Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 290
1.
Trends Parasitol ; 36(12): 979-991, 2020 12.
Article En | MEDLINE | ID: mdl-33011071

Parasitic protozoa of the phylum Apicomplexa cause a range of human and animal diseases. Their complex life cycles - often heteroxenous with sexual and asexual phases in different hosts - rely on elaborate cytoskeletal structures to enable morphogenesis and motility, organize cell division, and withstand diverse environmental forces. This review primarily focuses on studies using Toxoplasma gondii and Plasmodium spp. as the best studied apicomplexans; however, many cytoskeletal adaptations are broadly conserved and predate the emergence of the parasitic phylum. After decades cataloguing the constituents of such structures, a dynamic picture is emerging of the assembly and maintenance of apicomplexan cytoskeletons, illuminating how they template and orient critical processes during infection. These observations impact our view of eukaryotic diversity and offer future challenges for cell biology.


Apicomplexa/cytology , Cytoskeleton/physiology , Adaptation, Physiological , Animals , Humans , Life Cycle Stages/physiology , Plasmodium/cytology , Toxoplasma/cytology
2.
Parasit Vectors ; 13(1): 222, 2020 May 01.
Article En | MEDLINE | ID: mdl-32357916

BACKGROUND: The African leopard Panthera pardus pardus (L.) is currently listed as a vulnerable species on the IUCN (International Union for the Conservation of Nature) red list of threatened species due to ongoing population declines. This implies that leopard-specific parasites are also vulnerable to extinction. Intracellular apicomplexan haemoparasites from the genus Hepatozoon Miller, 1908 have been widely reported from wild carnivores in Africa, including non-specific reports from leopards. This paper describes two new haemogregarines in captive and wild leopards from South Africa and provides a tabular summary of these species in relation to species of Hepatozoon reported from mammalian carnivores. METHODS: Blood was collected from nine captive and eight wild leopards at various localities throughout South Africa. Thin blood smears were Giemsa-stained and screened for intraleukocytic haemoparasites. Gamont stages were micrographed and morphometrically compared with existing literature pertaining to infections in felid hosts. Haemogregarine specific primer set 4558F and 2733R was used to target the 18S rRNA gene for molecular analysis. Resulting sequences were compared to each other and with other available representative mammalian carnivore Hepatozoon sequences from GenBank. RESULTS: Two species of Hepatozoon were found in captive and wild leopards. Of the 17 leopards screened, eight were infected with one or both morphologically and genetically distinct haemogregarines. When compared with other species of Hepatozoon reported from felids, the two species from this study were morphometrically and molecularly distinct. Species of Hepatozoon from this study were observed to exclusively parasitize a particular type of leukocyte, with Hepatozoon luiperdjie n. sp. infecting neutrophils and Hepatozoon ingwe n. sp. infecting lymphocytes. Phylogenetic analysis showed that these haemogregarines are genetically distinct, with Hepatozoon luiperdjie n. sp. and Hepatozoon ingwe n. sp. falling in well supported separate clades. CONCLUSIONS: To our knowledge, this is the first morphometric and molecular description of Hepatozoon in captive and wild African leopards in South Africa. This study highlights the value of using both morphometric and molecular characteristics when describing species of Hepatozoon from felid hosts.


Coccidiosis/parasitology , Coccidiosis/veterinary , Eucoccidiida/classification , Eucoccidiida/cytology , Eucoccidiida/genetics , Eucoccidiida/isolation & purification , Leukocytes/parasitology , Panthera/parasitology , Animals , Apicomplexa/cytology , Apicomplexa/genetics , Coccidiosis/epidemiology , DNA, Protozoan , Endangered Species , Female , Male , Phylogeny , Prevalence , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA , South Africa/epidemiology
3.
Eur J Protistol ; 73: 125688, 2020 Apr.
Article En | MEDLINE | ID: mdl-32143143

The molecular divergence, morphology and pathology of a cryptic gregarine that is related to the bee parasite Apicystis bombi Lipa and Triggiani, 1996 is described. The 18S ribosomal DNA gene sequence of the new gregarine was equally dissimilar to that of A. bombi and the closest related genus Mattesia Naville, 1930, although phylogenetic analysis supported a closer relation to A. bombi. Pronounced divergence with A. bombi was found in the ITS1 sequence (69.6% similarity) and seven protein-coding genes (nucleotide 78.05% and protein 90.2% similarity). The new gregarine was isolated from a Bombus pascuorum Scopoli, 1763 female and caused heavy hypertrophism of the fat body tissue in its host. In addition, infected cells of the hypopharyngeal gland tissue, an important excretory organ of the host, were observed. Mature oocysts were navicular in shape and contained four sporozoites, similar to A. bombi oocysts. Given these characteristics, we proposed the name Apicystis cryptica sp. n. Detections so far indicated that distribution and host species occupation of Apicystis spp. overlap at least in Europe, and that historical detections could not discriminate between them. Specific molecular assays were developed that can be implemented in future pathogen screens that aim to discriminate Apicystis spp. in bees.


Apicomplexa/classification , Bees/parasitology , Animals , Apicomplexa/cytology , Apicomplexa/genetics , DNA, Protozoan/genetics , Europe , Fat Body/parasitology , Oocysts/cytology , Species Specificity
4.
J Eukaryot Microbiol ; 67(1): 4-17, 2020 01.
Article En | MEDLINE | ID: mdl-31231936

Eugregarines are understudied apicomplexan parasites of invertebrates inhabiting marine, freshwater, and terrestrial environments. Most currently known terrestrial eugregarines have been described parasitizing the gut from less than 1% of total insect diversity, with a high likelihood that the remaining insect species are infected. Eugregarine diversity in orthopterans (grasshoppers, locusts, katydids, and crickets) is still little known. We carried out a survey of the eugregarines parasitizing the Mexican lubber grasshopper, Taeniopoda centurio, an endemic species to the northwest of Mexico. We described two new eugregarine species from the gut of the host: Amoebogregarina taeniopoda n. sp. and Quadruspinospora mexicana n. sp. Both species are morphologically dissimilar in their life-cycle stages. Our SSU rDNA phylogenetic analysis showed that both species are phylogenetically distant to each other, even though they parasitize the same host. Amoebogregarina taeniopoda n. sp. clustered within the clade Gregarinoidea, being closely related to Amoebogregarina nigra from the grasshopper Melanoplus differentialis. Quadruspinospora mexicana n. sp. clustered within the clade Actinocephaloidea and grouped with Prismatospora evansi, a parasite from dragonfly naiads. Amoebogregarina taeniopoda n. sp. and Q. mexicana n. sp. represent the first record of eugregarines found to infect a species of the family Romaleidae.


Apicomplexa/classification , Apicomplexa/cytology , Grasshoppers/parasitology , Host-Parasite Interactions , Phylogeny , Animals , Apicomplexa/ultrastructure , DNA, Protozoan/analysis , DNA, Ribosomal/analysis , Mexico , Microscopy , Microscopy, Electron, Scanning , Sequence Analysis, DNA
5.
Nature ; 568(7750): 103-107, 2019 04.
Article En | MEDLINE | ID: mdl-30944491

Apicomplexa is a group of obligate intracellular parasites that includes the causative agents of human diseases such as malaria and toxoplasmosis. Apicomplexans evolved from free-living phototrophic ancestors, but how this transition to parasitism occurred remains unknown. One potential clue lies in coral reefs, of which environmental DNA surveys have uncovered several lineages of uncharacterized basally branching apicomplexans1,2. Reef-building corals have a well-studied symbiotic relationship with photosynthetic Symbiodiniaceae dinoflagellates (for example, Symbiodinium3), but the identification of other key microbial symbionts of corals has proven to be challenging4,5. Here we use community surveys, genomics and microscopy analyses to identify an apicomplexan lineage-which we informally name 'corallicolids'-that was found at a high prevalence (over 80% of samples, 70% of genera) across all major groups of corals. Corallicolids were the second most abundant coral-associated microeukaryotes after the Symbiodiniaceae, and are therefore core members of the coral microbiome. In situ fluorescence and electron microscopy confirmed that corallicolids live intracellularly within the tissues of the coral gastric cavity, and that they possess apicomplexan ultrastructural features. We sequenced the genome of the corallicolid plastid, which lacked all genes for photosystem proteins; this indicates that corallicolids probably contain a non-photosynthetic plastid (an apicoplast6). However, the corallicolid plastid differs from all other known apicoplasts because it retains the four ancestral genes that are involved in chlorophyll biosynthesis. Corallicolids thus share characteristics with both their parasitic and their free-living relatives, which suggests that they are evolutionary intermediates and implies the existence of a unique biochemistry during the transition from phototrophy to parasitism.


Anthozoa/parasitology , Apicomplexa/genetics , Apicomplexa/metabolism , Chlorophyll/biosynthesis , Genes, Protozoan/genetics , Phylogeny , Animals , Apicomplexa/cytology , Coral Reefs , Dinoflagellida/cytology , Dinoflagellida/genetics , Dinoflagellida/metabolism , Genome, Protozoan/genetics , Photosynthesis , Plastids/genetics , Symbiosis
6.
Trends Parasitol ; 34(9): 759-771, 2018 09.
Article En | MEDLINE | ID: mdl-30078701

Increased parasite burden is linked to the severity of clinical disease caused by Apicomplexa parasites such as Toxoplasma gondii, Plasmodium spp, and Cryptosporidium. Pathogenesis of apicomplexan infections is greatly affected by the growth rate of the parasite asexual stages. This review discusses recent advances in deciphering the mitotic structures and cell cycle regulatory factors required by Apicomplexa parasites to replicate. As the molecular details become clearer, it is evident that the highly unconventional cell cycles of these parasites is a blending of many ancient and borrowed elements, which were then adapted to enable apicomplexan proliferation in a wide variety of different animal hosts.


Apicomplexa/cytology , Apicomplexa/physiology , Cell Cycle , Host-Parasite Interactions , Protozoan Infections/parasitology
7.
PLoS One ; 12(6): e0179709, 2017.
Article En | MEDLINE | ID: mdl-28640849

Recent studies on motility of Apicomplexa concur with the so-called glideosome concept applied for apicomplexan zoites, describing a unique mechanism of substrate-dependent gliding motility facilitated by a conserved form of actomyosin motor and subpellicular microtubules. In contrast, the gregarines and blastogregarines exhibit different modes and mechanisms of motility, correlating with diverse modifications of their cortex. This study focuses on the motility and cytoskeleton of the blastogregarine Siedleckia nematoides Caullery et Mesnil, 1898 parasitising the polychaete Scoloplos cf. armiger (Müller, 1776). The blastogregarine moves independently on a solid substrate without any signs of gliding motility; the motility in a liquid environment (in both the attached and detached forms) rather resembles a sequence of pendular, twisting, undulation, and sometimes spasmodic movements. Despite the presence of key glideosome components such as pellicle consisting of the plasma membrane and the inner membrane complex, actin, myosin, subpellicular microtubules, micronemes and glycocalyx layer, the motility mechanism of S. nematoides differs from the glideosome machinery. Nevertheless, experimental assays using cytoskeletal probes proved that the polymerised forms of actin and tubulin play an essential role in the S. nematoides movement. Similar to Selenidium archigregarines, the subpellicular microtubules organised in several layers seem to be the leading motor structures in blastogregarine motility. The majority of the detected actin was stabilised in a polymerised form and appeared to be located beneath the inner membrane complex. The experimental data suggest the subpellicular microtubules to be associated with filamentous structures (= cross-linking protein complexes), presumably of actin nature.


