Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
1.
Nat Commun ; 15(1): 6592, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097611

RESUMEN

T-box riboswitches are noncoding RNA elements involved in genetic regulation of most Gram-positive bacteria. They regulate amino acid metabolism by assessing the aminoacylation status of tRNA, subsequently affecting the transcription or translation of downstream amino acid metabolism-related genes. Here we present single-molecule FRET studies of the Mycobacterium tuberculosis IleS T-box riboswitch, a paradigmatic translational T-box. Results support a two-step binding model, where the tRNA anticodon is recognized first, followed by interactions with the NCCA sequence. Furthermore, after anticodon recognition, tRNA can transiently dock into the discriminator domain even in the absence of the tRNA NCCA-discriminator interactions. Establishment of the NCCA-discriminator interactions significantly stabilizes the fully bound state. Collectively, the data suggest high conformational flexibility in translational T-box riboswitches; and supports a conformational selection model for NCCA recognition. These findings provide a kinetic framework to understand how specific RNA elements underpin the binding affinity and specificity required for gene regulation.


Asunto(s)
Anticodón , Mycobacterium tuberculosis , Conformación de Ácido Nucleico , ARN Bacteriano , ARN de Transferencia , Riboswitch , Riboswitch/genética , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/química , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Anticodón/metabolismo , Anticodón/genética , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/química , Transferencia Resonante de Energía de Fluorescencia , Biosíntesis de Proteínas , Regulación Bacteriana de la Expresión Génica , Cinética
2.
Nat Commun ; 15(1): 4143, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755134

RESUMEN

The Ser/Leu-swapped genetic code can act as a genetic firewall, mitigating biohazard risks arising from horizontal gene transfer in genetically modified organisms. Our prior work demonstrated the orthogonality of this swapped code to the standard genetic code using a cell-free translation system comprised of 21 in vitro transcribed tRNAs. In this study, to advance this system for protein engineering, we introduce a natural/in vitro transcribed-hybrid tRNA set. This set combines natural tRNAs from Escherichia coli (excluding Ser, Leu, and Tyr) and in vitro transcribed tRNAs, encompassing anticodon-swapped tRNASerGAG and tRNALeuGGA. This approach reduces the number of in vitro transcribed tRNAs required from 21 to only 4. In this optimized system, the production of a model protein, superfolder green fluorescent protein, increases to 3.5-fold. With this hybrid tRNA set, the Ser/Leu-swapped cell-free translation system will stand as a potent tool for protein production with reduced biohazard concerns in future biological endeavors.


Asunto(s)
Sistema Libre de Células , Escherichia coli , Biosíntesis de Proteínas , Escherichia coli/genética , Escherichia coli/metabolismo , ARN de Transferencia de Leucina/genética , ARN de Transferencia de Leucina/metabolismo , ARN de Transferencia de Serina/metabolismo , ARN de Transferencia de Serina/genética , Código Genético , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Ingeniería de Proteínas/métodos , Transcripción Genética , Anticodón/genética , Anticodón/metabolismo
3.
Nature ; 630(8017): 769-776, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718836

RESUMEN

Angiogenin, an RNase-A-family protein, promotes angiogenesis and has been implicated in cancer, neurodegenerative diseases and epigenetic inheritance1-10. After activation during cellular stress, angiogenin cleaves tRNAs at the anticodon loop, resulting in translation repression11-15. However, the catalytic activity of isolated angiogenin is very low, and the mechanisms of the enzyme activation and tRNA specificity have remained a puzzle3,16-23. Here we identify these mechanisms using biochemical assays and cryogenic electron microscopy (cryo-EM). Our study reveals that the cytosolic ribosome is the activator of angiogenin. A cryo-EM structure features angiogenin bound in the A site of the 80S ribosome. The C-terminal tail of angiogenin is rearranged by interactions with the ribosome to activate the RNase catalytic centre, making the enzyme several orders of magnitude more efficient in tRNA cleavage. Additional 80S-angiogenin structures capture how tRNA substrate is directed by the ribosome into angiogenin's active site, demonstrating that the ribosome acts as the specificity factor. Our findings therefore suggest that angiogenin is activated by ribosomes with a vacant A site, the abundance of which increases during cellular stress24-27. These results may facilitate the development of therapeutics to treat cancer and neurodegenerative diseases.


Asunto(s)
Microscopía por Crioelectrón , Ribonucleasa Pancreática , Ribosomas , Humanos , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Anticodón/ultraestructura , Dominio Catalítico , Citosol/metabolismo , Activación Enzimática , Modelos Moleculares , Ribonucleasa Pancreática/química , Ribonucleasa Pancreática/metabolismo , Ribonucleasa Pancreática/ultraestructura , Ribosomas/metabolismo , Ribosomas/química , Ribosomas/ultraestructura , División del ARN , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Especificidad por Sustrato , Sitios de Unión , Estrés Fisiológico
4.
RNA ; 30(8): 1025-1040, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38684317

RESUMEN

RNA modifications have a substantial impact on tRNA function, with modifications in the anticodon loop contributing to translational fidelity and modifications in the tRNA core impacting structural stability. In bacteria, tRNA modifications are crucial for responding to stress and regulating the expression of virulence factors. Although tRNA modifications are well-characterized in a few model organisms, our knowledge of tRNA modifications in human pathogens, such as Pseudomonas aeruginosa, remains limited. Here, we leveraged two orthogonal approaches to build a reference landscape of tRNA modifications in Escherichia coli, which enabled us to identify similar modifications in P. aeruginosa Our analysis supports a substantial degree of conservation between the two organisms, while also uncovering potential sites of tRNA modification in P. aeruginosa tRNAs that are not present in E. coli The mutational signature at one of these sites, position 46 of tRNAGln1(UUG) is dependent on the P. aeruginosa homolog of TapT, the enzyme responsible for the 3-(3-amino-3-carboxypropyl) uridine (acp3U) modification. Identifying which modifications are present on different tRNAs will uncover the pathways impacted by the different tRNA-modifying enzymes, some of which play roles in determining virulence and pathogenicity.


Asunto(s)
Escherichia coli , Pseudomonas aeruginosa , ARN de Transferencia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Procesamiento Postranscripcional del ARN , Anticodón/genética , Anticodón/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Bacteriano/química , Conformación de Ácido Nucleico
5.
Nat Struct Mol Biol ; 31(5): 810-816, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38538914

RESUMEN

The frequency of errors upon decoding of messenger RNA by the bacterial ribosome is low, with one misreading event per 1 × 104 codons. In the universal genetic code, the AUN codon box specifies two amino acids, isoleucine and methionine. In bacteria and archaea, decoding specificity of the AUA and AUG codons relies on the wobble avoidance strategy that requires modification of C34 in the anticodon loop of isoleucine transfer RNAIleCAU (tRNAIleCAU). Bacterial tRNAIleCAU with 2-lysylcytidine (lysidine) at the wobble position deciphers AUA while avoiding AUG. Here we report cryo-electron microscopy structures of the Escherichia coli 70S ribosome complexed with elongation factor thermo unstable (EF-Tu) and isoleucine-tRNAIleLAU in the process of decoding AUA and AUG. Lysidine in tRNAIleLAU excludes AUG by promoting the formation of an unusual Hoogsteen purine-pyrimidine nucleobase geometry at the third position of the codon, weakening the interactions with the mRNA and destabilizing the EF-Tu ternary complex. Our findings elucidate the molecular mechanism by which tRNAIleLAU specifically decodes AUA over AUG.


Asunto(s)
Microscopía por Crioelectrón , Escherichia coli , Modelos Moleculares , Factor Tu de Elongación Peptídica , ARN de Transferencia de Isoleucina , Ribosomas , Factor Tu de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Ribosomas/metabolismo , Ribosomas/ultraestructura , Ribosomas/química , ARN de Transferencia de Isoleucina/metabolismo , ARN de Transferencia de Isoleucina/química , ARN de Transferencia de Isoleucina/genética , Codón/metabolismo , Codón/genética , Anticodón/química , Anticodón/metabolismo , Conformación de Ácido Nucleico , Isoleucina/metabolismo , Isoleucina/química , ARN Mensajero/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , Lisina/análogos & derivados , Nucleósidos de Pirimidina
6.
Nat Struct Mol Biol ; 31(5): 817-825, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38538915

RESUMEN

The anticodon modifications of transfer RNAs (tRNAs) finetune the codon recognition on the ribosome for accurate translation. Bacteria and archaea utilize the modified cytidines, lysidine (L) and agmatidine (agm2C), respectively, in the anticodon of tRNAIle to decipher AUA codon. L and agm2C contain long side chains with polar termini, but their functions remain elusive. Here we report the cryogenic electron microscopy structures of tRNAsIle recognizing the AUA codon on the ribosome. Both modifications interact with the third adenine of the codon via a unique C-A geometry. The side chains extend toward 3' direction of the mRNA, and the polar termini form hydrogen bonds with 2'-OH of the residue 3'-adjacent to the AUA codon. Biochemical analyses demonstrated that AUA decoding is facilitated by the additional interaction between the polar termini of the modified cytidines and 2'-OH of the fourth mRNA residue. We also visualized cyclic N6-threonylcarbamoyladenosine (ct6A), another tRNA modification, and revealed a molecular basis how ct6A contributes to efficient decoding.


Asunto(s)
Anticodón , Microscopía por Crioelectrón , ARN de Transferencia de Isoleucina , ARN de Transferencia de Isoleucina/química , ARN de Transferencia de Isoleucina/metabolismo , ARN de Transferencia de Isoleucina/genética , Anticodón/química , Anticodón/metabolismo , Ribosomas/metabolismo , Ribosomas/química , Conformación de Ácido Nucleico , Modelos Moleculares , Codón/genética , Lisina/metabolismo , Lisina/química , Lisina/análogos & derivados , Citidina/análogos & derivados , Citidina/química , Citidina/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , Biosíntesis de Proteínas , Nucleósidos de Pirimidina
7.
Nature ; 625(7994): 393-400, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38030725

RESUMEN

One of the most critical steps of protein synthesis is coupled translocation of messenger RNA (mRNA) and transfer RNAs (tRNAs) required to advance the mRNA reading frame by one codon. In eukaryotes, translocation is accelerated and its fidelity is maintained by elongation factor 2 (eEF2)1,2. At present, only a few snapshots of eukaryotic ribosome translocation have been reported3-5. Here we report ten high-resolution cryogenic-electron microscopy (cryo-EM) structures of the elongating eukaryotic ribosome bound to the full translocation module consisting of mRNA, peptidyl-tRNA and deacylated tRNA, seven of which also contained ribosome-bound, naturally modified eEF2. This study recapitulates mRNA-tRNA2-growing peptide module progression through the ribosome, from the earliest states of eEF2 translocase accommodation until the very late stages of the process, and shows an intricate network of interactions preventing the slippage of the translational reading frame. We demonstrate how the accuracy of eukaryotic translocation relies on eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs. Our findings shed light on the mechanism of translation arrest by the anti-fungal eEF2-binding inhibitor, sordarin. We also propose that the sterically constrained environment imposed by diphthamide, a conserved eukaryotic posttranslational modification in eEF2, not only stabilizes correct Watson-Crick codon-anticodon interactions but may also uncover erroneous peptidyl-tRNA, and therefore contribute to higher accuracy of protein synthesis in eukaryotes.


Asunto(s)
Células Eucariotas , Biosíntesis de Proteínas , ARN Mensajero , Sistemas de Lectura , Ribosomas , Anticodón/genética , Anticodón/metabolismo , Codón/genética , Codón/metabolismo , Microscopía por Crioelectrón , Células Eucariotas/química , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Factor 2 de Elongación Peptídica/antagonistas & inhibidores , Factor 2 de Elongación Peptídica/metabolismo , Sistemas de Lectura/genética , Ribosomas/química , Ribosomas/metabolismo , Ribosomas/ultraestructura , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
8.
RNA ; 30(1): 37-51, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37907335

RESUMEN

Protein synthesis on the ribosome involves successive rapid recruitment of cognate aminoacyl-tRNAs and rejection of the much more numerous incorrect near- or non-cognates. The principal feature of translation elongation is that at every step, many incorrect aa-tRNAs unsuccessfully enter the A site for each cognate accepted. Normal levels of translational accuracy require that cognate tRNAs have relatively similar acceptance rates by the ribosome. To achieve that, tRNAs evolved to compensate for differences in amino acid properties and codon-anticodon strength that affect acceptance. Part of that response involved tRNA posttranscriptional modifications, which can affect tRNA decoding efficiency, accuracy, and structural stability. The most intensively modified regions of the tRNA are the anticodon loop and structural core of the tRNA. Anticodon loop modifications directly affect codon-anticodon pairing and therefore modulate accuracy. Core modifications have been thought to ensure consistent decoding rates principally by stabilizing tRNA structure to avoid degradation; however, degradation due to instability appears to only be a significant issue above normal growth temperatures. We suspected that the greater role of modification at normal temperatures might be to tune tRNAs to maintain consistent intrinsic rates of acceptance and peptide transfer and that hypomodification by altering these rates might degrade the process of discrimination, leading to increased translational errors. Here, we present evidence that most tRNA core modifications do modulate the frequency of misreading errors, suggesting that the need to maintain accuracy explains their deep evolutionary conservation.


Asunto(s)
Anticodón , ARN de Transferencia , Anticodón/genética , Anticodón/metabolismo , ARN de Transferencia/química , Biosíntesis de Proteínas , Codón/genética , Codón/metabolismo , Ribosomas/metabolismo
9.
J Biol Chem ; 299(8): 104966, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380076

RESUMEN

tRNAs are short noncoding RNAs responsible for decoding mRNA codon triplets, delivering correct amino acids to the ribosome, and mediating polypeptide chain formation. Due to their key roles during translation, tRNAs have a highly conserved shape and large sets of tRNAs are present in all living organisms. Regardless of sequence variability, all tRNAs fold into a relatively rigid three-dimensional L-shaped structure. The conserved tertiary organization of canonical tRNA arises through the formation of two orthogonal helices, consisting of the acceptor and anticodon domains. Both elements fold independently to stabilize the overall structure of tRNAs through intramolecular interactions between the D- and T-arm. During tRNA maturation, different modifying enzymes posttranscriptionally attach chemical groups to specific nucleotides, which not only affect translation elongation rates but also restrict local folding processes and confer local flexibility when required. The characteristic structural features of tRNAs are also employed by various maturation factors and modification enzymes to assure the selection, recognition, and positioning of specific sites within the substrate tRNAs. The cellular functional repertoire of tRNAs continues to extend well beyond their role in translation, partly, due to the expanding pool of tRNA-derived fragments. Here, we aim to summarize the most recent developments in the field to understand how three-dimensional structure affects the canonical and noncanonical functions of tRNA.


Asunto(s)
Anticodón , ARN de Transferencia , Conformación de Ácido Nucleico , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Anticodón/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo
10.
RNA ; 29(7): 898-957, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37055150

RESUMEN

The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN de Transferencia , Humanos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Anticodón/metabolismo , Empalme del ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
J Biol Chem ; 299(4): 104608, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36924943

RESUMEN

Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein-coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and, from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNALys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.


Asunto(s)
Anticodón , Codón , ARN Ribosómico , Ribosomas , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Codón/química , Codón/genética , Codón/metabolismo , Conformación de Ácido Nucleico , Nucleótidos/química , Nucleótidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/química , Ribosomas/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Disparidad de Par Base , Modelos Moleculares , ARN Ribosómico/química , ARN Ribosómico/metabolismo
12.
FEBS J ; 290(13): 3480-3489, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36806932

RESUMEN

The CGA codon is a rare codon in Saccharomyces cerevisiae and is known to be inefficiently decoded by wobble pairing with Arg-tRNA(ICG). The tRNAArg (ICG) is post-transcriptionally edited from tRNAArg (ACG) by the anticodon first adenosine deamination enzyme Tad2/Tad3 complex. Experimental consecutive CGA codons cause ribosome stalling to result in the reduction of the encoding protein product. In this study, the additional supply of tRNAArg (ACG) genes that produce decoding Arg-tRNA(ICG) promoted the product level from the CGA12-luc reporter, revealing that the product reduction is essentially due to inefficient decoding and deficiency in the tRNA supply. The mature tRNAArg (ICG) and the precursor tRNAArg (ACG) ratios examined for cellular tRNA fraction revealed that the tRNAArg (ICG) ratio is maintained at less than 30% and is responsive to the Tad2/Tad3 expression level.


Asunto(s)
ARN de Transferencia de Arginina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , Codón/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Anticodón/genética , Anticodón/metabolismo
13.
Nature ; 613(7945): 751-758, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631608

RESUMEN

Cognate tRNAs deliver specific amino acids to translating ribosomes according to the standard genetic code, and three codons with no cognate tRNAs serve as stop codons. Some protists have reassigned all stop codons as sense codons, neglecting this fundamental principle1-4. Here we analyse the in-frame stop codons in 7,259 predicted protein-coding genes of a previously undescribed trypanosomatid, Blastocrithidia nonstop. We reveal that in this species in-frame stop codons are underrepresented in genes expressed at high levels and that UAA serves as the only termination codon. Whereas new tRNAsGlu fully cognate to UAG and UAA evolved to reassign these stop codons, the UGA reassignment followed a different path through shortening the anticodon stem of tRNATrpCCA from five to four base pairs (bp). The canonical 5-bp tRNATrp recognizes UGG as dictated by the genetic code, whereas its shortened 4-bp variant incorporates tryptophan also into in-frame UGA. Mimicking this evolutionary twist by engineering both variants from B. nonstop, Trypanosoma brucei and Saccharomyces cerevisiae and expressing them in the last two species, we recorded a significantly higher readthrough for all 4-bp variants. Furthermore, a gene encoding B. nonstop release factor 1 acquired a mutation that specifically restricts UGA recognition, robustly potentiating the UGA reassignment. Virtually the same strategy has been adopted by the ciliate Condylostoma magnum. Hence, we describe a previously unknown, universal mechanism that has been exploited in unrelated eukaryotes with reassigned stop codons.


Asunto(s)
Anticodón , Codón de Terminación , Células Eucariotas , Código Genético , Mutación , Factores de Terminación de Péptidos , ARN de Transferencia , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Cilióforos/genética , Codón de Terminación/genética , Código Genético/genética , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia de Triptófano/genética , Saccharomyces cerevisiae/genética , ARN de Transferencia de Ácido Glutámico/genética , Trypanosoma brucei brucei/genética
14.
J Mol Biol ; 434(12): 167588, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35439479

RESUMEN

The fidelity of initiator tRNA (i-tRNA) selection in the ribosomal P-site is a key step in translation initiation. The highly conserved three consecutive G:C base pairs (3GC pairs) in the i-tRNA anticodon stem play a crucial role in its selective binding in the P-site. Mutations in the 3GC pairs (3GC mutant) render the i-tRNA inactive in initiation. Here, we show that a mutation (E265K) in the unique C-terminal tail domain of RluD, a large ribosomal subunit pseudouridine synthase, results in compromised fidelity of initiation and allows initiation with the 3GC mutant i-tRNA. RluD modifies the uridine residues in H69 to pseudouridines. However, the role of its C-terminal tail domain remained unknown. The E265K mutation does not diminish the pseudouridine synthase activity of RluD, or the growth phenotype of Escherichia coli, or cause any detectable defects in the ribosomal assembly in our assays. However, in our in vivo analyses, we observed that the E265K mutation resulted in increased retention of the ribosome binding factor A (RbfA) on 30S suggesting a new role of RluD in contributing to RbfA release, a function which may be attributed to its (RluD) C-terminal tail domain. The studies also reveal that deficiency of RbfA release from 30S compromises the fidelity of i-tRNA selection in the ribosomal P-site.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Iniciación de la Cadena Peptídica Traduccional , Proteínas Ribosómicas , Anticodón/genética , Anticodón/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroliasas/química , Mutación , Seudouridina/biosíntesis , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
15.
Nucleic Acids Res ; 50(7): 4113-4126, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35325219

RESUMEN

The degeneracy of the genetic code confers a wide array of properties to coding sequences. Yet, its origin is still unclear. A structural analysis has shown that the stability of the Watson-Crick base pair at the second position of the anticodon-codon interaction is a critical parameter controlling the extent of non-specific pairings accepted at the third position by the ribosome, a flexibility at the root of degeneracy. Based on recent cryo-EM analyses, the present work shows that residue A1493 of the decoding center provides a significant contribution to the stability of this base pair, revealing that the ribosome is directly involved in the establishment of degeneracy. Building on existing evolutionary models, we show the evidence that the early appearance of A1493 and A1492 established the basis of degeneracy when an elementary kinetic scheme of translation was prevailing. Logical considerations on the expansion of this kinetic scheme indicate that the acquisition of the peptidyl transferase center was the next major evolutionary step, while the induced-fit mechanism, that enables a sharp selection of the tRNAs, necessarily arose later when G530 was acquired by the decoding center.


Asunto(s)
Código Genético , Ribosomas , Anticodón/genética , Anticodón/metabolismo , Codón/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
16.
J Biol Chem ; 298(4): 101788, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35247384

RESUMEN

A subset of eukaryotic tRNAs is methylated in the anticodon loop, forming 3-methylcytosine (m3C) modifications. In mammals, the number of tRNAs containing m3C modifications has been expanded to include mitochondrial (mt) tRNA-Ser-UGA and mt-tRNA-Thr-UGU. However, whereas the enzymes catalyzing m3C formation in nuclear-encoded tRNAs have been identified, the proteins responsible for m3C modification in mt-tRNAs are unknown. Here, we show that m3C formation in human mt-tRNAs is dependent upon the methyltransferase-Like 8 (METTL8) enzyme. We find that METTL8 is a mitochondria-associated protein that interacts with mitochondrial seryl-tRNA synthetase, as well as with mt-tRNAs containing m3C. We demonstrate that human cells deficient in METTL8 exhibit loss of m3C modification in mt-tRNAs, but not nuclear-encoded tRNAs. Consistent with the mitochondrial import of METTL8, the formation of m3C in METTL8-deficient cells could be rescued by re-expression of WT METTL8, but not by a METTL8 variant lacking the N-terminal mitochondrial localization signal. Notably, we found METTL8-deficiency in human cells causes alterations in the native migration pattern of mt-tRNA-Ser-UGA, suggesting a role for m3C in tRNA folding. Altogether, these findings demonstrate that METTL8 is required for m3C formation in mt-tRNAs and uncover a potential function for m3C modification in mitochondrial tRNA structure.


Asunto(s)
Anticodón , Metiltransferasas , ARN de Transferencia , Anticodón/metabolismo , Citosina/análogos & derivados , Citosina/metabolismo , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mitocondrias/enzimología , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
17.
Nat Commun ; 13(1): 209, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017528

RESUMEN

Modified nucleotides in tRNAs are important determinants of folding, structure and function. Here we identify METTL8 as a mitochondrial matrix protein and active RNA methyltransferase responsible for installing m3C32 in the human mitochondrial (mt-)tRNAThr and mt-tRNASer(UCN). METTL8 crosslinks to the anticodon stem loop (ASL) of many mt-tRNAs in cells, raising the question of how methylation target specificity is achieved. Dissection of mt-tRNA recognition elements revealed U34G35 and t6A37/(ms2)i6A37, present concomitantly only in the ASLs of the two substrate mt-tRNAs, as key determinants for METTL8-mediated methylation of C32. Several lines of evidence demonstrate the influence of U34, G35, and the m3C32 and t6A37/(ms2)i6A37 modifications in mt-tRNAThr/Ser(UCN) on the structure of these mt-tRNAs. Although mt-tRNAThr/Ser(UCN) lacking METTL8-mediated m3C32 are efficiently aminoacylated and associate with mitochondrial ribosomes, mitochondrial translation is mildly impaired by lack of METTL8. Together these results define the cellular targets of METTL8 and shed new light on the role of m3C32 within mt-tRNAs.


Asunto(s)
Anticodón/química , Metiltransferasas/genética , Mitocondrias/genética , ARN Mitocondrial/química , ARN de Transferencia de Serina/química , ARN de Transferencia de Treonina/química , Anticodón/metabolismo , Emparejamiento Base , Citosina/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Metilación , Metiltransferasas/metabolismo , Mitocondrias/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia de Serina/genética , ARN de Transferencia de Serina/metabolismo , ARN de Transferencia de Treonina/genética , ARN de Transferencia de Treonina/metabolismo , Transducción de Señal
18.
J Mol Biol ; 434(8): 167440, 2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-34995554

RESUMEN

Inducing tRNA +1 frameshifting to read a quadruplet codon has the potential to incorporate a non-canonical amino acid (ncAA) into the polypeptide chain. While this strategy is attractive for genome expansion in biotechnology and bioengineering endeavors, improving the yield is hampered by a lack of understanding of where the shift can occur in an elongation cycle of protein synthesis. Lacking a clear answer to this question, current efforts have focused on designing +1-frameshifting tRNAs with an extra nucleotide inserted to the anticodon loop for pairing with a quadruplet codon in the aminoacyl-tRNA binding (A) site of the ribosome. However, the designed and evolved +1-frameshifting tRNAs vary broadly in achieving successful genome expansion. Here we summarize recent work on +1-frameshifting tRNAs. We suggest that, rather than engineering the quadruplet anticodon-codon pairing scheme at the ribosome A site, efforts should be made to engineer the pairing scheme at steps after the A site, including the step of the subsequent translocation and the step that stabilizes the pairing scheme in the +1-frame in the peptidyl-tRNA binding (P) site.


Asunto(s)
Codón , Sistema de Lectura Ribosómico , Código Genético , Ingeniería de Proteínas , ARN de Transferencia , Anticodón/genética , Anticodón/metabolismo , Emparejamiento Base , Codón/genética , Escherichia coli/metabolismo , Sistema de Lectura Ribosómico/genética , Ingeniería de Proteínas/métodos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
19.
J Mol Biol ; 434(2): 167390, 2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-34883117

RESUMEN

Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P2 and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P2-independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNAPro, but not that of tRNALys3, are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNALys3 showed greater inhibition of MA membrane binding than full-length tRNAPro. While transplantation of the D loop sequence of tRNALys3 into tRNAPro resulted in a modest increase in the inhibitory effect relative to WT tRNAPro, replacing the entire D arm sequence with that of tRNALys3 was necessary to confer the full inhibitory effects upon tRNAPro. Together, these results demonstrate that the D arm of tRNALys3 is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure.


Asunto(s)
VIH-1/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Anticodón/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , VIH-1/genética , Humanos , Simulación del Acoplamiento Molecular , Fosfatidilinositol 4,5-Difosfato , Dominios y Motivos de Interacción de Proteínas , ARN Viral/genética , Ensamble de Virus/fisiología
20.
Nucleic Acids Res ; 49(22): 13045-13061, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34871455

RESUMEN

Dnmt2, a member of the DNA methyltransferase superfamily, catalyzes the formation of 5-methylcytosine at position 38 in the anticodon loop of tRNAs. Dnmt2 regulates many cellular biological processes, especially the production of tRNA-derived fragments and intergenerational transmission of paternal metabolic disorders to offspring. Moreover, Dnmt2 is closely related to human cancers. The tRNA substrates of mammalian Dnmt2s are mainly detected using bisulfite sequencing; however, we lack supporting biochemical data concerning their substrate specificity or recognition mechanism. Here, we deciphered the tRNA substrates of human DNMT2 (hDNMT2) as tRNAAsp(GUC), tRNAGly(GCC) and tRNAVal(AAC). Intriguingly, for tRNAAsp(GUC) and tRNAGly(GCC), G34 is the discriminator element; whereas for tRNAVal(AAC), the inosine modification at position 34 (I34), which is formed by the ADAT2/3 complex, is the prerequisite for hDNMT2 recognition. We showed that the C32U33(G/I)34N35 (C/U)36A37C38 motif in the anticodon loop, U11:A24 in the D stem, and the correct size of the variable loop are required for Dnmt2 recognition of substrate tRNAs. Furthermore, mammalian Dnmt2s possess a conserved tRNA recognition mechanism.


Asunto(s)
5-Metilcitosina/metabolismo , Anticodón/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ARN de Transferencia/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Anticodón/genética , Secuencia de Bases , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , Células HEK293 , Células HeLa , Humanos , Inosina/metabolismo , Ratones , Modelos Moleculares , Células 3T3 NIH , Conformación de Ácido Nucleico , Unión Proteica , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia de Aspártico/química , ARN de Transferencia de Aspártico/genética , ARN de Transferencia de Aspártico/metabolismo , ARN de Transferencia de Glicerina/química , ARN de Transferencia de Glicerina/genética , ARN de Transferencia de Glicerina/metabolismo , ARN de Transferencia de Valina/química , ARN de Transferencia de Valina/genética , ARN de Transferencia de Valina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA