Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Braz J Microbiol ; 55(2): 1451-1463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38656427

RESUMEN

Antarctic temperature variations and long periods of freezing shaped the evolution of microorganisms with unique survival mechanisms. These resilient organisms exhibit several adaptations for life in extreme cold. In such ecosystems, microorganisms endure the absence of liquid water and exhibit resistance to freezing by producing water-binding molecules such as antifreeze proteins (AFP). AFPs modify the ice structure, lower the freezing point, and inhibit recrystallization. The objective of this study was to select and identify microorganisms isolated from different Antarctic ecosystems based on their resistance to temperatures below 0 °C. Furthermore, the study sought to characterize these microorganisms regarding their potential antifreeze adaptive mechanisms. Samples of soil, moss, permafrost, and marine sediment were collected on King George Island, located in the South Shetland archipelago, Antarctica. Bacteria and yeasts were isolated and subjected to freezing-resistance and ice recrystallization inhibition (IR) tests. A total of 215 microorganisms were isolated, out of which 118 were molecularly identified through molecular analysis using the 16S rRNA and ITS regions. Furthermore, our study identified 24 freezing-resistant isolates, including two yeasts and 22 bacteria. A total of 131 protein extracts were subjected to the IR test, revealing 14 isolates positive for AFP production. Finally, four isolates showed both freeze-resistance and IR activity (Arthrobacter sp. BGS04, Pseudomonas sp. BGS05, Cryobacterium sp. P64, and Acinetobacter sp. M1_25C). This study emphasizes the diversity of Antarctic microorganisms with the ability to tolerate freezing conditions. These microorganisms warrant further investigation to conduct a comprehensive analysis of their antifreeze capabilities, with the goal of exploring their potential for future biotechnological applications.


Asunto(s)
Proteínas Anticongelantes , Bacterias , Congelación , Regiones Antárticas , Proteínas Anticongelantes/metabolismo , Proteínas Anticongelantes/química , Proteínas Anticongelantes/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Islas , Filogenia , Levaduras/genética , Levaduras/clasificación , Levaduras/aislamiento & purificación , Levaduras/metabolismo , ARN Ribosómico 16S/genética , Ecosistema
2.
Biomolecules ; 14(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38397411

RESUMEN

Antifreeze proteins (AFPs) are natural biomolecules found in cold-adapted organisms that lower the freezing point of water, allowing survival in icy conditions. These proteins have the potential to improve cryopreservation techniques by enhancing the quality of genetic material postthaw. Deschampsia antarctica, a freezing-tolerant plant, possesses AFPs and is a promising candidate for cryopreservation applications. In this study, we investigated the cryoprotective properties of AFPs from D. antarctica extracts on Atlantic salmon spermatozoa. Apoplastic extracts were used to determine ice recrystallization inhibition (IRI), thermal hysteresis (TH) activities and ice crystal morphology. Spermatozoa were cryopreserved using a standard cryoprotectant medium (C+) and three alternative media supplemented with apoplastic extracts. Flow cytometry was employed to measure plasma membrane integrity (PMI) and mitochondrial membrane potential (MMP) postthaw. Results showed that a low concentration of AFPs (0.05 mg/mL) provided significant IRI activity. Apoplastic extracts from D. antarctica demonstrated a cryoprotective effect on salmon spermatozoa, with PMI comparable to the standard medium. Moreover, samples treated with apoplastic extracts exhibited a higher percentage of cells with high MMP. These findings represent the first and preliminary report that suggests that AFPs derived from apoplastic extracts of D. antarctica have the potential to serve as cryoprotectants and could allow the development of novel freezing media.


Asunto(s)
Crioprotectores , Hielo , Congelación , Cristalización , Crioprotectores/farmacología , Crioprotectores/química , Proteínas Anticongelantes/química
3.
Microb Cell Fact ; 16(1): 138, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28784139