Apicomplexa/cytology , Apicomplexa/physiology , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Movement/drug effects , Apicomplexa/drug effects , Apicomplexa/ultrastructure , Microscopy , Trophozoites/drug effects , Trophozoites/physiology
8.
Cell Host Microbe ; 20(6): 731-743, 2016 Dec 14.
Article En | MEDLINE | ID: mdl-27978434

Apicomplexa exhibit a unique form of substrate-dependent gliding motility central for host cell invasion and parasite dissemination. Gliding is powered by rearward translocation of apically secreted transmembrane adhesins via their interaction with the parasite actomyosin system. We report a conserved armadillo and pleckstrin homology (PH) domain-containing protein, termed glideosome-associated connector (GAC), that mediates apicomplexan gliding motility, invasion, and egress by connecting the micronemal adhesins with the actomyosin system. TgGAC binds to and stabilizes filamentous actin and specifically associates with the transmembrane adhesin TgMIC2. GAC localizes to the apical pole in invasive stages of Toxoplasma gondii and Plasmodium berghei, and apical positioning of TgGAC depends on an apical lysine methyltransferase, TgAKMT. GAC PH domain also binds to phosphatidic acid, a lipid mediator associated with microneme exocytosis. Collectively, these findings indicate a central role for GAC in spatially and temporally coordinating gliding motility and invasion.


Apicomplexa/cytology , Apicomplexa/physiology , Lipids , Microfilament Proteins/physiology , Molecular Motor Proteins/physiology , Protozoan Proteins/physiology , Actin Cytoskeleton/physiology , Actins/physiology , Animals , Apicomplexa/metabolism , Cell Adhesion Molecules/physiology , Cell Movement , Exocytosis/physiology , Membrane Proteins/metabolism , Membrane Proteins/physiology , Methyltransferases/metabolism , Microfilament Proteins/metabolism , Models, Molecular , Organelles , Phosphatidic Acids/metabolism , Plasmodium berghei/metabolism , Plasmodium berghei/physiology , Protein Conformation , Protozoan Infections/parasitology , Protozoan Proteins/metabolism , Rabbits , Toxoplasma/cytology , Toxoplasma/metabolism , Toxoplasma/physiology , Toxoplasmosis/parasitology
9.
Protist ; 167(3): 279-301, 2016 06.
Article En | MEDLINE | ID: mdl-27239726

Urosporids (Apicomplexa: Urosporidae) are eugregarines that parasitise marine invertebrates, such as annelids, molluscs, nemerteans and echinoderms, inhabiting their coelom and intestine. Urosporids exhibit considerable morphological plasticity, which correlates with their different modes of motility and variations in structure of their cortical zone, according to the localisation within the host. The gregarines Urospora ovalis and U. travisiae from the marine polychaete Travisia forbesii were investigated with an emphasis on their general morphology and phylogenetic position. Solitary ovoid trophozoites and syzygies of U. ovalis were located free in the host coelom and showed metabolic activity, a non-progressive movement with periodic changes of the cell shape. Solitary trophozoites of U. travisiae, attached to the host tissue or free floating in the coelom, were V-shaped. Detached trophozoites demonstrated gliding motility, a progressive movement without observable cell body changes. In both gregarines, the cortex formed numerous epicytic folds, but superfolds appeared exclusively on the surface of U. ovalis during metabolic activity. SSU rDNA sequences obtained from U. ovalis and U. travisiae revealed that they belong to the Lecudinoidea clade; however, they are not affiliated with other coelomic urosporids (Pterospora spp. and Lithocystis spp.), but surprisingly with intestinal lecudinids (Difficilina spp.) parasitising nemerteans.


Apicomplexa/classification , Apicomplexa/isolation & purification , Polychaeta/parasitology , Animals , Apicomplexa/cytology , Apicomplexa/genetics , Cluster Analysis , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Locomotion , Microscopy , Phylogeny , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
10.
Annu Rev Microbiol ; 69: 129-44, 2015.
Article En | MEDLINE | ID: mdl-26092225

Apicomplexa are known to contain greatly reduced organellar genomes. Their mitochondrial genome carries only three protein-coding genes, and their plastid genome is reduced to a 35-kb-long circle. The discovery of coral-endosymbiotic algae Chromera velia and Vitrella brassicaformis, which share a common ancestry with Apicomplexa, provided an opportunity to study possibly ancestral forms of organellar genomes, a unique glimpse into the evolutionary history of apicomplexan parasites. The structurally similar mitochondrial genomes of Chromera and Vitrella differ in gene content, which is reflected in the composition of their respiratory chains. Thus, Chromera lacks respiratory complexes I and III, whereas Vitrella and apicomplexan parasites are missing only complex I. Plastid genomes differ substantially between these algae, particularly in structure: The Chromera plastid genome is a linear, 120-kb molecule with large and divergent genes, whereas the plastid genome of Vitrella is a highly compact circle that is only 85 kb long but nonetheless contains more genes than that of Chromera. It appears that organellar genomes have already been reduced in free-living phototrophic ancestors of apicomplexan parasites, and such reduction is not associated with parasitism.


Alveolata/cytology , Alveolata/genetics , Apicomplexa/cytology , Apicomplexa/genetics , Apicomplexa/metabolism , Electron Transport , Genome, Mitochondrial , Plastids/genetics , Plastids/metabolism , Symbiosis
11.
Int J Syst Evol Microbiol ; 65(8): 2598-2614, 2015 Aug.
Article En | MEDLINE | ID: mdl-25985834

The eugregarines are a group of apicomplexan parasites that mostly infect the intestines of invertebrates. The high level of morphological variation found within and among species of eugregarines makes it difficult to find consistent and reliable traits that unite even closely related lineages. Based mostly on traits observed with light microscopy, the majority of described eugregarines from marine invertebrates has been classified into a single group, the Lecudinidae. Our understanding of the overall diversity and phylogenetic relationships of lecudinids is very poor, mainly because only a modest amount of exploratory research has been done on the group and very few species of lecudinids have been characterized at the molecular phylogenetic level. In an attempt to understand the diversity of marine gregarines better, we surveyed lecudinids that infect the intestines of Pacific ascidians (i.e. sea squirts) using ultrastructural and molecular phylogenetic approaches; currently, these species fall within one genus, Lankesteria. We collected lecudinid gregarines from six ascidian host species, and our data demonstrated that each host was infected by a different species of Lankesteria: (i) Lankesteria hesperidiiformis sp. nov., isolated from Distaplia occidentalis, (ii) Lankesteria metandrocarpae sp. nov., isolated from Metandrocarpa taylori, (iii) Lankesteria halocynthiae sp. nov., isolated from Halocynthia aurantium, (iv) Lankesteria herdmaniae sp. nov., isolated from Herdmania momus, (v) Lankesteria cf. ritterellae, isolated from Ritterella rubra, and (vi) Lankesteria didemni sp. nov., isolated from Didemnum vexillum. Visualization of the trophozoites with scanning electron microscopy showed that four of these species were covered with epicytic folds, whereas two of the species were covered with a dense pattern of epicytic knobs. The molecular phylogenetic data suggested that species of Lankesteria with surface knobs form a clade that is nested within a paraphyletic assemblage species of Lankesteria with epicytic folds.


Apicomplexa/classification , Intestines/parasitology , Phylogeny , Urochordata/parasitology , Animals , Apicomplexa/cytology , Apicomplexa/isolation & purification , DNA, Protozoan/genetics , Genes, rRNA , Microscopy, Electron, Scanning , Molecular Sequence Data , Pacific Ocean , Sequence Analysis, DNA , Trophozoites/cytology
12.
Parasitology ; 142(6): 816-26, 2015 May.
Article En | MEDLINE | ID: mdl-25736219

The uniform morphology of the developmental stages of Haemogregarina species and the insufficient information supplied by the simplistic descriptions of previous authors complicates their differential diagnosis and proper species identification. In this study, we detected Haemogregarina spp. in 6 out of 22 (27.2%) examined turtles originating from Southeast Asia, Malayemys subtrijuga (n = 4), Sacalia quadriocellata (n = 1) and Platysternon megacephalum (n = 1), and compared them with the available literature data. Microscopic analysis of our isolates distinguished 2 morphological species, Haemogregarina pellegrini and one new species, being described in this paper as Haemogregarina sacaliae sp. n. Phylogenetic analyses based on 1210 bp long fragment of 18S rDNA sequences placed both haemogregarines firmly within the monophyletic Haemogregarina clade. Isolates of H. pellegrini from 2 distantly related turtle hosts, M. subtrijuga and P. megacephalum, were genetically identical. Despite the fact that numerous Haemogregarina species of turtles have been described, the incompleteness of the morphological data and relatively low host specificity provides the space for large synonymy within this taxon. Therefore, a complex approach combining microscopic analyses together with molecular-genetic methods should represent the basic standard for all taxonomic studies.


Apicomplexa/classification , Apicomplexa/cytology , Protozoan Infections, Animal/parasitology , Animals , Asia, Southeastern , Phylogeny , Protozoan Infections, Animal/epidemiology , RNA, Protozoan/genetics , RNA, Ribosomal, 18S/genetics , Species Specificity , Turtles
13.
Rev Bras Parasitol Vet ; 23(1): 1-15, 2014 Mar.
Article En | MEDLINE | ID: mdl-24728354

The oocysts of the coccidia are robust structures, frequently isolated from the feces or urine of their hosts, which provide resistance to mechanical damage and allow the parasites to survive and remain infective for prolonged periods. The diagnosis of coccidiosis, species description and systematics, are all dependent upon characterization of the oocyst. Therefore, this review aimed to the provide a critical overview of the methodologies, advantages and limitations of the currently available morphological, morphometrical and molecular biology based approaches that may be utilized for characterization of these important structures. It has become apparent that no single methodology is sufficient to fully characterize these structures and the majority of researchers favor the use of combinational or polyphasic approaches.


Apicomplexa/cytology , Oocysts/cytology
14.
Rev. bras. parasitol. vet ; 23(1): 1-15, Jan-Mar/2014. tab, graf
Article En | LILACS | ID: lil-707194

The oocysts of the coccidia are robust structures, frequently isolated from the feces or urine of their hosts, which provide resistance to mechanical damage and allow the parasites to survive and remain infective for prolonged periods. The diagnosis of coccidiosis, species description and systematics, are all dependent upon characterization of the oocyst. Therefore, this review aimed to the provide a critical overview of the methodologies, advantages and limitations of the currently available morphological, morphometrical and molecular biology based approaches that may be utilized for characterization of these important structures. It has become apparent that no single methodology is sufficient to fully characterize these structures and the majority of researchers favor the use of combinational or polyphasic approaches.


Os oocistos de coccídios são estruturas robustas, frequentemente isoladas das fezes ou urina de seus hospedeiros, os quais oferecem resistência a danos mecânicos e permitem que os parasitas sobrevivam e permaneçam infecciosos por períodos prolongados. O diagnóstico da coccidiose, descrição das espécies e sistemática são dependentes da caracterização do oocisto. Portanto, esta revisão teve como objetivo fornecer uma visão crítica das metodologias, vantagens e limitações dos métodos morfológicos, morfométricos e moleculares que podem ser utilizados para a caracterização destas estruturas importantes. Tornou-se evidente que nenhuma metodologia única é suficiente para caracterizar completamente essas estruturas e que a maioria das pesquisas favorecem o uso de metodologias combinadas ou polifásicas.


Apicomplexa/cytology , Oocysts/cytology
15.
Nat Rev Microbiol ; 12(2): 125-36, 2014 Feb.
Article En | MEDLINE | ID: mdl-24384598

Toxoplasma gondii and Plasmodium falciparum are important human pathogens. These parasites and many of their apicomplexan relatives undergo a complex developmental process in the cells of their hosts, which includes genome replication, cell division and the assembly of new invasive stages. Apicomplexan cell cycle progression is both globally and locally regulated. Global regulation is carried out throughout the cytoplasm by diffusible factors that include cell cycle-specific kinases, cyclins and transcription factors. Local regulation acts on individual nuclei and daughter cells that are developing inside the mother cell. We propose that the centrosome is a master regulator that physically tethers cellular components and that provides spatial and temporal control of apicomplexan cell division.


Apicomplexa/physiology , Cell Division , Centrosome/metabolism , Protozoan Infections/parasitology , Animals , Apicomplexa/cytology , Apicomplexa/genetics , Cell Nucleus/metabolism , DNA Replication , Humans , Malaria, Falciparum/parasitology , Models, Biological , Plasmodium falciparum/cytology , Plasmodium falciparum/genetics , Plasmodium falciparum/physiology , Protozoan Proteins/metabolism , Toxoplasma/cytology , Toxoplasma/genetics , Toxoplasma/physiology , Toxoplasmosis/parasitology
16.
Trends Parasitol ; 30(2): 58-64, 2014 Feb.
Article En | MEDLINE | ID: mdl-24411691

Apicomplexa are an ancient group of single-celled pathogens of humans and animals that include the etiological agents of such devastating plagues as malaria, toxoplasmosis, and coccidiosis. The defining feature of the Apicomplexa is the apical complex, the invasion machinery used to gain access to host cells. Evidence gathered from apicomplexans and their closest relatives argues that the apical complex is an extreme example of flagellum adaptability. The value of non-apicomplexan models, such as Chromera velia, is considered in an effort to understand the modern apical complex. The origin of the apical complex is unknown, but recent evidence points to a remarkable contribution from the flagellum to its evolution.


Apicomplexa/cytology , Apicomplexa/physiology , Animals , Biological Evolution
17.
Int Rev Cell Mol Biol ; 306: 333-69, 2013.
Article En | MEDLINE | ID: mdl-24016529

Chromerida are algae possessing a complex plastid surrounded by four membranes. Although isolated originally from stony corals in Australia, they seem to be globally distributed. According to their molecular phylogeny, morphology, ultrastructure, structure of organellar genomes, and noncanonical pathway for tetrapyrrole synthesis, these algae are thought to be the closest known phototrophic relatives to apicomplexan parasites. Here, we summarize the current knowledge of cell biology and evolution of this novel group of algae, which contains only two formally described species, but is apparently highly diverse and virtually ubiquitous in marine environments.


Apicomplexa/metabolism , Apicoplasts/parasitology , Animals , Apicomplexa/cytology , Cell Biology , Humans
18.
J Eukaryot Microbiol ; 60(5): 514-25, 2013.
Article En | MEDLINE | ID: mdl-23879624

Selenidium is a genus of gregarine parasites that infect the intestines of marine invertebrates and have morphological, ecological, and motility traits inferred to reflect the early evolutionary history of apicomplexans. Because the overall diversity and phylogenetic position(s) of these species remain poorly understood, we performed a species discovery survey of Selenidium from tube-forming polychaetes. This survey uncovered five different morphotypes of trophozoites (feeding stages) living within the intestines of three different polychaete hosts. We acquired small subunit (SSU) rDNA sequences from single-cell (trophozoite) isolates, representing all five morphotypes that were also imaged with light and scanning electron microscopy. The combination of molecular, ecological, and morphological data provided evidence for four novel species of Selenidium, two of which were established in this study: Selenidium neosabellariae n. sp. and Selenidium sensimae n. sp. The trophozoites of these species differed from one another in the overall shape of the cell, the specific shape of the posterior end, the number and form of longitudinal striations, the presence/absence of transverse striations, and the position and shape of the nucleus. A fifth morphotype of Selenidium, isolated from the tube worm Dodecaceria concharum, was inferred to have been previously described as Selenidium cf. echinatum, based on general trophozoite morphology and host association. Phylogenetic analyses of the SSU rDNA sequences resulted in a robust clade of Selenidium species collected from tube-forming polychaetes, consisting of the two new species, the two additional morphotypes, S. cf. echinatum, and four previously described species (Selenidium serpulae, Selenidium boccardiellae, Selenidium idanthyrsae, and Selenidium cf. mesnili). Genetic distances between the SSU rDNA sequences in this clade distinguished closely related and potential cryptic species of Selenidium that were otherwise very similar in trophozoite morphology.


Apicomplexa/classification , Apicomplexa/isolation & purification , Polychaeta/parasitology , Animals , Apicomplexa/cytology , Apicomplexa/genetics , Cluster Analysis , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Gastrointestinal Tract/parasitology , Genes, rRNA , Microscopy , Molecular Sequence Data , Phylogeny , RNA, Protozoan/genetics , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
19.
J Eukaryot Microbiol ; 60(2): 121-36, 2013.
Article En | MEDLINE | ID: mdl-23347320

Marine gregarines are poorly understood apicomplexan parasites with large trophozoites that inhabit the body cavities of marine invertebrates. Two novel species of gregarines were discovered in polychaete hosts collected in Canada and Japan. The trophozoites of Trichotokara japonica n. sp. were oval to rhomboidal shaped, and covered with longitudinal epicytic folds with a density of six to eight folds/micron. The nucleus was situated in the middle of the cell, and the mucron was elongated and covered with hair-like projections; antler-like projections also extended from the anterior tip of the mucron. The distinctively large trophozoites of Trichotokara eunicae n. sp. lacked an elongated mucron and had a tadpole-like cell shape consisting of a bulbous anterior region and a tapered tail-like posterior region. The cell surface was covered with longitudinal epicytic folds with a density of three to five folds/micron. Small subunit (SSU) rDNA sequences of both species were very divergent and formed a strongly supported clade with the recently described species Trichotokara nothriae and an environmental sequence (AB275074). This phylogenetic context combined with the morphological features of T. eunicae n. sp. required us to amend the description for Trichotokara. The sister clade to the Trichotokara clade consisted of environmental sequences and Lecudina polymorpha, which also possesses densely packed epicyctic folds (3-5 folds/micron) and a prominently elongated mucron. This improved morphological and molecular phylogenetic context justified the establishment of Paralecudina (ex. Lecudina) polymorpha n. gen. et comb.


Apicomplexa/classification , Apicomplexa/isolation & purification , Polychaeta/parasitology , Animals , Apicomplexa/cytology , Apicomplexa/genetics , Canada , Cell Nucleus/ultrastructure , Cluster Analysis , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Japan , Microscopy , Molecular Sequence Data , Organelles/ultrastructure , Phylogeny , RNA, Protozoan/genetics , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
20.
J Exp Biol ; 216(Pt 2): 230-5, 2013 Jan 15.
Article En | MEDLINE | ID: mdl-22996442

Sexual reproduction of Ascogregarina taiwanensis (Apicomplexa: Lecudinidae), a parasite specific to the mosquito Aedes albopictus, in Malpighian tubules is initiated by the entry of the trophotozoites developed in the midgut shortly after pupation (usually <5 h). However, only a low proportion of trophozoites are able to migrate; others end up dying. In this study, we demonstrated that those trophozoites that failed to migrate eventually died of apoptosis. Morphological changes such as shrinkage, chromatin aggregations and formation of blunt ridges on the surface were seen in moribund trophozoites. In addition, DNA fragmentation of trophozoites isolated from the midgut of pupae was demonstrated by the presence of DNA ladders, Annexin V staining and TUNEL assays. Detection of caspase-like activity suggests that apoptosis of those trophozoites may have occurred through a mechanism of an intrinsic or mitochondrial-mediated pathway. Although apoptosis has been observed in various protozoan species, it is not clear how apoptosis in single-celled organisms might result from evolution by natural selection. However, we speculate that apoptosis may regulate the parasite load of A. taiwanensis within its natural mosquito host, leading to an optimized state of the survival rate for both parasite and host.


Aedes/parasitology , Apicomplexa/physiology , Host-Parasite Interactions , Trophozoites/cytology , Animals , Apicomplexa/cytology , Apoptosis , Caspases/metabolism , Cell Movement , DNA, Protozoan/metabolism , In Situ Nick-End Labeling , Protozoan Infections/parasitology , Protozoan Proteins/metabolism , Pupa/cytology , Pupa/physiology , Trophozoites/physiology
...