Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.912
1.
Clin Transl Sci ; 17(5): e13798, 2024 May.
Article En | MEDLINE | ID: mdl-38700290

Fexuprazan, a novel potassium-competitive acid blocker, is expected to be used for the prevention of nonsteroidal anti-inflammatory drugs (NSAIDs) induced ulcer. This study aimed to evaluate pharmacokinetic (PK) interactions between fexuprazan and NSAIDs in healthy subjects. A randomized, open-label, multicenter, six-sequence, one-way crossover study was conducted in healthy male subjects. Subjects randomly received one of the study drugs (fexuprazan 40 mg BID, celecoxib 200 mg BID, naproxen 500 mg BID, or meloxicam 15 mg QD) for 5 or 7 days in the first period followed by the combination of fexuprazan and one of NSAIDs for the same days and the perpetrator additionally administered for 1-2 days in the second period. Serial blood samples for PK analysis were collected until 48- or 72-h post-dose at steady state. PK parameters including maximum plasma concentration at steady state (Cmax,ss) and area under plasma concentration-time curve over dosing interval at steady state (AUCτ,ss) were compared between monotherapy and combination therapy. The PKs of NSAIDs were not significantly altered by fexuprazan. For fexuprazan, differences in PK parameters (22% in Cmax, 19% in AUCτ,ss) were observed when co-administered with naproxen, but not clinically significant. The geometric mean ratio (90% confidence interval) of combination therapy to monotherapy for Cmax,ss and AUCτ,ss was 1.22 (1.02-1.46) and 1.19 (1.00-1.43), respectively. There were no significant changes in the systemic exposure of fexuprazan by celecoxib and meloxicam. Fexuprazan and NSAIDs did not show clinically meaningful PK interactions.


Anti-Inflammatory Agents, Non-Steroidal , Cross-Over Studies , Drug Interactions , Humans , Male , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Adult , Young Adult , Healthy Volunteers , Area Under Curve , Meloxicam/pharmacokinetics , Meloxicam/administration & dosage , Naproxen/pharmacokinetics , Naproxen/administration & dosage , Celecoxib/pharmacokinetics , Celecoxib/administration & dosage , Middle Aged
2.
AAPS PharmSciTech ; 25(5): 112, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744715

This study aimed to develop a propellant-free topical spray formulation of Etodolac (BCS-II), a potent NSAID, which could be beneficial in the medical field for the effective treatment of pain and inflammation conditions. The developed novel propellant-free spray formulation is user-friendly, cost-effective, propellant-free, eco-friendly, enhances the penetration of Etodolac through the skin, and has a quick onset of action. Various formulations were developed by adjusting the concentrations of different components, including lecithin, buffering agents, film-forming agents, plasticizers, and permeation enhancers. The prepared propellant-free spray formulations were then extensively characterized and evaluated through various in vitro, ex vivo, and in vivo parameters. The optimized formulation exhibits an average shot weight of 0.24 ± 0.30 ml and an average drug content or content uniformity of 87.3 ± 1.01% per spray. Additionally, the optimized formulation exhibits an evaporation time of 3 ± 0.24 min. The skin permeation study demonstrated that the permeability coefficients of the optimized spray formulation were 21.42 cm/h for rat skin, 13.64 cm/h for mice skin, and 18.97 cm/h for the Strat-M membrane. When assessing its potential for drug deposition using rat skin, mice skin, and the Strat-M membrane, the enhancement ratios for the optimized formulation were 1.88, 2.46, and 1.92, respectively against pure drug solution. The findings from our study suggest that the propellant-free Etodolac spray is a reliable and safe topical formulation. It demonstrates enhanced skin deposition, and improved effectiveness, and is free from any skin irritation concerns.


Administration, Cutaneous , Etodolac , Skin Absorption , Skin , Animals , Etodolac/administration & dosage , Etodolac/pharmacokinetics , Etodolac/chemistry , Rats , Mice , Skin Absorption/physiology , Skin/metabolism , Skin/drug effects , Male , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Acute Pain/drug therapy , Chemistry, Pharmaceutical/methods , Permeability , Rats, Sprague-Dawley , Drug Compounding/methods
3.
Eur J Pharm Biopharm ; 199: 114293, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641229

The characterization of the time course of ibuprofen enantiomers can be useful in the selection of the most sensitive analyte in bioequivalence studies. Physiologically based pharmacokinetic (PBPK) modelling and simulation represents the most efficient methodology to virtually assess bioequivalence outcomes. In this work, we aim to develop and verify a PBPK model for ibuprofen enantiomers administered as a racemic mixture with different immediate release dosage forms to anticipate bioequivalence outcomes based on different particle size distributions. A PBPK model incorporating stereoselectivity and non-linearity in plasma protein binding and metabolism as well as R-to-S unidirectional inversion has been developed in Simcyp®. A dataset composed of 11 Phase I clinical trials with 54 scenarios (27 per enantiomer) and 14,452 observations (7129 for R-ibuprofen and 7323 for S-ibuprofen) was used. Prediction errors for AUC0-t and Cmax for both enantiomers fell within the 0.8-1.25 range in 50/54 (93 %) and 42/54 (78 %) of scenarios, respectively. Outstanding model performance, with 10/10 (100 %) of Cmax and 9/10 (90 %) of AUC0-t within the 0.9-1.1 range, was demonstrated for oral suspensions, which strongly supported its use for bioequivalence risk assessment. The deterministic bioequivalence risk assessment has revealed R-ibuprofen as the most sensitive analyte to detect differences in particle size distribution for oral suspensions containing 400 mg of racemic ibuprofen, suggesting that achiral bioanalytical methods would increase type II error and declare non-bioequivalence for formulations that are bioequivalent for the eutomer.


Ibuprofen , Therapeutic Equivalency , Ibuprofen/pharmacokinetics , Ibuprofen/administration & dosage , Ibuprofen/chemistry , Humans , Stereoisomerism , Administration, Oral , Risk Assessment/methods , Models, Biological , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Area Under Curve , Particle Size , Computer Simulation , Drug Compounding/methods , Chemistry, Pharmaceutical/methods
4.
Drug Dev Res ; 85(3): e22191, 2024 May.
Article En | MEDLINE | ID: mdl-38685610

Psoriasis is a chronic inflammatory and proliferative skin disease that causes pathological skin changes and has a substantial impact on the quality of patient life. Apremilast was approved by the US Food and Drug Administration as an oral medication for psoriasis and is beneficial in mild to moderate conditions for chronic usage. However, 5%-7% of withdrawals were reported due to severe side effects. To address the issue, a localized drug delivery strategy via the topical route may be a viable approach. However, poor physicochemical properties make it vulnerable to passing through the skin, requiring a specialized drug delivery system to demonstrate its full potential via a topical route like lecithin organogel. The formulation was optimized by screening the suitable lecithin type and non-polar solvents based on the gel formation ability of lecithin and the solubility of apremilast in the solvent. The pseudo-ternary diagram was used to optimize the water content required to form the gel. The optimized gel was found to be shear thinning characterized for rheological parameters, in-vitro diffusion studies, and in-vitro skin distribution studies. Preclinical studies in Imiquimod-induced mice showed a better reduction in severity index, cytokine levels, and epidermal hyperplasia from the lecithin organogel group compared to the apremilast oral administration and marketed standard topical gel group. Based on these results, lecithin organogel can be considered a promising approach to deliver molecules like apremilast by topical route in psoriatic-like conditions.


Drug Delivery Systems , Gels , Lecithins , Psoriasis , Thalidomide , Thalidomide/analogs & derivatives , Psoriasis/drug therapy , Lecithins/chemistry , Animals , Mice , Thalidomide/administration & dosage , Thalidomide/chemistry , Thalidomide/pharmacokinetics , Skin Absorption/drug effects , Skin/metabolism , Skin/drug effects , Administration, Cutaneous , Administration, Topical , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Drug Evaluation, Preclinical , Imiquimod/administration & dosage , Male
5.
Pharm Res ; 41(5): 911-920, 2024 May.
Article En | MEDLINE | ID: mdl-38509321

INTRODUCTION: PDX-02 (Flurbiprofen sodium) is a topical nonsteroidal anti-inflammatory drug in gel formulation for local analgesia and anti-inflammation. A Phase I clinical trial was conducted to assess the safety, tolerability, and pharmacokinetics of single and multiple doses of PDX-02 gel in Chinese healthy adults. METHODS: The trial comprised three parts: (1) a single-dose ascending study with three dose levels (0.5%, 1% to 2% PDX-02 gel) applied on a 136 cm2 skin area; (2) a multiple-dose study with either 1% or 2% PDX-02 gel applied on a 136 cm2 skin area for 7 consecutive days; and (3) a high dose group with 2% PDX-02 gel on an 816 cm2 skin area and a frequent multiple dose group with 2% PDX-02 gel on a 272 cm2 skin area four times a day for 7 consecutive days. The safety, tolerability and pharmacokinetics of the PDX-02 gel were evaluated in each part. RESULTS: A total of sixty participants completed the trial, with all adverse events recovered and all positive skin reaction being transient and recovered. The overall absorption of topical PDX-02 gel was slow with a mean peak time exceeding 9 h. The elimination rate remained consistent between dose groups. A less-than-dose-proportional nonlinear pharmacokinetics relationship was observed within the studied dose range, and this is likely due to the autoinduction of skin first-pass metabolism. CONCLUSION: The topical PDX-02 gel showed favorable safety and tolerability in both single and multiple dosing studies, with a less-than-dose-proportional nonlinear pharmacokinetics observed.


Anti-Inflammatory Agents, Non-Steroidal , Flurbiprofen , Gels , Humans , Flurbiprofen/pharmacokinetics , Flurbiprofen/administration & dosage , Adult , Male , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Female , Young Adult , Healthy Volunteers , Administration, Cutaneous , Skin Absorption , Asian People , Administration, Topical , Dose-Response Relationship, Drug , Skin/metabolism
6.
Expert Opin Drug Metab Toxicol ; 20(4): 235-248, 2024 Apr.
Article En | MEDLINE | ID: mdl-38553411

INTRODUCTION: Psoriasis is a chronic inflammatory cutaneous disease that causes patients psychosocial distress. Topical therapies are utilized for mild-to-moderate disease and for more severe disease in conjunction with systemic therapies. Topical corticosteroids are a cornerstone of treatment for psoriasis, but long-term use can cause stria and cutaneous atrophy and as well as systemic side effects such as topical steroid withdrawal. Non-steroidal topical therapies tend to be safer than topical corticosteroids for long-term use. AREAS COVERED: We conducted a literature review on the pharmacokinetic (PK) and pharmacodynamic (PD) properties of topical therapies for psoriasis. We discuss how the PK and PD characteristics of these therapies inform clinicians on efficacy and toxicity when prescribing for patients. EXPERT OPINION: Topical corticosteroids, used intermittently, are very safe and effective. Long-term, continuous use of topical corticosteroids can cause systemic side effects. Several generic and newly approved non-steroidal options are available, but no head-to-head studies compare the effectiveness of the generics (vitamin D analogs, tacrolimus, pimecrolimus) against the newer therapies (roflumilast, tapinarof). Patients often do not respond to topical therapies due to poor adherence to treatment regimens. For patients resistant to topical treatment, phototherapy or systemic therapy may be an option.


Adrenal Cortex Hormones , Psoriasis , Humans , Administration, Cutaneous , Adrenal Cortex Hormones/pharmacokinetics , Adrenal Cortex Hormones/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Dermatologic Agents/adverse effects , Dermatologic Agents/pharmacokinetics , Dermatologic Agents/pharmacology , Glucocorticoids/pharmacokinetics , Glucocorticoids/pharmacology , Medication Adherence , Psoriasis/drug therapy , Severity of Illness Index , Time Factors
7.
J Vet Pharmacol Ther ; 47(3): 231-234, 2024 May.
Article En | MEDLINE | ID: mdl-38421059

The integration of pain management in veterinary practice, driven by heightened animal welfare concerns, extends to avian species where subtle and nonspecific behavioral signs pose challenges. Given that safety concerns with classical NSAIDs highlight the need for more targeted alternatives in birds, this study explores the pharmacokinetic (PK) properties of Deracoxib (DX), a COX-2 selective NSAID approved for use in dogs, following a single oral administration in geese. Six healthy female geese received 4 mg/kg DX. Blood was drawn from the left wing vein to heparinized tubes at 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 4, 6, 8, 10, and 24 h. Plasma DX concentrations were measured using HPLC coupled to an UV detector, and the data were pharmacokinetically analyzed using PKanalix™ software in a non-compartmental approach. The results indicated a terminal half-life of 6.3 h and a Tmax of 1 h, with no observed adverse effects. While refraining from claiming absolute safety based on a single dose, it is worth highlighting that further safety studies for DX in geese are warranted, suggesting a possibility for intermittent use. In addition, drawing conclusions on efficacy and suitability awaits further research, particularly in understanding COX-2 selectivity and protein binding characteristics specific to geese.


Area Under Curve , Benzenesulfonamides , Geese , Animals , Female , Administration, Oral , Half-Life , Sulfonamides/pharmacokinetics , Sulfonamides/administration & dosage , Sulfonamides/blood , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/blood
8.
J Vet Pharmacol Ther ; 47(2): 150-153, 2024 Mar.
Article En | MEDLINE | ID: mdl-38204379

Flunixin meglumine is a nonsteroidal anti-inflammatory drug approved to manage pyrexia associated with swine respiratory disease. In the United States, no analgesic drugs are approved for use in swine by the FDA, although they are needed to manage painful conditions. This study evaluated the pharmacokinetics and relative bioavailability of intranasal versus intramuscular flunixin in grower pigs. Six pigs received 2.2 mg/kg flunixin either intranasally via atomizer or intramuscularly before receiving flunixin via the opposite route following a 5-day washout period. Plasma samples were collected over 60 h and analysed using ultra-performance liquid chromatography and tandem mass spectrometry to detect flunixin plasma concentrations. A non-compartmental pharmacokinetic analysis was performed. The median Cmax was 4.0 µg/mL and 2.7 µg/mL for intramuscular and intranasal administration, respectively, while the median AUCinf was 6.9 h µg/mL for intramuscular administration and 4.9 h µg/mL for intranasal administration. For both routes, the median Tmax was 0.2 h, and flunixin was detectable in some samples up to 60 h post-administration. Intranasal delivery had a relative bioavailability of 88.5%. These results suggest that intranasal flunixin has similar, although variable, pharmacokinetic parameters to the intramuscular route, making it a viable route of administration for use in grower swine.


Clonixin , Clonixin/analogs & derivatives , Swine Diseases , Animals , Swine , Administration, Intranasal/veterinary , Injections, Intravenous/veterinary , Clonixin/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Analgesics/therapeutic use , Injections, Intramuscular/veterinary , Swine Diseases/drug therapy
9.
Vet Anaesth Analg ; 51(1): 71-79, 2024 Jan.
Article En | MEDLINE | ID: mdl-38065822

OBJECTIVE: To determine the pharmacokinetics of meloxicam in the nursehound shark (Scyliorhinus stellaris) during multiple dose administration. STUDY DESIGN: Prospective experimental trial. ANIMALS: A total of eight clinically healthy adult nursehounds (four males, four females). METHODS: Meloxicam was administered intramuscularly at a dose of 1.5 mg kg-1 once daily for 7 days. Blood samples were collected from the caudal vein for pharmacokinetic analysis at 2.5 hours and 24 hours after drug administration. After a 4 week washout period, meloxicam was administered orally at the same dose at 12 hour intervals for three repeated doses. Blood samples were collected at 1, 2, 4, 6, 8, 12, 24, 36 and 48 hours after the first administration. Sharks were visually monitored during each study and 4 weeks afterwards for side effects or signs of toxicity. Time required to achieve steady state was assessed by visual inspection and statistical comparison of peak and trough concentrations using a Friedman test; comparison between sexes was performed using a Mann-Whitney U test and p-value was set at 0.05. RESULTS: No animal died or showed clinical signs of toxicity during the study. Meloxicam administered orally did not produce detectable concentrations in plasma. After intramuscular administration, steady state was achieved after five doses, and mean trough and peak plasma concentrations at steady state were 1.76 ± 0.21 µg mL-1 and 3.02 ± 0.23 µg mL-1, respectively. Mean peak concentration accumulation ratio was 2.50 ± 0.22. CONCLUSIONS AND CLINICAL RELEVANCE: This study shows that intramuscular posology produces plasma concentrations considered therapeutic for other species. However, meloxicam was not detected in plasma after oral administration. These results suggest that meloxicam administered intramuscularly may be a useful non-steroid anti-inflammatory drug in nursehound sharks. Further pharmacodynamic studies are needed to fully evaluate its clinical use in this species.


Sharks , Thiazines , Female , Male , Animals , Meloxicam , Prospective Studies , Thiazoles , Half-Life , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Area Under Curve , Administration, Oral
10.
J Vet Pharmacol Ther ; 47(2): 143-149, 2024 Mar.
Article En | MEDLINE | ID: mdl-37897203

Meloxicam is routinely used for pain alleviation in pre-ruminant calves during husbandry procedures. The pharmacokinetics of a single dose (0.5 mg/kg) of meloxicam was investigated after intravenous (IV), subcutaneous (SC), and oral (PO) administration in 30 pre-ruminant calves. Each group included 10 calves. Oral meloxicam was administered at least 1 h after feeding. Plasma samples were collected for up to 168 h, and the meloxicam concentration was analysed with liquid chromatography and mass spectrometry, followed by a noncompartmental pharmacokinetic analysis. The maximum meloxicam concentrations in plasma were 1.91 ± 0.27 µg/mL and 1.77 ± 0.16 µg/mL after SC and PO routes, respectively. The time of maximum concentration was 7.6 ± 2.8 h after SC and 10.0 ± 5.7 h after PO administration. The approximate bioavailability of meloxicam was 97% for SC and PO routes. The elimination half-lives were 79.2 ± 12.4, 84.6 ± 24.8, and 84.8 ± 22.3 h after IV, SC, and PO routes, respectively. The results suggest that the therapeutic meloxicam concentrations in plasma that are required for pain relief in other species, such as horses, may be maintained for several days following a single dose (0.5 mg/kg) administered IV, SC, or PO in calves.


Anti-Inflammatory Agents, Non-Steroidal , Thiazines , Cattle , Animals , Horses , Meloxicam/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Thiazines/pharmacokinetics , Thiazoles/pharmacokinetics , Half-Life , Area Under Curve , Pain/veterinary , Administration, Oral , Ruminants
11.
Pharm Res ; 40(10): 2317-2327, 2023 Oct.
Article En | MEDLINE | ID: mdl-37910340

PURPOSE: New solutions are needed to enable the efficient use of poorly water-soluble drugs. Therefore, we aimed to demonstrate that decreasing particle size with a solution-to-particle method known as nanoforming can improve dissolution and thus bioavailability. METHODS: Piroxicam, a poorly water-soluble non-steroidal anti-inflammatory drug (NSAID), was used as a model compound. A Quality-by-Design (QbD) approach was used to nanoform piroxicam and a design space was established. The pharmacokinetics of piroxicam nanoparticles were compared to two marketed products in a clinical trial. RESULTS: Nanoformed tablets showed a 33% increase in exposure during the first hour after dosing (AUC0-1 h) compared with an immediate release tablet and was similar to a fast absorbing tablet incorporating complexation of piroxicam with ß-cyclodextrin. CONCLUSIONS: The results show that nanoforming enabled more rapid absorption in comparison to a typical marketed tablet and indicate that nanoforming is an alternative to complex formulation such as cyclodextrins based products. The study outcomes support the potential of nanoforming for producing fast-acting dosage forms of poorly soluble drugs.


Cyclodextrins , Piroxicam , Piroxicam/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Tablets , Water , Solubility
12.
Vet Anaesth Analg ; 50(6): 477-484, 2023 Nov.
Article En | MEDLINE | ID: mdl-37620232

OBJECTIVE: To determine the pharmacokinetics and bioavailability of meloxicam following intravenous (IV), intramuscular (IM), and oral administrations at a dose of 1.0 mg kg-1 in Pekin ducks. STUDY DESIGN: Randomized experimental trial. ANIMALS: A total of 18 clinically healthy male Pekin ducks. METHODS: Pekin ducks were randomly assigned to three groups of six ducks: IV, IM and oral. Meloxicam (1.0 mg kg-1) was administered to each Pekin duck. A non-compartmental analysis was used to evaluate pharmacokinetic parameters. RESULTS: No local or systemic adverse effects were observed in any bird. Meloxicam was detected in the plasma up to 120 hours following IV, IM or oral administration. The elimination half-life of the IV route was slightly shorter than that of the IM and oral routes (p < 0.05). Following IV administration, volume of distribution at steady state and total clearance were 133.17 mL kg-1 and 6.68 mL kg-1 hour-1, respectively. The mean absorption time was 2.29 hours for IM and 1.13 hours for oral route. There were significant differences between IM and oral administration for the peak plasma concentration (Cmax), time to reach Cmax and bioavailability (p < 0.05). CONCLUSIONS AND CLINICAL RELEVANCE: Meloxicam showed long elimination half-life and high bioavailability following IM and oral administration. Meloxicam in Pekin ducks provided the effective therapeutic concentration indicated in other species for up to 48 hours. However, there is a need to determine the clinical efficacy of meloxicam in Pekin ducks.


Anti-Inflammatory Agents, Non-Steroidal , Ducks , Male , Animals , Meloxicam , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Biological Availability , Area Under Curve , Half-Life , Injections, Intravenous/veterinary , Administration, Oral , Injections, Intramuscular/veterinary , Administration, Intravenous/veterinary
13.
J Vet Pharmacol Ther ; 46(5): 326-331, 2023 Sep.
Article En | MEDLINE | ID: mdl-37488663

The pharmacokinetics of meloxicam was studied in 1-, 6-, and 12-month-old sheep following a single intravenous (i.v.) dose of 1 mg/kg. The experiments were carried out when the Romanov sheep were 1 month old (7.93 ± 0.91 kg), 6 months old (27.47 ± 4.91 kg), and 12 months old (37.10 ± 3.64 kg). Meloxicam concentration in plasma was determined by high-performance liquid chromatography and the data collected were evaluated by non-compartmental kinetic analysis. Meloxicam was detected in the plasma up to 72 h following i.v. administration in all age groups. The volume of distribution at steady state (Vdss ) and total body clearance (ClT ) were significantly higher in 1-month-old (304.87 mL/kg and 16.57 mL/h/kg) than in 12-month-old (193.43 mL/kg and 10.50 mL/h/kg) sheep. The area under the concentration-time curve from 0 to 72 h value of meloxicam was lower in 1-month-old (58.51 h*µg/mL) compared to 12-month-old (92.59 h*µg/mL) sheep. There was no difference in t1/2ʎz value in different age groups. The body extraction ratio values for meloxicam ranged from 0.0186 to 0.0719 after i.v. administration in all age groups. Meloxicam showed an increase in plasma concentration and a decrease in Vdss and ClT in 12-month-old compared to 1-month-old sheep. Compared to 1-month-old and 12-month-old sheep, there was no difference in these parameters in 6-month-old sheep. Because the age of sheep has an influence on the pharmacokinetics of meloxicam, dosage apparently may need to be adjusted for age.


Anti-Inflammatory Agents, Non-Steroidal , Thiazines , Sheep , Animals , Meloxicam , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Kinetics , Thiazines/pharmacokinetics , Thiazoles/pharmacokinetics , Injections, Intravenous/veterinary , Area Under Curve , Administration, Intravenous/veterinary , Half-Life
14.
J Vet Pharmacol Ther ; 46(6): 413-420, 2023 Nov.
Article En | MEDLINE | ID: mdl-37312265

Robenacoxib (RX) is a veterinary cyclooxygenase-2 selective inhibitor drug. It has never been tested on birds and is only labelled for use in cats and dogs. The purpose of this study was to assess its pharmacokinetics in geese after single intravenous (IV) and oral (PO) administrations. Four-month healthy female geese (n = 8) were used. Geese were subjected to a two-phase, single-dose (2 mg/kg IV, 4 mg/kg PO), open, longitudinal study design with a four-month washout period between the IV and the PO phases. Blood was collected from the left wing vein to heparinized tubes at 0, 0.085 (for IV only), 0.25, 0.5, 0.75, 1, 1.5, 2, 4, 6, 8, 10, and 24 h. Plasma RX concentrations were measured using HPLC coupled to an UV detector, and the data were pharmacokinetically analysed using ThothPro™ 4.3 software in a non-compartmental approach. Following IV administration, terminal elimination half-life, volume of distribution, and total clearance were 0.35 h, 0.34 L/kg, and 0.68 L/h/kg, respectively. For the PO route, the mean peak plasma concentration was 6.78 µg/mL at 0.50 h. The t1/2λz was very short and significantly different between the IV and PO administrations (0.35 h IV vs. 0.99 h PO), suggesting the occurrence of a flip-flop phenomenon. The Cl values corrected for the F% were significantly different between IV and PO administrations. It might have been a consequence of the longitudinal study design and the altered physiological and environmental conditions after a 4-month washout period. The absolute oral F% computed with the AUC method surpassed 150%, but after normalizing it to t1/2λz, it was 46%. In conclusion, the administration of RX might not be suitable for geese, due to its short t1/2λz.


Anti-Inflammatory Agents, Non-Steroidal , Geese , Female , Cats , Animals , Dogs , Injections, Intravenous/veterinary , Longitudinal Studies , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Cyclooxygenase 2 Inhibitors , Administration, Oral
15.
Clin Pharmacol Drug Dev ; 12(9): 881-887, 2023 09.
Article En | MEDLINE | ID: mdl-37140399

Ibuprofen, a nonsteroidal anti-inflammatory drug, is considered a safe and effective analgesic for treating different types of pain and joint disorders. Dexibuprofen, S-(+)-ibuprofen, is the single pharmacologically active enantiomer of ibuprofen. It is more potent than the racemic formulation of ibuprofen in terms of analgesic and anti-inflammatory properties and causes less acute gastric damage. For the first time, in the present single-dose, randomized, open-label, 2-period crossover study, the safety and pharmacokinetic (PK) characteristics of a single-dose dexibuprofen injection (0.2 g) were evaluated in healthy Chinese subjects and compared with the PK characteristics of a 0.2-g ibuprofen injection. Five consecutive men and women were randomly administered a single dose of the 0.2-g ibuprofen or 0.2-g dexibuprofen injection after fasting in every period during the 5-day interval. Then, plasma samples were collected for liquid chromatography-tandem mass spectrometric analysis. WinNonlin software was used for calculating the PK parameters. The geometric mean ratios of the 0.2-g dexibuprofen injection/ibuprofen injection for maximal plasma concentration, area under the plasma concentration-time curve (AUC) from time 0 to the last quantifiable time point, and AUC from time 0 to infinity were 184.6%, 136.9%, and 134.4%, respectively. The dexibuprofen plasma exposure of the 0.15-g dexibuprofen injection was comparable to that of the 0.2-g ibuprofen injection, calculated using AUC from time 0 to infinity.


Anti-Inflammatory Agents, Non-Steroidal , Cyclooxygenase Inhibitors , East Asian People , Ibuprofen , Female , Humans , Male , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Cross-Over Studies , Cyclooxygenase Inhibitors/administration & dosage , Cyclooxygenase Inhibitors/adverse effects , Cyclooxygenase Inhibitors/therapeutic use , Ibuprofen/administration & dosage , Ibuprofen/adverse effects , Ibuprofen/analogs & derivatives , Ibuprofen/therapeutic use , Volunteers , Healthy Volunteers , Injections
16.
Chirality ; 35(4): 247-255, 2023 04.
Article En | MEDLINE | ID: mdl-36759185

Flurbiprofen axetil (FA) is a prodrug of flurbiprofen (FP), and it is hydrolyzed to the active FP by carboxylesterase in plasma after intravenous injection. The pharmacological action of FP is closely related to its chirality, and S-FP shows better analgesic effects than R-FP. Therefore, it is of great significance to compare the in vivo pharmacokinetic behaviors of R-FP and S-FP. In this study, we designed a sensitive high performance liquid chromatography-tandem mass spectrometry method and used CHIRALPAK-IG3 column for chiral separation to quantify the concentrations of R-FP and S-FP in rat plasma. The results show that this method can accurately and effectively analyze the contents of R-FP and S-FP in plasma. In addition, the systemic exposure was approximately 3.09-folds for the S-FP compared with the R-FP following intravenous administration of the FA to rats at a single dose of 4.5 mg/kg. More importantly, the clearance rate of S-FP is significantly smaller than that of R-FP. Therefore, the development of S-FA injectable emulsion for clinical treatment of postoperative pain is very necessary.


Flurbiprofen , Rats , Animals , Flurbiprofen/pharmacokinetics , Injections, Intravenous , Stereoisomerism , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics
17.
J Vet Pharmacol Ther ; 46(2): 103-111, 2023 Mar.
Article En | MEDLINE | ID: mdl-36478376

Effective rabbit analgesia is challenging, and there are few studies available on the newer COX-2 selective NSAIDs, such as robenacoxib. This study aimed to establish the pharmacokinetics of oral and subcutaneous robenacoxib, describe its inhibitory actions on COX enzymes, and develop dosing, using six healthy New Zealand white rabbits. Pharmacokinetics were determined from plasma concentrations after oral administration of robenacoxib (0.83-0.96 mg/kg) and also after subcutaneous administration (2 mg/kg). The inhibitory actions of robenacoxib were evaluated by measuring plasma concentrations of thromboxane B2 (TBX2 ) and prostaglandin E2 (PGE2 ) as surrogate markers of cyclooxygenase enzyme isoform inhibition. The mean maximum concentration for oral and subcutaneous administration was 0.23 µg/ml and 5.82 µg/ml, respectively. Oral robenacoxib administration did not demonstrate a significant difference between any time point for PGE2 or TBX2 , though subcutaneous administration did for both. There was no significant difference in PGE2 or TBX2 concentrations at any time point when comparing subcutaneous versus oral routes. Although the results support that plasma robenacoxib exceeds the therapeutic levels compared to dogs and cats, there was little significance in the difference in the changes associated with COX-1 and COX-2 inhibition. Further studies are warranted to determine appropriate dosing, safety, and efficacy in rabbits.


Cat Diseases , Dog Diseases , Rabbits , Cats , Animals , Dogs , Cyclooxygenase 2/therapeutic use , Isoenzymes/therapeutic use , Cat Diseases/drug therapy , Dog Diseases/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Phenylacetates , Cyclooxygenase 1/therapeutic use , Diphenylamine , Dinoprostone , Cyclooxygenase 2 Inhibitors/pharmacokinetics
18.
J Vet Pharmacol Ther ; 45(6): 530-542, 2022 Nov.
Article En | MEDLINE | ID: mdl-36057922

Ketoprofen is registered in many countries for injectable administration in cattle. Because it is soluble in a wide range of excipients, development of a novel transdermal (TD) ketoprofen formulation was pursued to provide a convenient and pain-free route of administration in cattle. One hundred and six excipient combinations were screened using in vitro techniques (Franz diffusion cells), with a 20%(w/v) ketoprofen formulation dissolved in a combination of 45%:45%(v/v) ethanol and isopropyl myristate (IPM) and 10%(v/v) eucalyptus oil achieving maximal penetration of ketoprofen through bovine skin. A bioavailability study was then conducted using a randomized cross-over design (n = 12), including IV, IM (both 3 mg/kg) and TD (10 mg/kg) ketoprofen formulations administered with a one-week washout period between administrations. The IV and IM formulation pharmacokinetic results were as expected. The CMAX , Tmax and AUC0-Last were significantly higher (arithmetic mean ± SD) after TD administration (20.0 ± 6.5 µg/ml, 115 ± 17 min and 3940 ± 1324 µg*min/ml, respectively), compared to IM (11.0 ± 4.0 µg/ml, 74 ± 43 min and 2376 ± 738 µg*min/ml, respectively), although there were no significant differences for T½ß . However, dose corrected values CMAX and AUCinf were significantly higher for IM compared to TD. The arithmetic mean bioavailability (F) of the transdermal formulation was 50%. The plasma concentration of the TD formulation at a dose of 10 mg/kg was similar to the IM formulation at 3 mg/kg by 30 min post-dosing with an arithmetic mean ± SD of 7.97 ± 4.38 vs. 8.02 ± 3.55 µg/ml, respectively. The TD formulation was generally well tolerated by cattle, although some local irritation along the site of application was noted after 12 h of exposure during the bioavailability study. Results indicate that this novel TD formulation provides a substantial improvement in administration convenience, may improve animal welfare and end-user safety through needle-free administration, and achieves similar plasma pharmacokinetics to the IM product when administered at 10 mg/kg.


Analgesia , Ketoprofen , Cattle , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Administration, Cutaneous , Biological Availability , Cross-Over Studies , Analgesia/veterinary
19.
J Vet Pharmacol Ther ; 45(5): 488-494, 2022 Sep.
Article En | MEDLINE | ID: mdl-35717631

The objective of this study was to determine the pharmacokinetics of meloxicam after a single intravenous (IV), intramuscular (IM), and oral (PO) dose at 1 mg/kg body weight in Jing Hong laying hens. Blood samples were collected at predetermined time points. Plasma meloxicam concentrations were determined using a validated high-performance liquid chromatography (HPLC) assay method and then subjected to a non-compartmental analysis. After IV administration, meloxicam had a mean (±SD) volume of distribution at steady-state (Vdss ) of 206.50 ± 25.23 ml/kg, a terminal half-life (t1/2λ ) of 5.45 ± 0.53 h, and a total body clearance (Cl) of 26.48 ± 4.13 ml/h/kg. After PO and IM administration, meloxicam was absorbed relatively rapidly: the peak concentrations (Cmax s) of 3.04 ± 0.56 and 8.94 ± 2.31 µg/ml were observed at 3.08 and 0.80 h, respectively. After PO and IM administration, the absolute bioavailability (F) was determined as 70.13% and 125.50%, respectively. Assuming that hens shared the same analgesic threshold of meloxicam (0.5 µg/ml) with humans, the plasma concentrations after three different routes (PO, IM, and IV) of administration were above this value for 16.7, 19.2, and 14.9 h, respectively.


Anti-Inflammatory Agents, Non-Steroidal , Chickens , Administration, Intravenous/veterinary , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Area Under Curve , Biological Availability , Female , Half-Life , Humans , Injections, Intramuscular/veterinary , Injections, Intravenous/veterinary , Meloxicam
20.
Drug Deliv ; 29(1): 489-498, 2022 Dec.
Article En | MEDLINE | ID: mdl-35147052

For the prolonged, controlled delivery of systemic drugs, we propose an implantable drug-delivery chip (DDC) embedded with pairs of a microchannel and drug-reservoir serving as a drug diffusion barrier and depot, respectively. We pursued a DDC for dual drugs: a main-purpose drug, diclofenac (DF), for systemic exposure, and an antifibrotic drug, tranilast (TR), for local delivery. Thus, the problematic fibrotic tissue formation around the implanted device could be diminished, thereby less hindrance in systemic exposure of DF released from the DDC. First, we separately prepared DDCs for DF or TR delivery, and sought to find a proper microchannel length for a rapid onset and sustained pattern of drug release, as well as the required drug dose. Then, two distinct DDCs for DF and TR delivery, respectively, were assembled to produce a Dual_DDC for the concurrent delivery of DF and TR. When the Dual_DDC was implanted in living rats, the DF concentration in blood plasma did not drop significantly in the later periods after implantation relative to that in the early periods before fibrotic tissue formation. When the Dual_DDC was implanted without TR, there was a significant decrease in the blood plasma DF concentration as the time elapsed after implantation. Biopsied tissues around the Dual_DDC exhibited a significant decrease in the fibrotic capsule thickness and collagen density relative to the Dual_DDC without TR, owing to the effect of the local, sustained release of the TR.


Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Diclofenac/pharmacology , Drug Implants/chemistry , Fibrosis/pathology , ortho-Aminobenzoates/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Cell Survival/drug effects , Chemistry, Pharmaceutical , Delayed-Action Preparations , Diclofenac/administration & dosage , Diclofenac/pharmacokinetics , Drug Liberation , Rats , Rats, Sprague-Dawley , ortho-Aminobenzoates/administration & dosage , ortho-Aminobenzoates/pharmacokinetics
...