RESUMEN

BACKGROUND: Antifreeze proteins (AFPs) production is a survival strategy of psychrophiles in ice. These proteins have potential in frozen food industry avoiding the damage in the structure of animal or vegetal foods. Moreover, there is not much information regarding the interaction of Antarctic bacterial AFPs with ice, and new determinations are needed to understand the behaviour of these proteins at the water/ice interface. RESULTS: Different Antarctic places were screened for antifreeze activity and microorganisms were selected for the presence of thermal hysteresis in their crude extracts. Isolates GU1.7.1, GU3.1.1, and AFP5.1 showed higher thermal hysteresis and were characterized using a polyphasic approach. Studies using cucumber and zucchini samples showed cellular protection when samples were treated with partially purified AFPs or a commercial AFP as was determined using toluidine blue O and neutral red staining. Additionally, genome analysis of these isolates revealed the presence of genes that encode for putative AFPs. Deduced amino acids sequences from GU3.1.1 (gu3A and gu3B) and AFP5.1 (afp5A) showed high similarity to reported AFPs which crystal structures are solved, allowing then generating homology models. Modelled proteins showed a triangular prism form similar to ß-helix AFPs with a linear distribution of threonine residues at one side of the prism that could correspond to the putative ice binding side. The statistically best models were used to build a protein-water system. Molecular dynamics simulations were then performed to compare the antifreezing behaviour of these AFPs at the ice/water interface. Docking and molecular dynamics simulations revealed that gu3B could have the most efficient antifreezing behavior, but gu3A could have a higher affinity for ice. CONCLUSIONS: AFPs from Antarctic microorganisms GU1.7.1, GU3.1.1 and AFP5.1 protect cellular structures of frozen food showing a potential for frozen food industry. Modeled proteins possess a ß-helix structure, and molecular docking analysis revealed the AFP gu3B could be the most efficient AFPs in order to avoid the formation of ice crystals, even when gu3A has a higher affinity for ice. By determining the interaction of AFPs at the ice/water interface, it will be possible to understand the process of adaptation of psychrophilic bacteria to Antarctic ice.


Asunto(s)
Proteínas Anticongelantes/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Aminoácidos , Regiones Antárticas , Proteínas Anticongelantes/química , Proteínas Anticongelantes/genética , Bacterias/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Cucurbita/metabolismo , Cucurbitaceae/metabolismo , ADN Bacteriano/química , ADN Bacteriano/aislamiento & purificación , ADN Bacteriano/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
4.
Zoolog Sci ; 30(8): 658-62, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23915159

RESUMEN

Antifreeze proteins (AFPs) refer to a class of polypeptides that are produced by certain vertebrates, plants, fungi, and bacteria and which permit their survival in subzero environments. In this study, we report the molecular cloning, sequence analysis and three-dimensional structure of the axolotl antifreeze-like protein (AFLP) by homology modeling of the first caudate amphibian AFLP. We constructed a full-length spleen cDNA library of axolotl (Ambystoma mexicanum). An EST having highest similarity (∼42%) with freeze-responsive liver protein Li16 from Rana sylvatica was identified, and the full-length cDNA was subsequently obtained by RACE-PCR. The axolotl antifreeze-like protein sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 93 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein were 10128.6 Da and 8.97, respectively. The molecular characterization of this gene and its deduced protein were further performed by detailed bioinformatics analysis. The three-dimensional structure of current AFLP was predicted by homology modeling, and the conserved residues required for functionality were identified. The homology model constructed could be of use for effective drug design. This is the first report of an antifreeze-like protein identified from a caudate amphibian.


Asunto(s)
Proteínas Anticongelantes/metabolismo , Urodelos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Anticongelantes/química , Proteínas Anticongelantes/genética , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , Regulación de la Expresión Génica , Modelos Moleculares , Conformación Proteica , Alineación de Secuencia , Urodelos/genética
5.
J Sci Food Agric ; 91(14): 2507-10, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21725975

RESUMEN

Antifreeze glycoproteins (AFGPs) are considered to be the most efficient means to reduce ice damage to cell tissues since they are able to inhibit growth and crystallization of ice. The key element of antifreeze proteins is to act in a non-colligative manner which allows them to function at concentrations 300-500 times lowers than other dissolved solutes. During the past decade, AFGPs have demonstrated tremendous potential for many pharmaceutical and food applications. Presently, the only route to obtain AFGPs involves the time consuming and expensive process of isolation and purification from deep-sea polar fishes. Unfortunately, it is not amenable to mass production and commercial applications. The lack of understanding of the mechanism through which the AFGPs inhibit ice growth has also hampered the realization of industrial and biotechnological applications. Here we report the structural motifs that are essential for antifreeze activity of AFGPs, and propose a unified mechanism based on both recent studies of short alanine peptides and structure activity relationship of synthesized AFGPs.


Asunto(s)
Proteínas Anticongelantes/química , Proteínas de Peces/química , Conservantes de Alimentos/química , Secuencias de Aminoácidos , Animales , Alimentos Congelados/análisis , Modelos Moleculares , Oligopéptidos/química , Dominios Proteicos Ricos en Prolina , Desplegamiento Proteico , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA