Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.265
1.
Biol Direct ; 19(1): 36, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715141

Epidermal growth factor receptor (EGFR)-targeted therapy is an important treatment for RAS wild-type metastatic colorectal cancer (mCRC), but the resistance mechanism remains unclear. Here, the differential expression of circRNAs between Cetuximab sensitive and resistant cell lines was analyzed using whole-transcriptome sequencing. We identified that the expression of circHIF1A was significantly higher in LIM1215-R than in LIM1215. When treated with Cetuximab, downregulation of circHIF1A level weakened the proliferation and clonal formation ability of LIM1215-R, caused more cells to enter G0-G1 phase, and significantly reduced the basal respiration, ATP production, and maximal respiration, as well as the glycolytic capacity and glycolytic reserve. The response rate and prognosis of circHIF1A-positive patients were inferior to those of negative patients. Mechanistically, circHIF1A can upregulate the level of hypoxia-inducible factor 1 A (HIF1A) by competitively binding to miR-361-5p, inducing the overexpression of enzymes such as glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA). In a xenograft model, inhibition of circHIF1A expression increased the sensitivity to Cetuximab treatment. In conclusion, circHIF1A can promote HIF1α-mediated glycometabolism alteration to induce Cetuximab resistance in CRC. It has the potential to become a screening indicator for the Cetuximab beneficial population in mCRC and a new therapeutic target for enhancing treatment efficacy.


Cetuximab , Colorectal Neoplasms , Drug Resistance, Neoplasm , Hypoxia-Inducible Factor 1, alpha Subunit , Cetuximab/pharmacology , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cell Line, Tumor , Mice , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Neoplastic , Mice, Nude , Antineoplastic Agents, Immunological/pharmacology , Glycolysis , Cell Proliferation/drug effects
2.
Front Immunol ; 15: 1378813, 2024.
Article En | MEDLINE | ID: mdl-38720892

Background: Blocking the CD47 "don't eat me"-signal on tumor cells with monoclonal antibodies or fusion proteins has shown limited clinical activity in hematologic malignancies and solid tumors thus far. Main side effects are associated with non-tumor targeted binding to CD47 particularly on blood cells. Methods: We present here the generation and preclinical development of NILK-2401, a CEACAM5×CD47 bispecific antibody (BsAb) composed of a common heavy chain and two different light chains, one kappa and one lambda, determining specificity (so-called κλ body format). Results: NILK-2401 is a fully human BsAb binding the CEACAM5 N-terminal domain on tumor cells by its lambda light chain arm with an affinity of ≈4 nM and CD47 with its kappa chain arm with an intendedly low affinity of ≈500 nM to enabling tumor-specific blockade of the CD47-SIRPα interaction. For increased activity, NILK-2401 features a functional IgG1 Fc-part. NILK-2401 eliminates CEACAM5-positive tumor cell lines (3/3 colorectal, 2/2 gastric, 2/2 lung) with EC50 for antibody-dependent cellular phagocytosis and antibody-dependent cellular cytotoxicity ranging from 0.38 to 25.84 nM and 0.04 to 0.25 nM, respectively. NILK-2401 binds neither CD47-positive/CEACAM5-negative cell lines nor primary epithelial cells. No erythrophagocytosis or platelet activation is observed. Quantification of the pre-existing NILK-2401-reactive T-cell repertoire in the blood of 14 healthy donors with diverse HLA molecules shows a low immunogenic potential. In vivo, NILK-2401 significantly delayed tumor growth in a NOD-SCID colon cancer model and a syngeneic mouse model using human CD47/human SIRPα transgenic mice and prolonged survival. In cynomolgus monkeys, single doses of 0.5 and 20 mg/kg were well tolerated; PK linked to anti-CD47 and Fc-binding seemed to be more than dose-proportional for Cmax and AUC0-inf. Data were validated in human FcRn TG32 mice. Combination of a CEACAM5-targeting T-cell engager (NILK-2301) with NILK-2401 can either boost NILK-2301 activity (Emax) up to 2.5-fold or allows reaching equal NILK-2301 activity at >600-fold (LS174T) to >3,000-fold (MKN-45) lower doses. Conclusion: NILK-2401 combines promising preclinical activity with limited potential side effects due to the tumor-targeted blockade of CD47 and low immunogenicity and is planned to enter clinical testing.


Antibodies, Bispecific , CD47 Antigen , Carcinoembryonic Antigen , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Humans , Animals , Mice , CD47 Antigen/immunology , CD47 Antigen/antagonists & inhibitors , Cell Line, Tumor , Carcinoembryonic Antigen/immunology , Xenograft Model Antitumor Assays , Neoplasms/immunology , Neoplasms/drug therapy , Female , Macaca fascicularis , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/immunology , GPI-Linked Proteins
3.
J Vis Exp ; (206)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38738886

Monoclonal antibody-based immunotherapy targeting tumor antigens is now a mainstay of cancer treatment. One of the clinically relevant mechanisms of action of the antibodies is antibody-dependent cellular cytotoxicity (ADCC), where the antibody binds to the cancer cells and engages the cellular component of the immune system, e.g., natural killer (NK) cells, to kill the tumor cells. The effectiveness of these therapies could be improved by identifying adjuvant compounds that increase the sensitivity of the cancer cells or the potency of the immune cells. In addition, undiscovered drug interactions in cancer patients co-medicated for previous conditions or cancer-associated symptoms may determine the success of the antibody therapy; therefore, such unwanted drug interactions need to be eliminated. With these goals in mind, we created a cancer ADCC model and describe here a simple protocol to find ADCC-modulating drugs. Since 3D models such as cancer cell spheroids are superior to 2D cultures in predicting in vivo responses of tumors to anticancer therapies, spheroid co-cultures of EGFP-expressing HER2+ JIMT-1 breast cancer cells and the NK92.CD16 cell lines were set up and induced with Trastuzumab, a monoclonal antibody clinically approved against HER2-positive breast cancer. JIMT-1 spheroids were allowed to form in cell-repellent U-bottom 96-well plates. On day 3, NK cells and Trastuzumab were added. The spheroids were then stained with Annexin V-Alexa 647 to measure apoptotic cell death, which was quantitated in the peripheral zone of the spheroids with an automated microscope. The applicability of our assay to identify ADCC-modulating molecules is demonstrated by showing that Sunitinib, a receptor tyrosine kinase inhibitor approved by the FDA against metastatic cancer, almost completely abolishes ADCC. The generation of the spheroids and image acquisition and analysis pipelines are compatible with high-throughput screening for ADCC-modulating compounds in cancer cell spheroids.


Antibody-Dependent Cell Cytotoxicity , Spheroids, Cellular , Humans , Antibody-Dependent Cell Cytotoxicity/drug effects , Spheroids, Cellular/drug effects , Spheroids, Cellular/immunology , Drug Discovery/methods , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Cell Line, Tumor , Receptors, IgG/immunology , Antineoplastic Agents, Immunological/pharmacology , Trastuzumab/pharmacology
4.
Sci Rep ; 14(1): 10642, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724565

Colorectal cancer (CRC) often necessitates cetuximab (an EGFR-targeting monoclonal antibody) for treatment. Despite its clinical utility, the specific operative mechanism of cetuximab remains elusive. This research investigated the influence of PLCB3, a potential CRC oncogene, on cetuximab treatment. We extracted differentially expressed genes from the GSE140973, the overlapping genes combined with 151 Wnt/ß-Catenin signaling pathway-related genes were identified. Then, we conducted bioinformatics analysis to pinpoint the hub gene. Subsequently, we investigated the clinical expression characteristics of this hub gene, through cell experimental, scrutinized the impact of cetuximab and PLCB3 on CRC cellular progression. The study identified 26 overlapping genes. High expression of PLCB3, correlated with poorer prognosis. PLCB3 emerged as a significant oncogene associated with patient prognosis. In vitro tests revealed that cetuximab exerted a cytotoxic effect on CRC cells, with PLCB3 knockdown inhibiting CRC cell progression. Furthermore, cetuximab treatment led to a reduction in both ß-catenin and PLCB3 expression, while simultaneously augmenting E-cadherin expression. These findings revealed PLCB3 promoted cetuximab inhibition on Wnt/ß-catenin signaling. Finally, simultaneous application of cetuximab with a Wnt activator (IM12) and PLCB3 demonstrated inhibited CRC proliferation, migration, and invasion. The study emphasized the pivotal role of PLCB3 in CRC and its potential to enhance the efficacy of cetuximab treatment. Furthermore, cetuximab suppressed Wnt/ß-catenin pathway to modulate PLCB3 expression, thus inhibiting colorectal cancer progression. This study offered fresh perspectives on cetuximab mechanism in CRC.


Cell Proliferation , Cetuximab , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Wnt Signaling Pathway , beta Catenin , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cetuximab/pharmacology , Wnt Signaling Pathway/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Cell Proliferation/drug effects , beta Catenin/metabolism , beta Catenin/genetics , Cell Line, Tumor , Cell Movement/drug effects , Prognosis , Antineoplastic Agents, Immunological/pharmacology
5.
Front Immunol ; 15: 1410457, 2024.
Article En | MEDLINE | ID: mdl-38765013

Introduction: CM313 is currently under clinical investigation for treatments of multiple myeloma, systemic lupus erythematosus, and immune thrombocytopenia. We aimed to report the preclinical profile of the novel therapeutic anti-CD38 monoclonal antibody (mAb) CM313, with an emphasis on the difference with other CD38-targeting mAb. Methods: The binding of CM313 to CD38 recombinant protein across species was assessed using ELISA. The binding of CM313 to CD38-positive (CD38+) cells was detected using flow cytometry assays. CM313-induced complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and apoptosis on different CD38+ cells were assessed by LDH release assays or flow cytometry assays. The effect of CM313 on CD38 enzymatic activity was measured using fluorescence spectroscopy. CM313 immunotoxicity in human blood was assessed using flow cytometry assays, ELISA, and LDH release assays. Anti-tumor activity of CM313 was assessed in multiple mouse xenograft models. Safety profile of CM313 were evaluated in cynomolgus monkeys and human CD38 transgenic (B-hCD38) mice. Results: There exist unique sequences at complementarity-determining regions (CDR) of CM313, which facilitates its affinity to CD38 is consistently higher across a spectrum of CD38+ cell lines than daratumumab. In vitro studies showed that CM313 induces comparable killing activity than daratumumab, including ADCC, CDC, ADCP, apoptosis induced by Fc-mediated cross-linking, and effectively inhibited the enzymatic activity of CD38. However, CM313 showed more potent CDC than isatuximab. In vivo, CM313 dose-dependently inhibited xenograft tumor growth, both as a monotherapy and in combination with dexamethasone or lenalidomide. Furthermore, CM313 was well tolerated with no drug-related clinical signs or off-target risks, as evidenced by 4-week repeat-dose toxicology studies in cynomolgus monkeys and B-hCD38 mice, with the later study showing no observed adverse effect level (NOAEL) of 300mg/kg once weekly. Discussion: CM313 is a novel investigational humanized mAb with a distinct CDR sequence, showing comparable killing effects with daratumumab and stronger CDC activity than isatuximab, which supports its clinical development.


ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal , Antibody-Dependent Cell Cytotoxicity , Macaca fascicularis , Animals , ADP-ribosyl Cyclase 1/immunology , ADP-ribosyl Cyclase 1/antagonists & inhibitors , Humans , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity/drug effects , Cell Line, Tumor , Xenograft Model Antitumor Assays , Female , Mice, Transgenic , Apoptosis/drug effects , Antineoplastic Agents, Immunological/pharmacology , Membrane Glycoproteins
6.
J Pharm Biomed Anal ; 245: 116185, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38723556

Human epidermal growth factor receptor 2 (HER2) is a key player in the pathogenesis and progression of breast cancer and is currently a primary target for breast cancer immunotherapy. Bioactivity determination is necessary to guarantee the safety and efficacy of therapeutic antibodies targeting HER2. Nevertheless, currently available bioassays for measuring the bioactivity of anti-HER2 mAbs are either not representative or have high variability. Here, we established a reliable reporter gene assay (RGA) based on T47D-SRE-Luc cell line that expresses endogenous HER2 and luciferase controlled by serum response element (SRE) to measure the bioactivity of anti-HER2 antibodies. Neuregulin-1 (NRG-1) can lead to the heterodimerization of HER2 on the cell membrane and induce the expression of downstream SRE-controlled luciferase, while pertuzumab can dose-dependently reverse the reaction, resulting in a good dose-response curve reflecting the activity of the antibody. After optimizing the relevant assay parameters, the established RGA was fully validated based on ICH-Q2 (R1), which demonstrated that the method had excellent specificity, accuracy, precision, linearity, and stability. In summary, this robust and innovative bioactivity determination assay can be applied in the development and screening, release control, biosimilar assessment and stability studies of anti-HER2 mAbs.


Antibodies, Monoclonal, Humanized , Biological Assay , Genes, Reporter , Luciferases , Neuregulin-1 , Receptor, ErbB-2 , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , Receptor, ErbB-2/antagonists & inhibitors , Humans , Cell Line, Tumor , Antibodies, Monoclonal, Humanized/pharmacology , Biological Assay/methods , Luciferases/genetics , Neuregulin-1/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Female , Antineoplastic Agents, Immunological/pharmacology , Reproducibility of Results , Response Elements
7.
Expert Rev Anticancer Ther ; 24(5): 253-261, 2024 May.
Article En | MEDLINE | ID: mdl-38594892

INTRODUCTION: The use of immune checkpoint inhibitors (ICI) targeting the PD-1/PD-L1 pathway has changed the landscape in the treatment of triple negative breast cancer (TNBC). The ICI pembrolizumab in combination with chemotherapy now forms a standard of care for the treatment of advanced PD-L1 positive TNBC and as part of neoadjuvant therapy for high-risk early-stage disease. Evidence in this space is rapidly advancing. AREAS COVERED: This review aims to highlight the evolving role of immunotherapy in TNBC management and to discuss current challenges. The studies in this review were searched from PubMed and ClinicalTrials.gov. EXPERT OPINION: The KEYNOTE-522 trial demonstrated that the addition of peri-operative pembrolizumab to neoadjuvant chemotherapy improves patient outcomes in early-stage TNBC. However, critical questions remain including how to select which patients truly gain benefit from the addition of pembrolizumab; the optimal duration of therapy, and the optimal adjuvant therapy depending on pathologic response.


Antibodies, Monoclonal, Humanized , Immune Checkpoint Inhibitors , Neoadjuvant Therapy , Programmed Cell Death 1 Receptor , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacology , Female , Neoadjuvant Therapy/methods , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Neoplasm Staging , Immunotherapy/methods , B7-H1 Antigen/antagonists & inhibitors , Patient Selection , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/pharmacology , Chemotherapy, Adjuvant/methods
8.
ESMO Open ; 9(4): 102989, 2024 Apr.
Article En | MEDLINE | ID: mdl-38613914

Approximately 60% of traditionally defined human epidermal growth factor receptor 2 (HER2)-negative breast cancers express low levels of HER2 [HER2-low; defined as immunohistochemistry (IHC) 1+ or IHC 2+/in situ hybridization (ISH)-]. HER2-low breast cancers encompass a large percentage of both hormone receptor-positive (up to 85%) and triple-negative (up to 63%) breast cancers. The DESTINY-Breast04 trial established that HER2-low tumors are targetable, leading to the approval of trastuzumab deruxtecan (T-DXd) as the first HER2-directed therapy for the treatment of HER2-low breast cancer in the United States and Europe. This change in the clinical landscape results in a number of questions and challenges-including those related to HER2 assessment and patient identification-and highlights the need for careful assessment of HER2 expression to identify patients eligible for T-DXd. This review provides context for understanding how to identify patients with HER2-low breast cancer with respect to sample types, scoring and reporting HER2 status, and testing methods and assays. It also discusses management of important T-DXd-related adverse events. Available evidence supports the efficacy of T-DXd in patients with any history of IHC 1+ or IHC 2+/ISH- scores; however, future research may further refine the population who could benefit from T-DXd or other HER2-directed therapies and identify novel methods for patient identification. Because HER2 expression can change with disease progression or treatment, and variability exists in scoring and interpretation of HER2 status, careful re-evaluation in certain scenarios may help to identify more patients who may benefit from T-DXd.


Breast Neoplasms , Receptor, ErbB-2 , Humans , Receptor, ErbB-2/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , Biomarkers, Tumor/metabolism
9.
Int Immunopharmacol ; 133: 112102, 2024 May 30.
Article En | MEDLINE | ID: mdl-38652971

Anaplastic thyroid carcinoma (ATC) is the most aggressive subtype of thyroid cancer with few effective therapies. Though immunotherapies such as targeting PD-1/PD-L1 axis have benefited patients with solid tumor, the druggable immune checkpoints are quite limited in ATC. In our study, we focused on the anti-tumor potential of sialic acid-binding Ig-like lectins (Siglecs) in ATC. Through screening by integrating microarray datasets including 216 thyroid-cancer tissues and single-cell RNA-sequencing, SIGLEC family members CD33, SIGLEC1, SIGLEC10 and SIGLEC15 were significantly overexpressed in ATC, among which SIGLEC15 increased highest and mainly expressed on cancer cells. SIGLEC15high ATC cells are characterized by high expression of serine protease PRSS23 and cancer stem cell marker CD44. Compared with SIGLEC15low cancer cells, SIGLEC15high ATC cells exhibited higher interaction frequency with tumor microenvironment cells. Further study showed that SIGLEC15high cancer cells mainly interacted with T cells by immunosuppressive signals such as MIF-TNFRSF14 and CXCL12-CXCR4. Notably, treatment of anti-SIGLEC15 antibody profoundly increased the cytotoxic ability of CD8+ T cells in a co-culture model and zebrafish-derived ATC xenografts. Consistently, administration of anti-SIGLEC15 antibody significantly inhibited tumor growth and prolonged mouse survival in an immunocompetent model of murine ATC, which was associated with increase of M1/M2, natural killer (NK) cells and CD8+ T cells, and decrease of myeloid-derived suppressor cells (MDSCs). SIGLEC15 inhibited T cell activation by reducing NFAT1, NFAT2, and NF-κB signals. Blocking SIGLEC15 increased the secretion of IFN-γ and IL-2 in vitro and in vivo. In conclusion, our finding demonstrates that SIGLEC15 is an emerging and promising target for immunotherapy in ATC.


Immunotherapy , Lectins , Thyroid Carcinoma, Anaplastic , Humans , Animals , Thyroid Carcinoma, Anaplastic/therapy , Thyroid Carcinoma, Anaplastic/immunology , Thyroid Carcinoma, Anaplastic/genetics , Immunotherapy/methods , Mice , Cell Line, Tumor , Lectins/genetics , Lectins/metabolism , Thyroid Neoplasms/therapy , Thyroid Neoplasms/immunology , Thyroid Neoplasms/genetics , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , Xenograft Model Antitumor Assays , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Immunoglobulins , Membrane Proteins
11.
Anticancer Res ; 44(5): 1925-1930, 2024 May.
Article En | MEDLINE | ID: mdl-38677727

BACKGROUND/AIM: Pembrolizumab, a second-line therapy for platinum-refractory advanced urothelial carcinoma (UC), is needed to improve objective response rate. Hence, it is crucial to identify optimal predictive biomarkers of responses. This study aimed to clarify the predictive value and role of signal transducer and activator of transcription 3 (STAT3) in selecting patients with advanced UC who might benefit clinically from pembrolizumab therapy. PATIENTS AND METHODS: We retrospectively analyzed 31 patients who received pembrolizumab therapy for UC. STAT3, phosphorylated STAT3 (p-STAT3), and PD-L1 expression were determined using tissue microarrays constructed from patient-derived specimens, and the association of these expression levels with overall survival was analyzed. We assessed the functional role of STAT3 in bladder cancer cell lines in response to interferon-gamma (IFN-γ). RESULTS: Patients with high STAT3 or p-STAT3 expression, and high platelet-to-lymphocyte ratio (PLR) (n=6) had a significantly shorter OS; in the other patients (n=25), high STAT3 or p-STAT3 expression was significantly associated with improved prognosis. IFN-γ-induced apoptosis was partially dependent on STAT3 in T24 cells but not in JMSU1 cells. CONCLUSION: In patients with advanced UC, STAT3 plays a key role in mediating the efficacy of pembrolizumab through apoptosis in response to IFN-γ.


Antibodies, Monoclonal, Humanized , Apoptosis , Interferon-gamma , STAT3 Transcription Factor , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , Apoptosis/drug effects , B7-H1 Antigen/metabolism , Cell Line, Tumor , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Prognosis , Retrospective Studies , STAT3 Transcription Factor/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urologic Neoplasms/drug therapy , Urologic Neoplasms/pathology , Urologic Neoplasms/metabolism
12.
J Immunother ; 47(5): 149-159, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38557756

Antibody-drug conjugates (ADCs) combine the high specificity of antibodies with the cytotoxicity of payloads and have great potential in pan-cancer immunotherapy. However, the current payloads for clinical uses have limited the therapeutic window due to their uncontrollable off-site toxicity. There is unmet needs to develop more potent ADC payloads with better safety and efficacy profiles. Nitric oxide (NO) is a special molecule that has low toxicity itself, which can kill tumor cells effectively when highly concentrated, has broad application prospects. Previously, we prepared for the first time an antibody-nitric oxide conjugate (ANC)-HN01, which showed inhibitory activity against hepatocellular carcinoma. However, the random conjugation method made HN01 highly heterogeneous and unstable. Here, we used site-specific conjugation-based engineered cysteine sites (CL-V211C) of anti-CD24 antibody to prepare a second-generation ANC with a drug-to-antibody ratio of 2. The homogeneous ANC, HN02 was stable in human plasma, shown in vitro bystander effect to neighboring cells and antiproliferative activity to CD24-targeted tumor cells. Compared with HN01, HN02 significantly prolonged the survival of tumor-bearing mice. In summary, we developed a stable and homogeneous site-specific conjugated ANC, which showed good antitumor activity and improved safety profile both in vitro and in vivo. This study provides new insight into the development of next generation of ADC candidates.


Immunoconjugates , Nitric Oxide , Xenograft Model Antitumor Assays , Humans , Animals , Immunoconjugates/pharmacology , Immunoconjugates/chemistry , Immunoconjugates/therapeutic use , Mice , Nitric Oxide/metabolism , Cell Line, Tumor , CD24 Antigen/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/chemistry , Cell Proliferation/drug effects , Liver Neoplasms/drug therapy , Neoplasms/drug therapy
13.
Biomed Pharmacother ; 174: 116565, 2024 May.
Article En | MEDLINE | ID: mdl-38603888

Neural cell adhesion molecule L1 (L1CAM) is a cell-surface glycoprotein involved in cancer occurrence and migration. Up to today, L1CAM-targeted therapy appeared limited efficacy in clinical trials although quite a few attempts by monoclonal antibody (mAb) or chimeric antigen receptor T-cell therapy (CAR-T) have been reported. Therefore, the development of new effective therapies targeting L1CAM is highly desirable. It has been demonstrated that T cell-engaging bispecific antibody (TCE) plays an effective role in cancer immunotherapy by redirecting the cytotoxic activity of CD3+ T cells to tumor cells, resulting in tumor cell death. In this study, we designed and characterized a novel bispecific antibody (CE7-TCE) based on the IgG-(L)-ScFv format, which targets L1CAM and CD3 simultaneously. In vitro, CE7-TCE induced specific killing of L1CAM-positive tumor cells through T cells. In vivo, CE7-TCE inhibited tumor growth in human peripheral blood mononuclear cell/tumor cell co-grafting models. To overcome the adaptive immune resistance (AIR) that impairs the efficacy of TCEs, we conducted a combination therapy of CE7-TCE with Pembrolizumab (anti-PD1 mAb), which enhanced the anti-tumor activity of CE7-TCE. Our results confirmed the feasibility of using L1CAM as a TCE target for the treatment of solid tumors and revealed the therapeutic potential of CE7-TCE combined with immune checkpoint inhibitors.


Antibodies, Bispecific , Neural Cell Adhesion Molecule L1 , T-Lymphocytes , Animals , Female , Humans , Mice , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , Antineoplastic Agents, Immunological/pharmacology , CD3 Complex/immunology , Cell Line, Tumor , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/therapy , Neural Cell Adhesion Molecule L1/immunology , Neural Cell Adhesion Molecule L1/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Xenograft Model Antitumor Assays
15.
Vet Comp Oncol ; 22(2): 230-238, 2024 Jun.
Article En | MEDLINE | ID: mdl-38502572

Urothelial carcinoma (UC) is the most common malignancy of the urinary tract in dogs and has aggressive behaviour. Although human epidermal growth factor receptor 2 (HER2) is a known therapeutic target with evidence in canine UC, the efficacy of anti-HER2 antibody drugs remains unknown. This study aimed to investigate the effects of anti-HER2 antibody drugs including trastuzumab and trastuzumab emtansine (T-DM1) on canine UC cell lines in vitro and in vivo. Four canine UC cell lines (Nene, TCCUB, Love, and Sora) were used. In western blotting, HER2 protein expression was observed in all the cell lines. Although both trastuzumab and T-DM1 showed dose-dependent growth inhibitory activity in the cell lines, T-DM1 showed much stronger activity than that of trastuzumab. In flow cytometry analyses with the canine UC cell line (Sora), T-DM1 but not trastuzumab significantly increased the percentages of early and late apoptotic cells in annexin V apoptotic assays and the sub-G1 phase fraction in cell cycle analyses. For the in vivo experiment, the canine UC cells (Sora) were subcutaneously injected into nude mice. Four days after inoculation, trastuzumab, T-DM1, or vehicle was administered intraperitoneally once a week for three times. Tumour volumes were significantly smaller in the T-DM1 group compared to the trastuzumab and vehicle control groups. These findings indicate that T-DM1 exerts a stronger antitumour effect than that of trastuzumab on canine UC cells in vitro and in vivo, possibly by inducing apoptosis due to DM1.


Ado-Trastuzumab Emtansine , Dog Diseases , Trastuzumab , Animals , Dogs , Dog Diseases/drug therapy , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Cell Line, Tumor , Ado-Trastuzumab Emtansine/pharmacology , Ado-Trastuzumab Emtansine/therapeutic use , Mice , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Maytansine/pharmacology , Maytansine/analogs & derivatives , Maytansine/therapeutic use , Receptor, ErbB-2/metabolism , Mice, Nude , Female , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
16.
Cancer Gene Ther ; 31(5): 766-777, 2024 May.
Article En | MEDLINE | ID: mdl-38480976

Trastuzumab improves overall survival for HER2+ breast cancer, but its short half-life in the cerebrospinal fluid (~2-4 days) and delivery limitations restrict the ability to target HER2+ central nervous system (CNS) disease. We developed an adeno-associated virus (AAV) vector expressing a codon-optimized, ubiquitin C (UbC)-promoter-driven trastuzumab sequence (AAV9.UbC.trastuzumab) for intrathecal administration. Transgene expression was evaluated in adult Rag1 knockout mice and rhesus nonhuman primates (NHPs) after a single intracerebroventricular (ICV) or intra-cisterna magna (ICM) AAV9.UbC.trastuzumab injection, respectively, using real-time PCR, ELISA, Western blot, in situ hybridization, single-nucleus RNA sequencing, and liquid chromatography-mass spectrometry; antitumor efficacy was evaluated in brain xenografts using HER2+ breast cancer cell lines (BT-474, MDA-MB-453). Transgene expression was detected in brain homogenates of Rag1 knockout mice following a single ICV injection of AAV9.UbC.trastuzumab (1 × 1011 vector genome copies [GC]/mouse) and tumor progression was inhibited in xenograft models of breast-to-brain metastasis. In NHPs, ICM delivery of AAV9.UbC.trastuzumab (3 × 1013 GC/animal) was well tolerated (36-37 days in-life) and resulted in transgene expression in CNS tissues and cerebrospinal fluid at levels sufficient to induce complete tumor remission in MDA-MB-453 brain xenografts. With AAV9's proven clinical safety record, this gene therapy may represent a viable approach for targeting HER2 + CNS malignancies.


Brain Neoplasms , Dependovirus , Receptor, ErbB-2 , Trastuzumab , Trastuzumab/administration & dosage , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Dependovirus/genetics , Animals , Humans , Mice , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Female , Brain Neoplasms/therapy , Brain Neoplasms/genetics , Brain Neoplasms/secondary , Brain Neoplasms/pathology , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Mice, Knockout , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Macaca mulatta , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/administration & dosage , Xenograft Model Antitumor Assays , Central Nervous System/metabolism , Cell Line, Tumor
17.
Adv Sci (Weinh) ; 11(18): e2309424, 2024 May.
Article En | MEDLINE | ID: mdl-38460162

Secondary trastuzumab resistance represents an evolutionary adaptation of HER2-positive breast cancer during anti-HER2 treatment. Most current studies have tended to prioritize HER2 and its associated signaling pathways, often overlooking broader but seemingly less relevant cellular processes, along with their associated genetic and epigenetic mechanisms. Here, transcriptome data is not only characterized but also examined epigenomic and 3D genome architecture information in both trastuzumab-sensitive and secondary-resistant breast cancer cells. The findings reveal that the global metabolic reprogramming associated with trastuzumab resistance may stem from genome-wide alterations in both histone modifications and chromatin structure. Specifically, the transcriptional activities of key genes involved in lipid metabolism appear to be regulated by variant promoter H3K27me3 and H3K4me3 modifications, as well as promoter-enhancer interactions. These discoveries offer valuable insights into how cancer cells adapt to anti-tumor drugs and have the potential to impact future diagnostic and treatment strategies.


Breast Neoplasms , Chromatin , Epigenesis, Genetic , Lipid Metabolism , Receptor, ErbB-2 , Trastuzumab , Humans , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Female , Epigenesis, Genetic/genetics , Epigenesis, Genetic/drug effects , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Chromatin/metabolism , Chromatin/genetics , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , Metabolic Reprogramming
18.
Blood ; 143(18): 1816-1824, 2024 May 02.
Article En | MEDLINE | ID: mdl-38457360

ABSTRACT: Rituximab (RTX) and other monoclonal antibodies (mAbs) that bind directly to malignant cells are of great clinical value but are not effective for all patients. A major mechanism of action of RTX is antibody-dependent cellular cytotoxicity (ADCC) mediated by natural killer (NK) cells. Prior in vitro studies in our laboratory demonstrated that T cells contribute to maintaining the viability and cytotoxic potential of NK cells activated by anti-CD20-coated target B cells. Here, we conducted studies using a novel mouse model and clinical correlative analysis to assess whether T-cell help contribute to RTX-mediated NK-cell ADCC in the tumor microenvironment (TME) in vivo. A humanized mouse model was developed using Raji lymphoma cells and normal donor peripheral blood mononuclear cells that allows for control of T-cell numbers in the lymphoma TME. In this model, NK-cell viability and CD16 and CD25 expression dropped after RTX in the absence of T cells but increased in the presence of T cells. RTX therapy was more effective when T cells were present and was ineffective when NK cells were depleted. In patients with indolent lymphoma, fine needle aspirates were obtained before and ∼1 week after treatment with a RTX-containing regimen. There was a strong correlation between CD4+ T cells as well as total T cells in the pretherapy TME and an increase in NK-cell CD16 and CD25 expression after RTX. We conclude that T-cell help in the TME enhances RTX-mediated NK-cell viability and ADCC.


Antibody-Dependent Cell Cytotoxicity , Killer Cells, Natural , Rituximab , Tumor Microenvironment , Rituximab/pharmacology , Rituximab/therapeutic use , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Animals , Antibody-Dependent Cell Cytotoxicity/drug effects , Humans , Mice , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Cell Line, Tumor , Mice, SCID , Lymphoma/immunology , Lymphoma/drug therapy , Lymphoma/pathology , Lymphoma/therapy , Female
19.
Int Immunopharmacol ; 132: 111926, 2024 May 10.
Article En | MEDLINE | ID: mdl-38552297

Mortality due to malignant tumors is one of the major factors affecting the life expectancy of the global population. Therapeutic antibodies are a cutting-edge treatment method for restricting tumor growth. B7-H3 is highly expressed in tumor tissues, but rarely in normal tissues. B7-H3 is closely associated with poor prognosis in patients with tumors. B7-H3 is an important target for antitumor therapy. In this study, the fully human anti-B7H3 single-chain antibodies (scFvs) were isolated and screened from the fully human phage immune library with B7H3 as the target. The antibodies screened from a fully human phage library had low immunogenicity and high affinity, which was more beneficial for clinical application. Leveraging B7-H3 scFvs as a foundation, we constructed two distinct recombinant antibody formats, scFv-Fc and IgG1, characterized by elevated affinity and a prolonged half-life. The results demonstrated that the recombinant antibodies had high specificity and affinity for the B7-H3 antigen and inhibited tumor cell growth by enhancing the ADCC. After treatment with anti-B7H3 recombinant antibody, the number of infiltrating T cells in the tumor increased and the secretion of IFN- γ by infiltrating T cells increased in vivo. Additionally, the use of pleural fluid samples obtained from tumor-afflicted patients revealed the ability of anti-B7-H3 recombinant antibodies to reverse CD8+ T cell exhaustion. In summary, we screened the fully human anti-B7H3 recombinant antibodies with specificity and high affinity that increase immune cell infiltration and IFN-γ secretion, thereby inhibiting tumor cell growth to a certain extent. This finding provides a theoretical basis for the development of therapeutic tumor antibodies and could help promote further development of antibody-based drugs.


B7 Antigens , Single-Chain Antibodies , B7 Antigens/immunology , B7 Antigens/metabolism , B7 Antigens/genetics , B7 Antigens/antagonists & inhibitors , Humans , Animals , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/pharmacology , Single-Chain Antibodies/therapeutic use , Cell Line, Tumor , Mice , Female , T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use , Mice, Inbred C57BL , Male , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Interferon-gamma/metabolism , Interferon-gamma/immunology , Antibody-Dependent Cell Cytotoxicity
20.
Drug Resist Updat ; 74: 101068, 2024 May.
Article En | MEDLINE | ID: mdl-38402670

The treatment for trastuzumab-resistant breast cancer (BC) remains a challenge in clinical settings. It was known that CD47 is preferentially upregulated in HER2+ BC cells, which is correlated with drug resistance to trastuzumab. Here, we developed a novel anti-CD47/HER2 bispecific antibody (BsAb) against trastuzumab-resistant BC, named IMM2902. IMM2902 demonstrated high binding affinity, blocking activity, antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and internalization degradation effects against both trastuzumab-sensitive and trastuzumab-resistant BC cells in vitro. The in vivo experimental data indicated that IMM2902 was more effective than their respective controls in inhibiting tumor growth in a trastuzumab-sensitive BT474 mouse model, a trastuzumab-resistant HCC1954 mouse model, two trastuzumab-resistant patient-derived xenograft (PDX) mouse models and a cord blood (CB)-humanized HCC1954 mouse model. Through spatial transcriptome assays, multiplex immunofluorescence (mIFC) and in vitro assays, our findings provided evidence that IMM2902 effectively stimulates macrophages to generate C-X-C motif chemokine ligand (CXCL) 9 and CXCL10, thereby facilitating the recruitment of T cells and NK cells to the tumor site. Moreover, IMM2902 demonstrated a high safety profile regarding anemia and non-specific cytokines release. Collectively, our results highlighted a novel therapeutic approach for the treatment of HER2+ BCs and this approach exhibits significant anti-tumor efficacy without causing off-target toxicity in trastuzumab-resistant BC cells.


Antibodies, Bispecific , Breast Neoplasms , CD47 Antigen , Drug Resistance, Neoplasm , Immunotherapy , Receptor, ErbB-2 , Trastuzumab , Xenograft Model Antitumor Assays , Humans , Animals , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Female , Drug Resistance, Neoplasm/drug effects , Mice , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/immunology , Immunotherapy/methods , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Cell Line, Tumor , Antibody-Dependent Cell Cytotoxicity/drug effects , Phagocytosis/drug effects
...