability of sAnPRT-I36E-M47D+D83G-F149S by 1 to 8 °C, and by 13 °C when combined. The beneficial exchanges were located in different parts of the protein structure, but none of them led to the "re-dimerization" of the enzyme. We observed a negative correlation between thermal stability and catalytic activity of the mutants; this suggests that conformational flexibility is required for catalysis by sAnPRT.


Asunto(s)
Antranilato Fosforribosiltransferasa/genética , Antranilato Fosforribosiltransferasa/metabolismo , Biblioteca de Genes , Sulfolobus solfataricus/enzimología , Sulfolobus solfataricus/genética , Thermus thermophilus/genética , Antranilato Fosforribosiltransferasa/química , Clonación Molecular , Activación Enzimática , Estabilidad de Enzimas , Modelos Moleculares , Mutagénesis , Mutación , Multimerización de Proteína , Temperatura
16.
J Biol Chem ; 285(45): 34401-7, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20817725

RESUMEN

The YjgF/YER057c/UK114 family of proteins is highly conserved across all three domains of life and currently lacks a consensus biochemical function. Analysis of Salmonella enterica strains lacking yjgF has led to a working model in which YjgF functions to remove potentially toxic secondary products of cellular enzymes. Strains lacking yjgF synthesize the thiamine precursor phosphoribosylamine (PRA) by a TrpD-dependent mechanism that is not present in wild-type strains. Here, PRA synthesis was reconstituted in vitro with anthranilate phosphoribosyltransferase (TrpD), threonine dehydratase (IlvA), threonine, and phosphoribosyl pyrophosphate. TrpD-dependent PRA formation in vitro was inhibited by S. enterica YjgF and the human homolog UK114. Thus, the work herein describes the first biochemical assay for diverse members of the highly conserved YjgF/YER057c/UK114 family of proteins and provides a means to dissect the cellular functions of these proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Modelos Biológicos , Ribosamonofosfatos/biosíntesis , Salmonella enterica/metabolismo , Antranilato Fosforribosiltransferasa/genética , Antranilato Fosforribosiltransferasa/metabolismo , Proteínas Bacterianas/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforribosil Pirofosfato/genética , Fosforribosil Pirofosfato/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Ribosamonofosfatos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Salmonella enterica/genética , Homología de Secuencia de Aminoácido , Treonina Deshidratasa/genética , Treonina Deshidratasa/metabolismo
17.
Biochemistry ; 48(23): 5199-209, 2009 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19385665

RESUMEN

Anthranilate phosphoribosyltransferase from the hyperthermophilic archaeon Sulfolobus solfataricus (ssAnPRT) is encoded by the sstrpD gene and catalyzes the reaction of anthranilate (AA) with a complex of Mg(2+) and 5'-phosphoribosyl-alpha1-pyrophosphate (Mg.PRPP) to N-(5'-phosphoribosyl)-anthranilate (PRA) and pyrophosphate (PP(i)) within tryptophan biosynthesis. The ssAnPRT enzyme is highly thermostable (half-life at 85 degrees C = 35 min) but only marginally active at ambient temperatures (turnover number at 37 degrees C = 0.33 s(-1)). To understand the reason for the poor catalytic proficiency of ssAnPRT, we have isolated from an sstrpD library the activated ssAnPRT-D83G + F149S double mutant by metabolic complementation of an auxotrophic Escherichia coli strain. Whereas the activity of purified wild-type ssAnPRT is strongly reduced in the presence of high concentrations of Mg(2+) ions, this inhibition is no longer observed in the double mutant and the ssAnPRT-D83G single mutant. The comparison of the crystal structures of activated and wild-type ssAnPRT shows that the D83G mutation alters the binding mode of the substrate Mg.PRPP. Analysis of PRPP and Mg(2+)-dependent enzymatic activity indicates that this leads to a decreased affinity for a second Mg(2+) ion and thus reduces the concentration of enzymes with the inhibitory Mg(2).PRPP complex bound to the active site. Moreover, the turnover number of the double mutant ssAnPRT-D83G + F149S is elevated 40-fold compared to the wild-type enzyme, which can be attributed to an accelerated release of the product PRA. This effect appears to be mainly caused by an increased conformational flexibility induced by the F149S mutation, a hypothesis which is supported by the reduced thermal stability of the ssAnPRT-F149S single mutant.


Asunto(s)
Antranilato Fosforribosiltransferasa/metabolismo , Magnesio/farmacología , Sulfolobus solfataricus/enzimología , Antranilato Fosforribosiltransferasa/antagonistas & inhibidores , Antranilato Fosforribosiltransferasa/química , Catálisis , Cristalografía por Rayos X , Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfolobus solfataricus/metabolismo
18.
J Mol Biol ; 376(2): 506-16, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18164726

RESUMEN

The anthranilate phosphoribosyltransferase from Sulfolobus solfataricus (ssAnPRT) forms a homodimer with a hydrophobic subunit interface. To elucidate the role of oligomerisation for catalytic activity and thermal stability of the enzyme, we loosened the dimer by replacing two apolar interface residues with negatively charged residues (mutations I36E and M47D). The purified double mutant I36E+M47D formed a monomer with wild-type catalytic activity but reduced thermal stability. The single mutants I36E and M47D were present in a monomer-dimer equilibrium with dissociation constants of about 1 microM and 20 microM, respectively, which were calculated from the concentration-dependence of their heat inactivation kinetics. The monomeric form of M47D, which is populated at low subunit concentrations, was as thermolabile as monomeric I36E+M47D. Likewise, the dimeric form of I36E, which was populated at high subunit concentrations, was as thermostable as dimeric wild-type ssAnPRT. These findings show that the increased stability of wild-type ssAnPRT compared to the I36E+M47D double mutant is not caused by the amino acid exchanges per se but by the higher intrinsic stability of the dimer compared to the monomer. In accordance with the negligible effect of the mutations on catalytic activity and stability, the X-ray structure of M47D contains only minor local perturbations at the dimer interface. We conclude that the monomeric double mutant resembles the individual wild-type subunits, and that ssAnPRT is a dimer for stability but not for activity reasons.


Asunto(s)
Antranilato Fosforribosiltransferasa/genética , Antranilato Fosforribosiltransferasa/metabolismo , Variación Genética , Sulfolobus solfataricus/enzimología , Antranilato Fosforribosiltransferasa/aislamiento & purificación , Rastreo Diferencial de Calorimetría , Catálisis , Cristalografía por Rayos X , Dimerización , Estabilidad de Enzimas , Escherichia coli/genética , Calor , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutación , Plásmidos , Estructura Secundaria de Proteína , Especificidad por Sustrato
19.
J Bacteriol ; 190(3): 815-22, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17557816

RESUMEN

Phosphoribosyl amine (PRA) is an intermediate in purine biosynthesis and also required for thiamine biosynthesis in Salmonella enterica. PRA is normally synthesized by phosphoribosyl pyrophosphate amidotransferase, a high-turnover enzyme of the purine biosynthetic pathway encoded by purF. However, PurF-independent PRA synthesis has been observed in strains having different genetic backgrounds and growing under diverse conditions. Genetic analysis has shown that the anthranilate synthase-phosphoribosyltransferase (AS-PRT) enzyme complex, involved in the synthesis of tryptophan, can play a role in the synthesis of PRA. This work describes the in vitro synthesis of PRA in the presence of the purified components of the AS-PRT complex. Results from in vitro assays and in vivo studies indicate that the cellular accumulation of phosphoribosyl anthranilate can result in nonenzymatic PRA formation sufficient for thiamine synthesis. These studies have uncovered a mechanism used by cells to redistribute metabolites to ensure thiamine synthesis and may define a general paradigm of metabolic robustness.


Asunto(s)
Proteínas Bacterianas/genética , Mutación , Operón , Ribosamonofosfatos/metabolismo , Salmonella typhimurium/metabolismo , Tiamina/metabolismo , Triptófano/metabolismo , Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/genética , Antranilato Fosforribosiltransferasa/metabolismo , Antranilato Sintasa/química , Antranilato Sintasa/genética , Antranilato Sintasa/metabolismo , Proteínas Bacterianas/metabolismo , Medios de Cultivo , Modelos Moleculares , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , ortoaminobenzoatos/metabolismo
20.
J Mol Evol ; 65(5): 496-511, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17938992

RESUMEN

Tryptophan is an essential amino acid that, in eukaryotes, is synthesized either in the plastids of photoautotrophs or in the cytosol of fungi and oomycetes. Here we present an in silico analysis of the tryptophan biosynthetic pathway in stramenopiles, based on analysis of the genomes of the oomycetes Phytophthora sojae and P. ramorum and the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. Although the complete pathway is putatively located in the complex chloroplast of diatoms, only one of the involved enzymes, indole-3-glycerol phosphate synthase (InGPS), displays a possible cyanobacterial origin. On the other hand, in P. tricornutum this gene is fused with the cyanobacteria-derived hypothetical protein COG4398. Anthranilate synthase is also fused in diatoms. This fusion gene is almost certainly of bacterial origin, although the particular source of the gene cannot be resolved. All other diatom enzymes originate from the nucleus of the primary host (red alga) or secondary host (ancestor of chromalveolates). The entire pathway is of eukaryotic origin and cytosolic localization in oomycetes; however, one of the enzymes, anthranilate phosphoribosyl transferase, was likely transferred to the oomycete nucleus from the red algal nucleus during secondary endosymbiosis. This suggests possible retention of the complex plastid in the ancestor of stramenopiles and later loss of this organelle in oomycetes.


Asunto(s)
Cloroplastos/metabolismo , Diatomeas/citología , Diatomeas/metabolismo , Triptófano/biosíntesis , Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/metabolismo , Secuencia de Aminoácidos , Antranilato Fosforribosiltransferasa/genética , Antranilato Fosforribosiltransferasa/metabolismo , Antranilato Sintasa/genética , Antranilato Sintasa/metabolismo , Diatomeas/genética , Evolución Molecular , Indol-3-Glicerolfosfato Sintasa/genética , Indol-3-Glicerolfosfato Sintasa/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Filogenia , Phytophthora/metabolismo , Triptófano/química , Triptófano Sintasa/genética , Triptófano Sintasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA