Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Microbiol ; 21(1): 335, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876006

RESUMEN

BACKGROUND: The native potatoes (Solanum tuberosum subsp. tuberosum L.) grown in Chile (Chiloé) represent a new, unexplored source of endophytes to find potential biological control agents for the prevention of bacterial diseases, like blackleg and soft rot, in potato crops. RESULT: The objective of this study was the selection of endophytic actinobacteria from native potatoes for antagonistic activity against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum, and their potential to suppress tissue maceration symptoms in potato tubers. This potential was determined through the quorum quenching activity using a Chromobacterium violaceaum ATCC 12472 Wild type (WT) bioassay and its colonization behavior of the potato plant root system (S. tuberosum) by means of the Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) targeting technique. The results showed that although Streptomyces sp. TP199 and Streptomyces sp. A2R31 were able to inhibit the growth of the pathogens, only the Streptomyces sp. TP199 isolate inhibited Pectobacterium sp. growth and diminished tissue maceration in tubers (p ≤ 0.05). Streptomyces sp. TP199 had metal-dependent acyl homoserine lactones (AHL) quorum quenching activity in vitro and was able to colonize the root endosphere 10 days after inoculation. CONCLUSIONS: We concluded that native potatoes from southern Chile possess endophyte actinobacteria that are potential agents for the disease management of soft rot and blackleg.


Asunto(s)
Actinobacteria/fisiología , Antibiosis/fisiología , Endófitos/fisiología , Solanum tuberosum/microbiología , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Agentes de Control Biológico/aislamiento & purificación , Chile , Endófitos/clasificación , Endófitos/genética , Endófitos/aislamiento & purificación , Pectobacterium/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Tubérculos de la Planta/microbiología , Percepción de Quorum , Streptomyces/clasificación , Streptomyces/genética , Streptomyces/aislamiento & purificación , Streptomyces/fisiología
2.
Braz J Microbiol ; 52(4): 2373-2383, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34599747

RESUMEN

Staphylococcus spp. and Cutibacterium acnes are members of the skin microbiome but can also act as pathogens. Particularly, Staphylococcus species are known to cause medical devices-associated infections, and biofilm production is one of their main virulence factors. Biofilms allow bacteria to adhere and persist on surfaces, protecting them from antimicrobials and host defenses. Since both bacteria are found in the human skin, potentially competing for niches, we aimed to investigate if C. acnes produces molecules that affect Staphylococcus spp. biofilm formation and dispersal. Thus, we evaluated the impact of C. acnes cell-free conditioned media (CFCM) on S. aureus, S. epidermidis, S. hominis, and S. lugdunensis biofilm formation. S. lugdunensis and S. hominis biofilm formation was significantly reduced with C. acnes CFCM without impact on their planktonic growth. C. acnes CFCM also significantly disrupted S. hominis established biofilms. The active molecules against S. lugdunensis and S. hominis biofilms appeared to be distinct since initial characterization points to different sizes and sensitivity to sodium metaperiodate, although the activity is highly resistant to heat in both cases. Mass spectrometry analysis of the fractions active against S. hominis revealed several potential candidates. Investigating how species present in the same environment interact, affecting the dynamics of biofilm formation, may reveal clinically useful compounds as well as molecular aspects of interspecies interactions.


Asunto(s)
Antibiosis , Medios de Cultivo Condicionados , Propionibacteriaceae , Staphylococcus , Antibiosis/fisiología , Biopelículas , Medios de Cultivo Condicionados/farmacología , Humanos , Propionibacteriaceae/química , Staphylococcus/efectos de los fármacos , Staphylococcus aureus , Staphylococcus epidermidis
3.
Braz J Microbiol ; 52(4): 2145-2152, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34287810

RESUMEN

Gram-negative, aerobic, rod-shaped, non-spore-forming, motile bacteria, designated CBAS 719 T, CBAS 732 and CBAS 720 were isolated from leaf litter samples, collected in Espírito Santo State, Brazil, in 2008. Sequences of the 16S rRNA, gyrB, lepA and recA genes showed that these strains grouped with Burkholderia plantarii LMG 9035 T, Burkholderia gladioli LMG 2216 T and Burkholderia glumae LMG 2196 T in a clade of phytopathogenic Burkholderia species. Digital DNA-DNA hybridization experiments and ANI analyses demonstrated that strain CBAS 719 T represents a novel species in this lineage that is very closely related with B. plantarii. The genome sequence of the type strain is 7.57 Mbp and its G + C content is 69.01 mol%. The absence of growth on TSA medium supplemented with 3% (w/v) NaCl, citrate assimilation, ß-galactosidase (PNPG) activity, and of lipase C14 activity differentiated strain CBAS 719 T from B. plantarii LMG 9035 T, its nearest phylogenetic neighbor. Its predominant fatty acid components were C16:0, C18:1 ω7c, cyclo-C17:0 and summed feature 3 (C16:1 ω7c and/or C15:0 iso 2-OH). Based on these genotypic and phenotypic characteristics, the strains CBAS 719 T, CBAS 732 and CBAS 720 are classified in a novel Burkholderia species, for which the name Burkholderia perseverans sp. nov. is proposed. The type strain is CBAS 719 T (= LMG 31557 T = INN12T).


Asunto(s)
Antibiosis , Burkholderia , Ecosistema , Agaricales/efectos de los fármacos , Agaricales/fisiología , Antibiosis/fisiología , Aspergillus/efectos de los fármacos , Aspergillus/fisiología , Técnicas de Tipificación Bacteriana , Brasil , Burkholderia/química , Burkholderia/clasificación , Burkholderia/genética , ADN Bacteriano/genética , Fosfolípidos/análisis , Filogenia , Phytophthora/efectos de los fármacos , Phytophthora/fisiología , Hojas de la Planta/microbiología , ARN Ribosómico 16S/genética , Especificidad de la Especie , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/farmacología
4.
BMC Microbiol ; 21(1): 198, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187371

RESUMEN

BACKGROUND: Probiotics are important tools in therapies against vaginal infections and can assist traditional antibiotic therapies in restoring healthy microbiota. Recent research has shown that microorganisms belonging to the genus Lactobacillus have probiotic potential. Thus, this study evaluated the potential in vitro probiotic properties of three strains of Lactiplantibacillus plantarum, isolated during the fermentation of high-quality cocoa, against Gardnerella vaginalis and Neisseria gonorrhoeae. Strains were evaluated for their physiological, safety, and antimicrobial characteristics. RESULTS: The hydrophobicity of L. plantarum strains varied from 26.67 to 91.67%, and their autoaggregation varied from 18.10 to 30.64%. The co-aggregation of L. plantarum strains with G. vaginalis ranged from 14.73 to 16.31%, and from 29.14 to 45.76% with N. gonorrhoeae. All L. plantarum strains could moderately or strongly produce biofilms. L. plantarum strains did not show haemolytic activity and were generally sensitive to the tested antimicrobials. All lactobacillus strains were tolerant to heat and pH resistance tests. All three strains of L. plantarum showed antimicrobial activity against the tested pathogens. The coincubation of L. plantarum strains with pathogens showed that the culture pH remained below 4.5 after 24 h. All cell-free culture supernatants (CFCS) demonstrated activity against the two pathogens tested, and all L. plantarum strains produced hydrogen peroxide. CFCS characterisation in conjunction with gas chromatography revealed that organic acids, especially lactic acid, were responsible for the antimicrobial activity against the pathogens evaluated. CONCLUSION: The three strains of L. plantarum presented significant probiotic characteristics against the two pathogens of clinical importance. In vitro screening identified strong probiotic candidates for in vivo studies for the treatment of vaginal infections.


Asunto(s)
Antibiosis/fisiología , Cacao/microbiología , Alimentos Fermentados/microbiología , Gardnerella vaginalis/fisiología , Lactobacillus plantarum/fisiología , Neisseria gonorrhoeae/fisiología , Probióticos , Fermentación , Humanos , Lactobacillus plantarum/aislamiento & purificación
5.
Parasitology ; 148(8): 956-961, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33896425

RESUMEN

The use of nematophagous fungi is an alternative for the biological control of nematodes in ruminants. In this study, the compatibility of joint growth of the fungi Monacrosporium sinense and Pochonia chlamydosporia and the joint nematicidal activity of these fungal isolates on bovine infective larvae were evaluated. For that, tests of direct confrontation, the effect of volatile compounds and antibiosis were conducted. In order to carry out the tests, the fungi were inoculated in potato dextrose agar culture medium and, after the incubation period, the growth of the colonies, the formation of an inhibition halo and the effect of volatile metabolites were verified. The compatibility between fungi isolates M. sinense and P. chlamydosporia was confirmed and the nematicidal evaluation proved the best effectiveness was when both were used together, with a 98.90% reduction in the number of bovine nematode infective larvae under in vitro conditions. It was concluded that M. sinense and P. chlamydosporia presented synergistic action, suggesting that the joint application of the fungi increases the effectiveness of biological control of bovine infective larvae.


Asunto(s)
Ascomicetos/fisiología , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/parasitología , Hypocreales/fisiología , Nematodos/microbiología , Infecciones por Nematodos/veterinaria , Animales , Antibiosis/fisiología , Ascomicetos/crecimiento & desarrollo , Brasil , Bovinos , Hypocreales/crecimiento & desarrollo , Larva/microbiología , Infecciones por Nematodos/parasitología , Infecciones por Nematodos/prevención & control , Volatilización
6.
Int J Food Microbiol ; 328: 108666, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32454365

RESUMEN

Although Aspergillus flavus and Aspergillus parasiticus are the main microorganisms of concern in peanuts, due to aflatoxin contamination, several Salmonella outbreaks from this product have been reported over the last ten decades. Thus, it is important to understand the relationship between microorganisms to predict, manage and estimate the diversity in the peanut supply chain. The purpose of this study was to evaluate aflatoxin production during the co-cultivation of Aspergillus section Flavi and Salmonella both isolated from peanuts. Three strains of A. section Flavi: A. flavus producing aflatoxin B, A. flavus non-producing aflatoxin and A. parasiticus producing aflatoxin B and G were co-cultivated with seven serotypes of Salmonella of which six were isolated from the peanut supply chain (S. Muenster, S. Miami, S. Glostrup, S. Javiana, S. Oranienburg and S. Yoruba) and one was S. Typhimurium ATCC 14028. First of all, each Salmonella strain was inoculated by pour plate (ca. 5 log cfu/mL) in PDA (potato dextrose agar). Then, each pre-cultured fungus was inoculated in the center of the petri dish. The plates were incubated at 30 °C and the fungal colony diameter was measured once a day for 7 days. As a control each Aspergillus strain was cultivated in the absence of Salmonella culture. All three strains of Aspergillus with absence of Salmonella (control) reached the maximum colony diameter and their growth rate was influenced when co-cultivated (p < 0.05) with all Salmonella serotypes tested. The maximum inhibition in the colony diameter was 20% for A. flavus aflatoxin B producer and A. parasiticus, and 18% for A. flavus non- aflatoxin producer when cultivated with Salmonella. However, no significant difference (p < 0.05) in reduction of colony diameter was observed among the Salmonella serotypes. Aflatoxin production was determined previously, by using the agar plug technique on thin layer chromatography (TLC). The production of aflatoxin G by A. parasiticus in co-cultivation with Salmonella was not observed. On the other hand, A. flavus preserved their characteristics of aflatoxin B production. The quantification of aflatoxin reduction by Salmonella interaction was evaluated using HPLC method. There was a maximum reduction of aflatoxin production of 88.7% and 72.9% in A. flavus and A. parasiticus, respectively, when cultivated with Salmonella. These results indicate that some serotypes of Salmonella may interfere with aflatoxin production and fungal growth of A. flavus and A. parasiticus in the peanut supply chain.


Asunto(s)
Antibiosis/fisiología , Arachis/microbiología , Aspergillus flavus/metabolismo , Salmonella/metabolismo , Aflatoxina B1/análisis , Aflatoxinas/análisis , Aspergillus flavus/crecimiento & desarrollo , Contaminación de Alimentos/prevención & control , Microbiología de Alimentos , Salmonella/aislamiento & purificación
7.
Probiotics Antimicrob Proteins ; 12(4): 1360-1369, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32172463

RESUMEN

Lactobacillus salivarius A3iob was administered to productive colonies belonging to commercial apiaries of small beekeepers (around 30-50 hives each one), from four departments of the province of Jujuy (Argentina): Yala, Tilquiza, El Carmen, and Los Alisos. The incidence of Varroa destructor and Nosema spp., before and after winter, was monitored during 2 years of study (2014-2015). Depending on the geographical location of each apiary and the application time, a monthly dose of the bacteria (105 CFU/mL) reduced the levels of varroasis between 50 and 80%. Interestingly, L. salivarius A3iob cells remitted the percentage of the mites to undetectable values in an apiary treated with flumethrin (at Yala, Yungas region).On the other hand, the spore levels of Nosema spp. in the lactobacilli-treated colonies also depended on the apiary and the year of application, but a significant decrease was mainly observed in the post-winter period. However, at Rivera (El Carmen's department), no significant changes were detected in both parameters.These results obtained after 2 years of work suggest that delivering L. salivarius A3iob cells to the bee colonies can become a new eco-friendly tool to cooperate with the control of these bees' pests.


Asunto(s)
Abejas/parasitología , Agentes de Control Biológico/uso terapéutico , Ligilactobacillus salivarius/fisiología , Infestaciones por Ácaros/terapia , Nosema/patogenicidad , Varroidae/microbiología , Animales , Antibiosis/fisiología , Argentina , Apicultura/métodos , Abejas/microbiología , Recuento de Colonia Microbiana , Humanos , Infestaciones por Ácaros/microbiología , Nosema/crecimiento & desarrollo , Varroidae/patogenicidad
8.
Arch Microbiol ; 202(6): 1477-1488, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32193579

RESUMEN

Shallow hydrothermal systems are extreme environments. The sediments and fluids emitted from the vents present unusual physical and chemical conditions compared to other marine areas, which promotes unique biodiversity that has been of great interest for biotechnology for some years. In this work, a bioprospective study was carried out to evaluate the capacity of bacteria associated with shallow hydrothermal vents to produce biofilm-inhibiting compounds. Degradation assays of N-acyl homoserine lactone (AHL) autoinducers (C6HSL) involved in the quorum sensing process were carried out on 161 strains of bacteria isolated from three shallow hydrothermal systems located in Baja California Sur (BCS), Mexico. The biosensor Chromobacterium violaceum CV026 was used. Twenty-three strains showed activity, and organic extracts were obtained with ethyl acetate. The potential of the extracts to inhibit the formation of biofilms was tested against two human pathogenic strains (Pseudomonas aeruginosa PAO1 and Aeromonas caviae ScH3), a shrimp pathogen (Vibrio parahaemolyticus M8), and two marine strains identified as producing biofilms on submerged surfaces (Virgibacillus sp C29 and Vibrio alginolyticus C96). The results showed that Vibrio alginolyticus and Brevibacillus thermoruber, as well as some thermotolerant strains (mostly Bacillus), produce compounds that inhibit bacterial biofilms (B. licheniformis, B. paralicheniformis, B. firmus, B. oceanizedimenis, B. aerius and B. sonorensis).


Asunto(s)
Antibacterianos/metabolismo , Antibiosis/fisiología , Biopelículas/crecimiento & desarrollo , Chromobacterium/metabolismo , Respiraderos Hidrotermales/microbiología , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Aeromonas caviae/efectos de los fármacos , Bacillus/efectos de los fármacos , Brevibacillus/efectos de los fármacos , Chromobacterium/aislamiento & purificación , Chromobacterium/fisiología , México , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum/fisiología , Vibrio alginolyticus/efectos de los fármacos
9.
Environ Microbiol ; 22(7): 2550-2563, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31984618

RESUMEN

Pseudomonas donghuensis strain SVBP6, an isolate from an agricultural plot in Argentina, displays a broad-spectrum and diffusible antifungal activity, which requires a functional gacS gene but could not be ascribed yet to known secondary metabolites typical of Pseudomonas biocontrol species. Here, we report that Tn5 mutagenesis allowed the identification of a gene cluster involved in both the fungal antagonism and the production of a soluble tropolonoid compound. The ethyl acetate extract from culture supernatant showed a dose-dependent inhibitory effect against the phytopathogenic fungus Macrophomina phaseolina. The main compound present in the organic extract was identified by spectroscopic and X-ray analyses as 7-hydroxytropolone (7HT). Its structure and tautomerism was confirmed by preparing the two key derivatives 2,3-dimethoxy- and 2,7-dimethoxy-tropone. 7HT, but not 2,3- or 2,7-dimethoxy-tropone, mimicked the fungal inhibitory activity of the ethyl acetate extract from culture supernatant. The activity of 7HT, as well as its production, was barely affected by the presence of up to 50 µM added iron (Fe+2 ). To summarize, P. donghuensis SVBP6 produces 7HT under the positive control of the Gac-Rsm cascade and is the main active metabolite responsible for the broad-spectrum inhibition of different phytopathogenic fungi.


Asunto(s)
Antibiosis/genética , Antifúngicos/metabolismo , Ascomicetos/crecimiento & desarrollo , Pseudomonas/metabolismo , Tropolona/análogos & derivados , Antibiosis/fisiología , Argentina , Proteínas Bacterianas/genética , Mutagénesis/efectos de los fármacos , Pseudomonas/genética , Factores de Transcripción/genética , Transposasas/genética , Tropolona/metabolismo
10.
PLoS Pathog ; 15(9): e1007651, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31513674

RESUMEN

Bacterial type IV secretion systems (T4SS) are a highly diversified but evolutionarily related family of macromolecule transporters that can secrete proteins and DNA into the extracellular medium or into target cells. It was recently shown that a subtype of T4SS harboured by the plant pathogen Xanthomonas citri transfers toxins into target cells. Here, we show that a similar T4SS from the multi-drug-resistant opportunistic pathogen Stenotrophomonas maltophilia is proficient in killing competitor bacterial species. T4SS-dependent duelling between S. maltophilia and X. citri was observed by time-lapse fluorescence microscopy. A bioinformatic search of the S. maltophilia K279a genome for proteins containing a C-terminal domain conserved in X. citri T4SS effectors (XVIPCD) identified twelve putative effectors and their cognate immunity proteins. We selected a putative S. maltophilia effector with unknown function (Smlt3024) for further characterization and confirmed that it is indeed secreted in a T4SS-dependent manner. Expression of Smlt3024 in the periplasm of E. coli or its contact-dependent delivery via T4SS into E. coli by X. citri resulted in reduced growth rates, which could be counteracted by expression of its cognate inhibitor Smlt3025 in the target cell. Furthermore, expression of the VirD4 coupling protein of X. citri can restore the function of S. maltophilia ΔvirD4, demonstrating that effectors from one species can be recognized for transfer by T4SSs from another species. Interestingly, Smlt3024 is homologous to the N-terminal domain of large Ca2+-binding RTX proteins and the crystal structure of Smlt3025 revealed a topology similar to the iron-regulated protein FrpD from Neisseria meningitidis which has been shown to interact with the RTX protein FrpC. This work expands our current knowledge about the function of bacteria-killing T4SSs and increases the panel of effectors known to be involved in T4SS-mediated interbacterial competition, which possibly contribute to the establishment of S. maltophilia in clinical and environmental settings.


Asunto(s)
Proteínas Bacterianas/fisiología , Stenotrophomonas maltophilia/fisiología , Stenotrophomonas maltophilia/patogenicidad , Sistemas de Secreción Tipo IV/fisiología , Secuencia de Aminoácidos , Antibiosis/genética , Antibiosis/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia Conservada , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Genes Bacterianos , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Proteínas Reguladoras del Hierro/química , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/fisiología , Modelos Moleculares , Infecciones Oportunistas/microbiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Stenotrophomonas maltophilia/genética , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/genética , Xanthomonas/genética , Xanthomonas/crecimiento & desarrollo
11.
Arch Microbiol ; 201(8): 1061-1073, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31123792

RESUMEN

Plants are colonized by diverse microorganisms that can substantially impact their health and growth. Understanding bacterial diversity and the relationships between bacteria and phytopathogens may be key to finding effective biocontrol agents. We evaluated the bacterial community associated with anthracnose symptomatic and asymptomatic leaves of guarana, a typical tropical crop. Bacterial communities were assessed through culture-independent techniques based on extensive 16S rRNA sequencing, and cultured bacterial strains were evaluated for their ability to inhibit the growth of Colletotrichum sp. as well as for enzyme and siderophore production. The culture-independent method revealed that Proteobacteria was the most abundant phylum, but many sequences were unclassified. The emergence of anthracnose disease did not significantly affect the bacterial community, but the abundance of the genera Acinetobacter, Pseudomonas and Klebsiella were significantly higher in the symptomatic leaves. In vitro growth of Colletotrichum sp. was inhibited by 11.38% of the cultured bacterial strains, and bacteria with the highest inhibition rates were isolated from symptomatic leaves, while asymptomatic leaves hosted significantly more bacteria that produced amylase and polygalacturonase. The bacterial isolate Bacillus sp. EpD2-5 demonstrated the highest inhibition rate against Colletotrichum sp., whereas the isolates EpD2-12 and FD5-12 from the same genus also had high inhibition rates. These isolates were also able to produce several hydrolytic enzymes and siderophores, indicating that they may be good candidates for the biocontrol of anthracnose. Our work demonstrated the importance of using a polyphasic approach to study microbial communities from plant diseases, and future work should focus on elucidating the roles of culture-independent bacterial communities in guarana anthracnose disease.


Asunto(s)
Antibiosis/fisiología , Agentes de Control Biológico/aislamiento & purificación , Colletotrichum/crecimiento & desarrollo , Paullinia/microbiología , Proteobacteria/aislamiento & purificación , Acinetobacter/clasificación , Acinetobacter/genética , Acinetobacter/aislamiento & purificación , Amilasas/metabolismo , Antracosis/microbiología , Bacillus/clasificación , Bacillus/genética , Bacillus/aislamiento & purificación , Klebsiella/clasificación , Klebsiella/genética , Klebsiella/aislamiento & purificación , Microbiota , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Poligalacturonasa/metabolismo , Proteobacteria/clasificación , Proteobacteria/genética , Pseudomonas/clasificación , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Bosque Lluvioso , Sideróforos/metabolismo
12.
Probiotics Antimicrob Proteins ; 11(2): 696-704, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30069686

RESUMEN

Bacteriocinogenic Enterococcus hirae ST57ACC and Pediococcus pentosaceus ST65ACC strains, previously isolated from artisanal cheese, were evaluated for their safety with the aim to determine whether they could be used as beneficial strains, especially in the control of Listeria monocytogenes. Both isolates survived simulated gastrointestinal conditions and showed high levels of auto- and co-aggregation with L. monocytogenes, although the hydrophobicity of cells varied. Using the agar-spot test with 33 commercial drugs from different groups, only anti-inflammatory drugs and drugs containing loratadine and propranolol hydrochloride were able to affect the growth of the tested strains. Both strains were resistant to 3 out of 11 antibiotics tested by the disc diffusion method, and low frequencies of antibiotic resistance-encoding genes were observed by PCR analysis. Tested strains neither presented biogenic amine-related genes nor produced these substances. Aside from some antibiotic resistance characteristics, the tested strains were considered safe as they lack other virulence-related genes. E. hirae ST57ACC and P. pentosaceus ST65ACC both presented beneficial properties, particularly their ability to survive gastrointestinal conditions and to aggregate with L. monocytogenes, which can facilitate the elimination of this pathogen. Further studies should be conducted to better understand these interactions.


Asunto(s)
Antibiosis/fisiología , Queso/microbiología , Enterococcus hirae/fisiología , Listeria monocytogenes/crecimiento & desarrollo , Pediococcus pentosaceus/fisiología , Farmacorresistencia Microbiana , Enterococcus hirae/efectos de los fármacos , Enterococcus hirae/genética , Interacciones Hidrofóbicas e Hidrofílicas , Pediococcus pentosaceus/efectos de los fármacos , Pediococcus pentosaceus/genética
13.
FEMS Microbiol Ecol ; 94(12)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30299474

RESUMEN

Bacteria of the Azospirillum and Pseudomonas genera are ubiquitous members of the rhizosphere, where they stimulate plant growth. Given the outstanding capacity of pseudomonads to antagonize other microorganisms, we analyzed the interaction between these two bacterial groups to identify determinants of their compatibility. We could establish that, when in direct contact, certain Pseudomonas strains produce lethality on Azospirillum brasilense cells using an antibacterial type 6 secretion system. When analyzing the effect of Pseudomonas spp. diffusible metabolites on A. brasilense growth on King's B medium, we detected strong inhibitory effects, mostly mediated by siderophores. On Congo Red medium, both inhibitory and stimulatory effects were induced by unidentified compounds. Under this condition, Pseudomonas protegens CHA0 produced a Gac/Rsm-regulated antibiotic which specifically inhibited A. brasilense Sp7 but not Sp245. This effect was not associated with the production of 2,4-diacetylphloroglucinol. The three identified antagonism determinants were also active in vivo, producing a reduction of viable cells of A. brasilense in the roots of wheat seedlings when co-inoculated with pseudomonads. These results are relevant to the understanding of social dynamics in the rhizosphere and might aid in the selection of strains for mixed inoculants.


Asunto(s)
Antibiosis/fisiología , Azospirillum brasilense/crecimiento & desarrollo , Raíces de Plantas/microbiología , Pseudomonas/metabolismo , Azospirillum brasilense/metabolismo , Rizosfera , Plantones/microbiología , Sideróforos/metabolismo , Triticum/microbiología , Sistemas de Secreción Tipo VI/fisiología
14.
Lett Appl Microbiol ; 67(5): 497-505, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30099746

RESUMEN

A healthy skin provides a protective barrier against pathogenic micro-organisms. Recent studies have shown that probiotics, as those of Bifidobacterium genus, could act beneficially in dermatology, both when ingested and by topical use. In the present study, we evaluated by in vitro antagonism assays and using two skin cell lines the potential of four strains of Bifidobacterium spp. Among the four bifidobacteria, Bifidobacterium longum 51A was the only one able to inhibit the growth of the eight pathogenic indicators tested. Production of some cytokines and extracellular matrix proteins was determined when ccc or inactivated cells of the bifidobacteria were incubated with keratinocyte and/or fibroblast cell cultures. Significant results were observed only for IL-6, IL-8 and IL-18 production, and inactivated Bifidobacterium pseudolongum 1191A was the only one which significantly stimulated collagen production, whereas lumican was stimulated by treatments with live Bifidobacterium bifidum 1622A , B. longum 51A and B. pseudolongum 1191A . Highest adhesion and internalization capabilities were observed with B. bifidum 1622A and Bifidobacterium breve 1101A . Concluding, B. longum 51A was highlighted for its antagonistic capacity and B. bifidum 1622A and B. pseudolongum 1191A for stimulating the production of cytokines and proteins of the extracellular matrix. SIGNIFICANCE AND IMPACT OF THE STUDY: The skin is the first line of defence against invasive micro-organisms, and its local microbiota provides additional protective functions based on antagonism against pathogenic micro-organisms and immunomodulation. Based on in vitro assays using Bifidobacterium spp. we demonstrated the antagonistic potential, as well as capacity in stimulating the production of cytokines and proteins of the extracellular matrix that these bacteria may exert on skin cells. This positive influence suggests the use of a consortium of these bifidobacteria in a topical product for dermatological treatments.


Asunto(s)
Antibiosis/fisiología , Bifidobacterium/metabolismo , Citocinas/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Probióticos/metabolismo , Piel/microbiología , Bifidobacterium/clasificación , Candida albicans/crecimiento & desarrollo , Línea Celular , Humanos , Malassezia/crecimiento & desarrollo , Propionibacterium acnes/crecimiento & desarrollo , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus epidermidis/crecimiento & desarrollo
15.
Lett Appl Microbiol ; 67(1): 89-96, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29709063

RESUMEN

Previous researches have showed that Lachancea thermotolerans strains RCKT4 and RCKT5 inhibited the growth of Aspergillus. However, currently, there are no data on their nutritional preferences, as a possible substrate competitor against Saccharomyces cerevisiae, and their effects on fermentation. In this work, we observed that the biocontrol yeasts and S. cerevisiae BSc203, based on the utilization of 16 carbonate sources, revealed significant differences in the nutritional profile (biocontrol yeasts NS:0·25, BSc203 NS:0·56). Lachancea thermotolerans strains did not occupy the same niche as that of BSc203 (NOI:0·44). The biocontrol agents and BSc203 presented similar competitive attitude in terms of the sugar, ethanol and sulphite tolerances. During fermentation, the biocontrol yeasts were found to tolerate up to 12% v/v ethanol, 250 mg ml-1 of total SO2 and 30° Brix sugar. In mixed cultures, L. thermotolerans strains did not negatively affect the growth of BSc203 and the wine quality, except when RCKT4 was initially inoculated at a high proportion in the mixed culture 1MSK4 (1%BSc203/99%RCKT4), resulting in a lower production of CO2 and ethanol, in comparison with pure BSc203. RCKT5, at a high proportion, in 1MSK5 (1%BSc203/99%RCKT5) presented promising oenological properties. This fermentation showed lower acetic acid contents and higher total acidity than pure BSc203. SIGNIFICANCE AND IMPACT OF THE STUDY: Generally it is not evaluated if the biofungicide yeasts sprayed on vegetables alter the quality of the fermented products. This work focused on the importance of assessing the possible effects of yeast-based fungicides used in vineyards on grape fermentation, especially on Saccharomyces cerevisiae growth. In this context, the competition between biofungicide yeasts and S. cerevisiae under winemaking conditions is investigated.


Asunto(s)
Antibiosis/fisiología , Agentes de Control Biológico/farmacología , Fermentación/efectos de los fármacos , Fungicidas Industriales/farmacología , Saccharomyces cerevisiae/crecimiento & desarrollo , Vitis/microbiología , Ácido Acético/metabolismo , Etanol/farmacología , Vino/análisis
16.
Int J Food Microbiol ; 276: 20-27, 2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-29653393

RESUMEN

Penicillium italicum (Blue mold) is a major postharvest disease of citrus. An alternative to controlling the disease is through the use of yeasts. The purpose of the present study was to screen effective yeast antagonists against P. italicum, isolated from soil, leaves, flowers, and citrus fruits, to assess the action mechanisms of the yeast isolates that were demonstrated to be effective for biocontrol, and to identify the most effective yeast isolates for the biocontrol of blue mold. The in vitro assays showed that six yeast strains inhibited up to 90% of the pathogen's mycelial growth. In vivo assays, evaluating the incidence of blue mold on sweet oranges, the strains ACBL-04, ACBL-05, ACBL-10 and ACBL-11 were effective, demonstrating the potential for the blue mold control when preventively applied, whereas the ACBL-08 strain showed a high potential to preventive and curative applications. Additional studies on the modes of action of these yeast strains showed that most of the evaluated yeast strains did not produce antifungal substances, in sufficient quantities to inhibit the pathogen growth. Competition for nutrients was not a biocontrol strategy used by the yeast strains. The 'killer' activity might be the main action mechanism involved in P. italicum biocontrol. This study indicated that the multiple modes of action against the pathogen presented by yeasts may explain why these strains provided P. italicum control under in vitro and in vivo conditions. However, further studies in future might be able to elucidate the 'killer' activity and its interaction with pathogen cells and the bioproduct production using Candida stellimalicola strains for control postharvest diseases.


Asunto(s)
Antibiosis/fisiología , Citrus/microbiología , Microbiología de Alimentos , Penicillium/fisiología , Levaduras/fisiología , Enfermedades de las Plantas/microbiología
17.
Lett Appl Microbiol ; 67(1): 64-71, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29604211

RESUMEN

This study aims to obtain secondary metabolites extracts from filamentous fungi isolated from soil and marine sediments from Antarctica and assess its potential antibacterial activity on Xanthomonas citri subsp. citri, the agent of citrus canker. Metabolites production was conducted in Malt 2% broth at 15°C for 20 days after which intracellular and extracellular extracts were obtained. The extracts were evaluated by cell viability assays through Resazurin Microtitre Assay. From 158 fungal extracts, 33 hampered bacterial growth in vitro. The average inhibition of the extracts obtained from terrestrial (soil) and marine (sediments) fungi was 94 and 97% respectively. These inhibition values were close to the average of 90% cell death for the positive control. MIC90 and MBC for the bioactive extracts were established. Isolates that produced active metabolites against the phytopathogen were identified using molecular taxonomy (ITS-rRNA sequencing) as: Pseudogymnoascus, Penicillium, Cadophora, Paraconiothyrium and Toxicocladosporium. Antarctic fungal strains isolated from terrestrial and marine sediments were able to produce secondary metabolites with antimicrobial activity against X. citri subsp. citri, highlighting the importance of these microbial genetic resources. These metabolites have potential to be used as alternatives for the control of this plant pathogen. SIGNIFICANCE AND IMPACT OF THE STUDY: This manuscript makes an impact on the study of micro-organisms from extreme habitats and their possible contribution in discovering new active molecules against pathogens of agricultural interest. Studies on the Antarctic continent and its communities have attracted the scientific community due to the long period of isolation and low levels of disturbance that surrounds the region. Knowing the potential of fungi in this region to produce active secondary metabolites, we aim to contribute to the discovery of compounds with antibacterial action in Xanthomonas citri subsp. citri, a plant pathogen present in several regions around the globe.


Asunto(s)
Antibacterianos/farmacología , Antibiosis/fisiología , Extractos Celulares/farmacología , Hongos/metabolismo , Xanthomonas/crecimiento & desarrollo , Regiones Antárticas , Antibacterianos/metabolismo , Citrus/microbiología , Sedimentos Geológicos/microbiología , Pruebas de Sensibilidad Microbiana , Enfermedades de las Plantas/microbiología , Microbiología del Suelo , Xanthomonas/genética
18.
Int J Food Microbiol ; 277: 58-63, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-29684766

RESUMEN

Aspergillus flavus is an opportunistic pathogen and may produce aflatoxins in maize, one of the most important crops in Argentina. A promising strategy to reduce aflatoxin accumulation is the biological control based on competitive exclusion. In order to select potential biocontrol agents among isolates from the maize growing region in Argentina, a total of 512 A. flavus strains were isolated from maize kernels and soil samples. Thirty-six per cent of the isolates from maize kernels did not produce detectable levels of aflatoxins, while 73% of the isolates from soil were characterized as non-aflatoxin producers. Forty percent and 49% of the isolates from maize kernels and soil samples, respectively, were not producers of cyclopiazonic acid (CPA). Sclerotia morphology was evaluated using Czapek Dox media. Eighty-six per cent of the isolates from maize kernels and 85% of the isolates from soil samples were L sclerotia morphotype (average diameter > 400 µm). The remaining isolates did not produce sclerotia. All isolates had MAT 1-1 idiomorph. The competitive ability of 9 non aflatoxigenic strains, 4 CPA(+) and 5 CPA(-), was evaluated in co-inoculations of maize kernels with an aflatoxigenic strain. All evaluated strains significantly (p < 0.05) reduced aflatoxin contamination in maize kernels. The aflatoxin B1 (AFB1) reduction ranged from 6 to 60%. The strain A. flavus ARG5/30 isolated from maize kernels would be a good candidate as a potential biocontrol agent to be used in maize, since it was characterized as neither aflatoxin nor CPA producer, morphotype L, MAT 1-1 idiomorph, and reduced AFB1 content in maize kernels by 59%. This study showed the competitive ability of potential aflatoxin biocontrol agents to be evaluated under field trials in a maize agro-ecosystem in Argentina.


Asunto(s)
Antibiosis/fisiología , Aspergillus flavus/aislamiento & purificación , Aspergillus flavus/metabolismo , Agentes de Control Biológico/metabolismo , Zea mays/microbiología , Aflatoxina B1/biosíntesis , Argentina , Aspergillus flavus/clasificación , Aspergillus flavus/patogenicidad , Productos Agrícolas/microbiología , Ecosistema , Indoles/metabolismo , Microbiología del Suelo
19.
Lett Appl Microbiol ; 66(5): 455-461, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29495073

RESUMEN

The aim of the present work was to evaluate the ability of the native yeast Rhodosporidium fluviale to control Botrytis cinerea on apple fruit and to study the possible mechanisms of action with the goal of improving the control of gray mold. For this, the influence of application time of the yeast was studied simulating preventive and curative effects. Also, the effect of nonviable cells of the yeast in the biocontrol was assessed. According to the results obtained, the following mechanisms of action of R. fluviale could be proposed: 1- competition for space, 2- direct interaction between antagonist and pathogen, 3- induction of ß-1,3-glucanase in apple tissue, 4- Probable production of glucanase in the apple wounds and 5- antifungal action of cellular components, probably chitin, present in the wall of yeast cells that could be the explanation for the activity of nonviable cells. SIGNIFICANCE AND IMPACT OF THE STUDY: Significance and Impact of the Study: Botrytis cinerea Pers: Fr, which causes gray mold of fruits and vegetables around the world, is difficult to control successfully because it is genetically variable and rapidly develops resistance to the chemicals commonly used for its control. This study is a contribution to the biocontrol of this phytopathogen fungus. The evaluation of the native yeast Rhodosporidium fluviale as biocontrol agent and the elucidation of possible mechanisms of action, including the participation of nonviable cells of this yeast, have not been reported up to date.


Asunto(s)
Antibiosis/fisiología , Antifúngicos/metabolismo , Basidiomycota/metabolismo , Agentes de Control Biológico/metabolismo , Botrytis/crecimiento & desarrollo , Malus/microbiología , Argentina , Frutas/microbiología , Enfermedades de las Plantas/microbiología
20.
Lett Appl Microbiol ; 66(5): 434-438, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29478269

RESUMEN

Fusarium head blight (FHB) caused by Fusarium graminearum species complex is a devastating disease that causes extensive yield and quality losses to wheat around the world. Fungicide application and breeding for resistance are among the most important tools to counteract FHB. Biological control is an additional tool that can be used as part of an integrated management of FHB. Bacillus velezensisRC 218, Brevibacillus sp. RC 263 and Streptomyces sp. RC 87B were selected by their potential to control FHB and deoxynivalenol production. The aim of this work was to test the tolerance of these biocontrol agents to triazole-based fungicides such as prothioconazole, tebuconazole and metconazole. Bacterial growth was evaluated in Petri dishes using the spread plating technique containing the different fungicides. Bacillus velezensisRC 218 and Streptomyces sp. RC 87B showed better tolerance to fungicides than Brevibacillus sp. RC 263. Complete growth inhibition was observed at concentrations of 20 µg ml-1 for metconazole, 40 µg ml-1 for tebuconazole and 80 µg ml-1 for prothioconazole. The results obtained indicate the possibility of using these biocontrol agents in combination with fungicides as part of an integrated management to control FHB of wheat. SIGNIFICANCE AND IMPACT OF THE STUDY: This study evaluates the possibility to use biocontrol agents (Bacillus velezensisRC 218, Brevibacillus sp. RC 263 and Streptomyces sp. RC 87B) in combination with triazole-based fungicides to control Fusarium head blight in wheat. The evaluation of biocontrol agents' growth under in vitro conditions was carried out in Petri dishes containing either prothioconazole, tebuconazole or metconazole. Viability studies demonstrated that B. velezensisRC 218 and Streptomyces sp. RC 87B were more tolerant to the fungicides evaluated. Results obtained reflect the possibility to use fungicides at low doses combined with biocontrol agents.


Asunto(s)
Bacillus/efectos de los fármacos , Agentes de Control Biológico/metabolismo , Brevibacillus/efectos de los fármacos , Fungicidas Industriales/farmacología , Streptomyces/efectos de los fármacos , Triazoles/farmacología , Antibiosis/fisiología , Argentina , Bacillus/crecimiento & desarrollo , Bacillus/metabolismo , Brevibacillus/crecimiento & desarrollo , Brevibacillus/metabolismo , Fusarium/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo , Tricotecenos/biosíntesis , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA