Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anticancer Drugs ; 35(5): 397-411, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38527419

RESUMEN

This study aimed to investigate the role and molecular mechanism of heme oxygenase-1 (HMOX1) in chemotherapy resistance in small-cell lung cancer (SCLC). Employed bioinformatics, qPCR, and Western Blot to assess HMOX1 levels in SCLC versus normal tissues and its prognostic relevance. CCK-8, flow cytometry, and thiobarbituric acid assays determined HMOX1's impact on SCLC chemosensitivity, ferroptosis markers, lipid peroxidation, and mic14's role in chemoresistance. In the GSE40275 and GSE60052 cohorts, HMOX1 expression was downregulated in SCLC tissues compared to normal tissues. Higher HMOX1 expression was associated with improved prognosis in the Sun Yat-sen University Cancer Hospital cohort and GSE60052 cohort. The RNA and protein levels of HMOX1 were reduced in drug-resistant SCLC cell lines compared to chemosensitive cell lines. Upregulation of HMOX1 increased chemosensitivity and reduced drug resistance in SCLC, while downregulation of HMOX1 decreased chemosensitivity and increased drug resistance. Upregulation of HMOX1 elevated the expression of ferroptosis-related proteins ACSL4, CD71, Transferrin, Ferritin Heavy Chain, and Ferritin Light Chain, while decreasing the expression of GPX4 and xCT. Conversely, downregulation of HMOX1 decreased the expression of ACSL4, CD71, Transferrin, Ferritin Heavy Chain, and Ferritin Light Chain, while increasing the expression of GPX4 and xCT. Upregulation of HMOX1 promoted cellular lipid peroxidation, whereas downregulation of HMOX1 inhibited cellular lipid peroxidation. Upregulation of HMOX1 reduced the RNA level of mic14, while downregulation of HMOX1 increased the RNA level of mic14. mic14 exhibited inhibitory effects on cellular lipid peroxidation in SCLC cells and contributed to reduced chemosensitivity and increased drug resistance in chemoresistant SCLC cell lines. HMOX1 plays a role in ferroptosis by regulating mic14 expression, thereby reversing chemoresistance in SCLC.


Asunto(s)
Ferroptosis , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Apoferritinas/genética , Apoferritinas/farmacología , Apoferritinas/uso terapéutico , Hemo-Oxigenasa 1/genética , Resistencia a Antineoplásicos , Línea Celular Tumoral , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , ARN/farmacología , ARN/uso terapéutico , Transferrinas/farmacología
2.
Poult Sci ; 102(5): 102606, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36940654

RESUMEN

Oxidative stress is the major culprits responsible for ovarian dysfunction by damaging granulosa cells (GCs). Ferritin heavy chain (FHC) may participate in the regulation of ovarian function by mediating GCs apoptosis. However, the specific regulatory function of FHC in follicular GCs remains unclear. Here, 3-nitropropionic acid (3-NPA) was utilized to establish an oxidative stress model of follicular GCs of Sichuan white geese. To explore the regulatory effects of FHC on oxidative stress and apoptosis of primary GCs in geese by interfering or overexpressing FHC gene. After transfection of siRNA-FHC to GCs for 60 h, the expressions of FHC gene and protein decreased significantly (P < 0.05). After FHC overexpression for 72 h, the expressions of FHC mRNA and protein upregulated considerably (P < 0.05). The activity of GCs was impaired after interfering with FHC and 3-NPA coincubated (P < 0.05). When overexpression of FHC combined with 3-NPA treatment, the activity of GCs was remarkably enhanced (P < 0.05). After interference FHC and 3-NPA treatment, NF-κB and NRF2 gene expression decreased (P < 0.05), the intracellular reactive oxygen species (ROS) level increased greatly (P < 0.05), BCL-2 expression reduced, BAX/BCL-2 ratio intensified (P < 0.05), the mitochondrial membrane potential decreased notably (P < 0.05), and the apoptosis rate of GCs aggravated (P < 0.05). While overexpression of FHC combined with 3-NPA treatment could promote BCL-2 protein expression and reduce BAX/BCL-2 ratio, indicating that FHC regulated the mitochondrial membrane potential and apoptosis of GCs by mediating the expression of BCL-2. Taken together, our research manifested that FHC alleviated the inhibitory effect of 3-NPA on the activity of GCs. FHC knockdown could suppress the expression of NRF2 and NF-κB genes, reduce BCL-2 expression and augment BAX/BCL-2 ratio, contributing to the accumulation of ROS and jeopardizing mitochondrial membrane potential, as well as exacerbating GCs apoptosis.


Asunto(s)
Apoferritinas , Gansos , Femenino , Animales , Gansos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Apoferritinas/genética , Apoferritinas/metabolismo , Apoferritinas/farmacología , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/farmacología , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Pollos/metabolismo , Estrés Oxidativo , Apoptosis , Células de la Granulosa , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/farmacología
3.
Acta Biomater ; 160: 265-280, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36822483

RESUMEN

Myocardial ischemia-reperfusion injury (MI/RI) seriously restricts the therapeutic effect of reperfusion. It is demonstrated that ferroptosis and apoptosis of cardiomyocytes are widely involved in MI/RI. Therefore, simultaneous inhibition of ferroptosis and apoptosis of cardiomyocytes can be a promising strategy to treat MI/RI. Besides, transferrin receptor 1 (TfR1) is highly expressed in ischemic myocardium, and apoferritin (ApoFn) is a ligand of the transferrin receptor. In this study, CsA@ApoFn was prepared by wrapping cyclosporin A (CsA) with ApoFn and actively accumulated in ischemic cardiomyocytes through TfR1 mediated endoctosis in MI/RI mice. After entering cardiomyocytes, ApoFn in CsA@ApoFn inhibited ferroptosis of ischemic cardiomyocytes by increasing the protein expression of GPX4 and reducing the content of labile iron pool and lipid peroxides. At the same time, CsA in CsA@ApoFn attenuated the apoptosis of ischemic cardiomyocytes through recovering mitochondrial membrane potential and reducing the level of reactive oxygen species, which played a synergistic role with ApoFn in the treatment of MI/RI. In conclusion, CsA@ApoFn restored cardiac function of MI/RI mice by simultaneously blocking ferroptosis and apoptosis of cardiomyocytes. ApoFn itself not only served as a safe carrier to specifically deliver CsA to ischemic cardiomyocytes but also played a therapeutic role on MI/RI. CsA@ApoFn is proved as an effective drug delivery platform for the treatment of MI/RI. STATEMENT OF SIGNIFICANCE: Recent studies have shown that ferroptosis is an important mechanism of myocardial ischemia-reperfusion injury (MI/RI). Therefore, simultaneous inhibition of ferroptosis and apoptosis of cardiomyocytes can be a promising strategy to treat MI/RI. Apoferritin, as a delivery carrier, can actively target to ischemic myocardium through binding with highly expressed transferrin receptor on ischemic cardiomyocytes. At the same time, apoferritin plays a protective role on ischemic cardiomyocytes by inhibiting ferroptosis. This strategy of killing two birds with one stone significantly improves the therapeutic effect on MI/RI while does not need more pharmaceutical excipients, which has the prospect of clinical transformation.


Asunto(s)
Ferroptosis , Daño por Reperfusión Miocárdica , Ratones , Animales , Miocitos Cardíacos/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Ciclosporina/farmacología , Ciclosporina/química , Ciclosporina/metabolismo , Apoferritinas/farmacología , Apoferritinas/metabolismo , Apoferritinas/uso terapéutico , Apoptosis
4.
Aquat Toxicol ; 251: 106275, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36007351

RESUMEN

Ferroptosis plays a key role in fluorosis in aquatic organisms, but whether it is involved in fluoride-induced liver damage remains unclear. Previous studies have indicated that fluoride toxicity has the reversible tendency, but the mechanism of self-recovery after fluorosis in aquatic animals has not been elucidated. In this study, adult zebrafish and embryos were exposed to 0, 20, 40, 80 mg/L of fluoride for 30, 60 and 90 d and 3, 4 and 5 d post-fertilization (dpf), respectively. After 90 d, adult zebrafish were transferred to clean water for self-recovery of 30 d. The results showed that fluoride induced the prominent histopathologial changes in liver of adults, and the developmental delay and dark liver area in larvae. Fluoride significantly increased the iron overload, while decreased the expression levels of transferrin (tf), transferrin receptor (tfr), ferroportin (fpn), membrane iron transporter (fpn), and ferritin heavy chain (fth) in adults and larvae. Fluoride also induced the oxidative stress in adults and larvae by increasing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while decreasing the glutathione (GSH) content and the levels of glutathione peroxidase 4 (gpx4) and solute carrier family 7 member 11 (slc7a11). Self-recovery relieved fluoride-induced ferroptosis by reducing the histopathological damage and oxidative stress, reversing the expression levels of fth and slc7a11, Fe2+ metabolism and GSH synthesis. Lipid peroxidation and Fe2+ metabolism may be the key factor in alleviating effects of self-recovery on fluoride toxicity. Moreover, males are more sensitive than females. Our results provide a theoretical basis for studying the alleviating effects of self-recovery on fluoride toxicity and the underlying mechanism of its protective effect.


Asunto(s)
Ferroptosis , Contaminantes Químicos del Agua , Animales , Apoferritinas/metabolismo , Apoferritinas/farmacología , Femenino , Fluoruros/toxicidad , Glutatión/metabolismo , Hierro , Larva , Hígado , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Especies Reactivas de Oxígeno/metabolismo , Receptores de Transferrina/metabolismo , Transferrinas/metabolismo , Transferrinas/farmacología , Agua/farmacología , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo
5.
Nanoscale ; 14(17): 6449-6464, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35416195

RESUMEN

Gene therapy holds tremendous potential for the treatment of incurable brain diseases including Alzheimer's disease (AD), stroke, glioma, and Parkinson's disease. The main challenge is the lack of effective gene delivery systems traversing the blood-brain barrier (BBB), due to the complex microvessels present in the brain which restrict substances from the circulating blood passing through. Recently, increasing efforts have been made to develop promising gene carriers for brain-related disease therapies. One such development is the self-assembled heavy chain ferritin (HFn) nanoparticles (NPs). HFn NPs have a unique hollow spherical structure that can encapsulate nucleic acid drugs (NADs) and specifically bind to cancer cells and BBB endothelial cells (BBB ECs) via interactions with the transferrin receptor 1 (TfR1) overexpressed on their surfaces, which increases uptake through the BBB. However, the gene-loading capacity of HFn is restricted by its limited interior volume and negatively charged inner surface; therefore, these drawbacks have prompted the demand for strategies to remould the structure of HFn. In this work, we analyzed the three-dimensional (3D) structure of HFn using Chimera software (v 1.14) and developed a class of internally cationic HFn variants (HFn+ NPs) through arginine mutation on the lumenal surface of HFn. These HFn+ NPs presented powerful electrostatic forces in their cavities, and exhibited higher gene encapsulation efficacy than naive HFn. The top-performing candidate, HFn2, effectively delivered siRNA to glioma cells after traversing the BBB and achieved the highest silencing efficacy among HFn+ NPs. Overall, our findings demonstrate that HFn+ NPs obtained by this genetic engineering method provide critical insights into the future development of nucleic acid delivery carriers with BBB-crossing ability.


Asunto(s)
Glioma , Nanopartículas , Animales , Apoferritinas/farmacología , Barrera Hematoencefálica/metabolismo , Sistemas de Liberación de Medicamentos , Células Endoteliales/metabolismo , Glioma/tratamiento farmacológico , Ratones , Nanopartículas/uso terapéutico , ARN Interferente Pequeño/metabolismo
6.
Lab Invest ; 102(7): 741-752, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35351965

RESUMEN

Invasive growth of glioblastoma makes residual tumor unremovable by surgery and leads to disease relapse. Temozolomide is widely used first-line chemotherapy drug to treat glioma patients, but development of temozolomide resistance is almost inevitable. Ferroptosis, an iron-dependent form of non-apoptotic cell death, is found to be related to temozolomide response of gliomas. However, whether inducing ferroptosis could affect invasive growth of glioblastoma cells and which ferroptosis-related regulators were involved in temozolomide resistance are still unclear. In this study, we treated glioblastoma cells with RSL3, a ferroptosis inducer, in vitro (cell lines) and in vivo (subcutaneous and orthotopic animal models). The treated glioblastoma cells with wild-type or mutant IDH1 were subjected to RNA sequencing for transcriptomic profiling. We then analyze data from our RNA sequencing and public TCGA glioma database to identify ferroptosis-related biomarkers for prediction of prognosis and temozolomide resistance in gliomas. Analysis of transcriptome data from RSL3-treated glioblastoma cells suggested that RSL3 could inhibit glioblastoma cell growth and suppress expression of genes involved in cell cycle. RSL3 effectively reduced mobility of glioblastoma cells through downregulation of critical genes involved in epithelial-mesenchymal transition. Moreover, RSL3 in combination with temozolomide showed suppressive efficacy on glioblastoma cell growth, providing a promising therapeutic strategy for glioblastoma treatment. Although temozolomide attenuated invasion of glioblastoma cells with mutant IDH1 more than those with wild-type IDH1, the combination of RSL3 and temozolomide similarly impaired invasive ability of glioblastoma cells in spite of IDH1 status. Finally, we noticed that both ferritin heavy chain 1 and ferritin light chain predicted unfavorable prognosis of glioma patients and were significantly correlated with mRNA levels of methylguanine methyltransferase as well as temozolomide resistance. Altogether, our study provided rationale for combination of RSL3 with temozolomide to suppress glioblastoma cells and revealed ferritin heavy chain 1 and ferritin light chain as biomarkers to predict prognosis and temozolomide resistance of glioma patients.


Asunto(s)
Neoplasias Encefálicas , Ferroptosis , Glioblastoma , Glioma , Animales , Apoferritinas/farmacología , Apoferritinas/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Temozolomida/farmacología , Temozolomida/uso terapéutico
7.
Mol Pharm ; 18(9): 3365-3377, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34370483

RESUMEN

Rational design of a drug delivery system with enhanced therapeutic potency is critical for efficient tumor chemotherapy. Many protein-based drug delivery platforms have been designed to deliver drugs to target sites and improve the therapeutic efficacy. In this study, paclitaxel (PTX) molecules were encapsulated within an apoferritin nanocage-based drug delivery system with the modification of an extracellular-signal-regulated kinase (ERK) peptide inhibitor at the C-terminus of ferritin (HERK). Apoferritin is an endogenous nano-sized spherical protein which has the ability to specially bind to a majority of tumor cells via interacting with transferrin receptor 1. The ERK peptide inhibitor is a peptide which can disrupt the interaction of MEK with ERK in the mitogen-activated protein kinase/ERK pathway. By combining the targeted delivery effect of ferritin and the inhibitory effect of the ERK peptide inhibitor, the newly fabricated ferritin carrier nanoparticle HERK could still be taken up by tumor cells, and it displayed higher cell cytotoxicity than the parent ferritin. After loading with PTX, HERK-PTX displayed a favorable anticancer effect in human breast cancer cells MDA-MB-231 and lung carcinoma cells A549. The remarkable inhibitory effect on MDA-MB-231 tumor spheroids was also identified. These results indicated that the constructed HERK nanocarrier is a promising multi-functional drug delivery vehicle to enhance the therapeutic effect of drugs in cancer therapy.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistema de Administración de Fármacos con Nanopartículas/farmacología , Paclitaxel/administración & dosificación , Antineoplásicos/farmacocinética , Apoferritinas/química , Apoferritinas/farmacología , Línea Celular Tumoral , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Ferritinas/química , Humanos , Sistema de Administración de Fármacos con Nanopartículas/química , Paclitaxel/farmacocinética , Péptidos/química , Péptidos/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Esferoides Celulares
8.
Molecules ; 25(15)2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32731629

RESUMEN

The aim of this study was to explore the inhibitory potential of apoferritin or apoferritin-capped metal nanoparticles (silver, gold and platinum) against Trypanosomabrucei arginine kinase. The arginine kinase activity was determined in the presence and absence of apoferritin or apoferritin-capped metal nanoparticles. In addition, kinetic parameters and relative inhibition of enzyme activity were estimated. Apoferritin or apoferritin-capped metal nanoparticles' interaction with arginine kinase of T. brucei led to a >70% reduction in the enzyme activity. Further analysis to determine kinetic parameters suggests a mixed inhibition by apoferritin or apoferritin-nanoparticles, with a decrease in Vmax. Furthermore, the Km of the enzyme increased for both ATP and L-arginine substrates. Meantime, the inhibition constant (Ki) values for the apoferritin and apoferritin-nanoparticle interaction were in the submicromolar concentration ranging between 0.062 to 0.168 nM and 0.001 to 0.057 nM, respectively, for both substrates (i.e., L-arginine and ATP). Further kinetic analyses are warranted to aid the development of these nanoparticles as selective therapeutics. Also, more studies are required to elucidate the binding properties of these nanoparticles to arginine kinase of T. brucei.


Asunto(s)
Apoferritinas , Arginina Quinasa , Nanopartículas del Metal , Proteínas Protozoarias , Tripanocidas , Trypanosoma brucei brucei/enzimología , Apoferritinas/química , Apoferritinas/farmacología , Arginina Quinasa/antagonistas & inhibidores , Arginina Quinasa/metabolismo , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Tripanocidas/química , Tripanocidas/farmacología
9.
Nanoscale ; 12(13): 7347-7357, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32206764

RESUMEN

One of the most encountered obstacles for utilizing nano-sized vehicles to implement the in vivo delivery of nucleic acid drugs (NADs) is the possible steric hindrance caused by their intrinsic size and charge. In this work, we added Ca2+ for the pH triggered self-assembly process of H-apoferritin (HFn), to neutralize negative charges and help siRNA condense during complexation and particle formation. As expected, the internalization efficiency of siRNA in HFn particle formation could be enhanced 1.65-fold, compared with that without incorporated Ca2+. Furthermore, the calcification that occurred within the cavity of HFn particles endows them with endosomal escape capability, which could explain their contribution to the demonstrated in vitro and in vivo gene silencing effect achieved by the internalized siRNA. Thus, this Ca2+ participating self-assembly process of a protein nanostructure would lead to advanced internalization efficiency for NAD therapy.


Asunto(s)
Apoferritinas , Calcio/química , Sistemas de Liberación de Medicamentos , Nanoestructuras , ARN Interferente Pequeño , Animales , Apoferritinas/química , Apoferritinas/farmacología , Femenino , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Nanoestructuras/química , Nanoestructuras/uso terapéutico , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacología
10.
Toxicology ; 419: 40-54, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30914192

RESUMEN

Although ellipticine (Elli) is an efficient anticancer agent, it exerts several adverse effects. One approach to decrease the adverse effects of drugs is their encapsulation inside a suitable nanocarrier, allowing targeted delivery to tumour tissue whereas avoiding healthy cells. We constructed a nanocarrier from apoferritin (Apo) bearing ellipticine, ApoElli, and subsequently characterized. The nanocarrier exhibits a narrow size distribution suggesting its suitability for entrapping the hydrophobic ellipticine molecule. Ellipticine was released from ApoElli into the water environment under pH 6.5, but only less than 20% was released at pH 7.4. The interaction of ApoElli with microsomal membrane particles containing cytochrome P450 (CYP) biotransformation enzymes accelerated the release of ellipticine from this nanocarrier making it possible to be transferred into this membrane system even at pH 7.4 and facilitating CYP-mediated metabolism. Reactive metabolites were formed not only from free ellipticine, but also from ApoElli, and both generated covalent DNA adducts. ApoElli was toxic in UKF-NB-4 neuroblastoma cells, but showed significantly lower cytotoxicity in non-malignant fibroblast HDFn cells. Ellipticine either free or released from ApoElli was concentrated in the nuclei of neuroblastoma cells, concentrations of which being significantly higher in nuclei of UKF-NB-4 than in HDFn cells. In HDFn the higher amounts of ellipticine were sequestrated in lysosomes. The extent of ApoElli entering the nuclei in UKF-NB-4 cells was lower than that of free ellipticine and correlated with the formation of ellipticine-derived DNA adducts. Our study indicates that the ApoElli form of ellipticine seems to be a promising tool for neuroblastoma treatment.


Asunto(s)
Antineoplásicos/farmacología , Apoferritinas/farmacología , Citocromo P-450 CYP3A/metabolismo , Aductos de ADN/metabolismo , Portadores de Fármacos , Elipticinas/farmacología , Nanopartículas , Neuroblastoma/tratamiento farmacológico , Antineoplásicos/química , Apoferritinas/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Aductos de ADN/genética , Composición de Medicamentos , Liberación de Fármacos , Elipticinas/química , Histonas/metabolismo , Humanos , Neuroblastoma/enzimología , Neuroblastoma/genética , Neuroblastoma/patología , Fosforilación
11.
Arterioscler Thromb Vasc Biol ; 39(3): 413-431, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30700131

RESUMEN

Objective- Calcific aortic valve disease is a prominent finding in elderly and in patients with chronic kidney disease. We investigated the potential role of iron metabolism in the pathogenesis of calcific aortic valve disease. Approach and Results- Cultured valvular interstitial cells of stenotic aortic valve with calcification from patients undergoing valve replacement exhibited significant susceptibility to mineralization/osteoblastic transdifferentiation in response to phosphate. This process was abrogated by iron via induction of H-ferritin as reflected by lowering ALP and osteocalcin secretion and preventing extracellular calcium deposition. Cellular phosphate uptake and accumulation of lysosomal phosphate were decreased. Accordingly, expression of phosphate transporters Pit1 and Pit2 were repressed. Translocation of ferritin into lysosomes occurred with high phosphate-binding capacity. Importantly, ferritin reduced nuclear accumulation of RUNX2 (Runt-related transcription factor 2), and as a reciprocal effect, it enhanced nuclear localization of transcription factor Sox9 (SRY [sex-determining region Y]-box 9). Pyrophosphate generation was also increased via upregulation of ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase-2). 3H-1, 2-dithiole-3-thione mimicked these beneficial effects in valvular interstitial cell via induction of H-ferritin. Ferroxidase activity of H-ferritin was essential for this function, as ceruloplasmin exhibited similar inhibitory functions. Histological analysis of stenotic aortic valve revealed high expression of H-ferritin without iron accumulation and its relative dominance over ALP in noncalcified regions. Increased expression of H-ferritin accompanied by elevation of TNF-α (tumor necrosis factor-α) and IL-1ß (interleukin-1ß) levels, inducers of H-ferritin, corroborates the essential role of ferritin/ferroxidase via attenuating inflammation in calcific aortic valve disease. Conclusions- Our results indicate that H-ferritin is a stratagem in mitigating valvular mineralization/osteoblastic differentiation. Utilization of 3H-1, 2-dithiole-3-thione to induce ferritin expression may prove a novel therapeutic potential in valvular mineralization.


Asunto(s)
Estenosis de la Válvula Aórtica/metabolismo , Apoferritinas/fisiología , Calcificación Vascular/metabolismo , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/patología , Apoferritinas/antagonistas & inhibidores , Apoferritinas/farmacología , Transporte Biológico , Núcleo Celular/metabolismo , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/biosíntesis , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Interleucina-1beta/biosíntesis , Interleucina-1beta/genética , Canales Iónicos/biosíntesis , Hierro/farmacología , Lisosomas/metabolismo , Fosfatos/metabolismo , Hidrolasas Diéster Fosfóricas/biosíntesis , Hidrolasas Diéster Fosfóricas/genética , Factor de Transcripción SOX9/metabolismo , Tionas/farmacología , Tiofenos/farmacología , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética , Calcificación Vascular/patología
12.
Mater Sci Eng C Mater Biol Appl ; 95: 11-18, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30573231

RESUMEN

Cancer is one of the major causes of mortality worldwide. Therefore, it is necessary to provide an effective method of tumor therapy. Herein, we designed a new type of composite particle, apoferritin (APO) encapsulated doxorubicin (DOX), and the surface of APO was modified with Au nanoshell. As a nanocarrier, APO can carry chemotherapy drug DOX (APODOX) and release drug under acidic and high temperature conditions to reduce side effects of anticancer drugs. After covering Au nanoshell (APODOX-Au), the photothermal effect can be produced because of the unique surface plasmon resonance properties of gold nanoshell. This nanoplatform also provides the multi-stimuli responsive drug release system, which can achieve drug release in different conditions and have great potential in biomedical applications. Our investigation has demonstrated that APODOX-Au has good stability, high dispersibility and biocompatibility in vitro. The strong near-infrared absorption and good photothermal effect make sure the quick response to environmental changes (pH, temperature) to achieve drug release. These findings indicate that these nanoparticles have a potential application value in cancer treatment.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Apoferritinas/química , Portadores de Fármacos/química , Oro/química , Nanopartículas del Metal/química , Nanocáscaras/química , Apoferritinas/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Humanos
13.
Artif Cells Nanomed Biotechnol ; 46(sup3): S847-S854, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30449179

RESUMEN

Epirubicin (Epr) is an effective chemotherapeutic drug; however, the clinical amenability of Epr is limited by its highly toxic interaction with normal cells. This toxicity can be decreased by utilizing nanocarriers and targeted drug delivery systems. This work describes an approach for the delivery of Epr via encapsulation in the horse spleen apoferritin (HsAFr) cavity. The encapsulation was achieved by the disassembling of apoferritin into subunits at pH 2 followed by its reformation at pH 7.4 in the presence of Epr. The surface of HsAFr-encapsulated Epr was modified with folic acid (FA) for optimal targeting of breast cancer cells (MCF-7). The use of FA to functionalize HsAFr could enhance the cellular uptake efficiency via FA-receptor-mediated endocytosis. UV-vis spectroscopy, fluorescence spectroscopy, circular dichroism (CD) and transmission electron microscopy (TEM) were utilized for structural characterization of the HsAFr-Epr and HsAFr-Epr-FA complexes. The comparison of the anti-cancer activities across the HsAFr-Epr-FA complex and the free Epr drug was performed using the MTT viability assay on MCF-7.


Asunto(s)
Apoferritinas , Neoplasias de la Mama , Portadores de Fármacos , Epirrubicina , Ácido Fólico , Apoferritinas/química , Apoferritinas/farmacocinética , Apoferritinas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Epirrubicina/química , Epirrubicina/farmacocinética , Epirrubicina/farmacología , Femenino , Ácido Fólico/química , Ácido Fólico/farmacocinética , Ácido Fólico/farmacología , Humanos , Células MCF-7
14.
Drug Deliv ; 25(1): 1013-1024, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29726297

RESUMEN

Therapeutic outcome for the treatment of glioma was often limited due to the non-targeted nature of drugs and the physiological barriers, including the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB). An ideal glioma-targeted delivery system must be sufficiently potent to cross the BBB and BBTB and then target glioma cells with adequate optimized physiochemical properties and biocompatibility. However, it is an enormous challenge to the researchers to engineer the above-mentioned features into a single nanocarrier particle. New frontiers in nanomedicine are advancing the research of new biomaterials. In this study, we demonstrate a strategy for glioma targeting by encapsulating vincristine sulfate (VCR) into a naturally available apoferritin nanocage-based drug delivery system with the modification of GKRK peptide ligand (GKRK-APO). Apoferritin (APO), an endogenous nanosize spherical protein, can specifically bind to brain endothelial cells and glioma cells via interacting with the transferrin receptor 1 (TfR1). GKRK is a peptide ligand of heparan sulfate proteoglycan (HSPG) over-expressed on angiogenesis and glioma, presenting excellent glioma-homing property. By combining the dual-targeting delivery effect of GKRK peptide and parent APO, GKRK-APO displayed higher glioma localization than that of parent APO. After loading with VCR, GKRK-APO showed the most favorable antiglioma effect in vitro and in vivo. These results demonstrated that GKRK-APO is an important potential drug delivery system for glioma-targeted therapy.


Asunto(s)
Antineoplásicos/farmacología , Apoferritinas/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Nanopartículas/administración & dosificación , Péptidos/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Línea Celular , Línea Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Células Endoteliales , Femenino , Glioma/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratas , Ratas Sprague-Dawley , Vincristina/farmacología
15.
Vet Immunol Immunopathol ; 204: 19-27, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30596377

RESUMEN

Vibrio anguillarum causes high mortality in European sea bass (Dicentrarchus labrax) larviculture. In this study, we evaluated if the recombinant sea bass ferritin-H could stimulate the innate immune system of gnotobiotic European sea bass larvae resulting in protection against a V. anguillarum challenge. We also evaluated the effect of a V. anguillarum infection on the transcription of immune-related genes in gnotobiotic European sea bass larvae. Recombinant sea bass ferritin-H was produced, encapsulated in calcium alginate microparticles and orally delivered to sea bass larvae at seven days after hatching. Our results showed V. anguillarum caused an acute infection, resulting in high mortality. The infection significantly upregulated the expression of tlr3, tlr5, cas1, il1ß, tnfα, mif, il10, cc1, cxcl8 at 18, 24 and 36 h post infection, but not of the chemokine receptor genes cxcr4 and ccr9. There was no protective effect of ferritin-H. Remarkably, ferritin-H caused significantly higher transcript levels for cxcr4 and ccr9. Sea bass ferritin-H was more likely involved in immune-suppression and results point in the direction of a negative regulation of CXCR4 resulting in inhibition of cell proliferation, differentiation and migration which is detrimental to innate immunity and might explain the non-protective effect of ferritin-H in fish larvae.


Asunto(s)
Apoferritinas/farmacología , Lubina/microbiología , Enfermedades de los Peces/microbiología , Inmunidad Innata/efectos de los fármacos , Vibriosis/veterinaria , Vibrio/inmunología , Animales , Lubina/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/prevención & control , Larva/microbiología , Proteínas Recombinantes , Vibriosis/inmunología , Vibriosis/prevención & control
16.
Biomacromolecules ; 18(10): 3318-3330, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-28886247

RESUMEN

Triple negative breast cancer (TNBC) is a highly aggressive, invasive, and metastatic tumor. Although it is reported to be sensitive to cytotoxic chemotherapeutics, frequent relapse and chemoresistance often result in treatment failure. In this study, we developed a biomimetic nanodrug consisting of a self-assembling variant (HFn) of human apoferritin loaded with curcumin. HFn nanocage improved the solubility, chemical stability, and bioavailability of curcumin, allowing us to reliably carry out several experiments in the attempt to establish the potential of this molecule as a therapeutic agent and elucidate the mechanism of action in TNBC. HFn biopolymer was designed to bind selectively to the TfR1 receptor overexpressed in TNBC cells. HFn-curcumin (CFn) proved to be more effective in viability assays compared to the drug alone using MDA-MB-468 and MDA-MB-231 cell lines, representative of basal and claudin-low TNBC subtypes, respectively. Cellular uptake of CFn was demonstrated by flow cytometry and label-free confocal Raman imaging. CFn could act as a chemosensitizer enhancing the cytotoxic effect of doxorubicin by interfering with the activity of multidrug resistance transporters. In addition, CFn exhibited different cell cycle effects on these two TNBC cell lines, blocking MDA-MB-231 in G0/G1 phase, whereas MDA-MB-468 accumulated in G2/M phase. CFn was able to inhibit the Akt phosphorylation, suggesting that the effect on the proliferation and cell cycle involved the alteration of PI3K/Akt pathway.


Asunto(s)
Antineoplásicos/farmacología , Apoferritinas/farmacología , Curcumina/farmacología , Nanopartículas/química , Neoplasias de la Mama Triple Negativas/metabolismo , Transporte Biológico , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Proc Natl Acad Sci U S A ; 114(32): E6595-E6602, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28739953

RESUMEN

Reports on drug delivery systems capable of overcoming multiple biological barriers are rare. We introduce a nanoparticle-based drug delivery technology capable of rapidly penetrating both lung tumor tissue and the mucus layer that protects airway tissues from nanoscale objects. Specifically, human ferritin heavy-chain nanocages (FTn) were functionalized with polyethylene glycol (PEG) in a unique manner that allows robust control over PEG location (nanoparticle surface only) and surface density. We varied PEG surface density and molecular weight to discover PEGylated FTn that rapidly penetrated both mucus barriers and tumor tissues in vitro and in vivo. Upon inhalation in mice, PEGylated FTn with optimized PEGylation rapidly penetrated the mucus gel layer and thus provided a uniform distribution throughout the airways. Subsequently, PEGylated FTn preferentially penetrated and distributed within orthotopic lung tumor tissue, and selectively entered cancer cells, in a transferrin receptor 1-dependent manner, which is up-regulated in most cancers. To test the potential therapeutic benefits, doxorubicin (DOX) was conjugated to PEGylated FTn via an acid-labile linker to facilitate intracellular release of DOX after cell entry. Inhalation of DOX-loaded PEGylated FTn led to 60% survival, compared with 10% survival in the group that inhaled DOX in solution at the maximally tolerated dose, in a murine model of malignant airway lung cancer. This approach may provide benefits as an adjuvant therapy combined with systemic chemo- or immunotherapy or as a stand-alone therapy for patients with tumors confined to the airways.


Asunto(s)
Apoferritinas , Doxorrubicina , Neoplasias Pulmonares , Nanoestructuras , Neoplasias Experimentales , Polietilenglicoles , Mucosa Respiratoria/metabolismo , Animales , Apoferritinas/química , Apoferritinas/farmacocinética , Apoferritinas/farmacología , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Polietilenglicoles/farmacología , Mucosa Respiratoria/patología
18.
Fish Shellfish Immunol ; 66: 411-422, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28535971

RESUMEN

Iron is an essential microelement for almost all living organisms, while an excess of iron is toxic, thus maintenance of iron homeostasis is vital. As iron storage protein, ferritin plays an important role in iron metabolism. In the present study, we cloned and characterized the ferritin H subunit from Megalobrama amblycephala, termed as MamFerH. An iron-responsive element (IRE) was predicted in the 5' untranslated region (UTR) of MamFerH, while its bulge structural was different from that of the reported ferritin M subunit (MamFerM). The MamFerH and MamFerM genes exhibited similar expression patterns during early development with specifically high expression post hatching, whereas their tissue expression patterns were different. Specifically, MamFerM was highly expressed in the spleen, liver and kidney, while MamFerH was predominantly expressed in the blood and brain, indicating their different functions. In addition, the expression of the two genes was induced upon Aeromonas hydrophila infection at both transcriptional and translational levels, and MamFerH was more efficient. Immunohistochemistry and immunofluorescence analysis confirmed their significant changes at protein level and distribution in the liver post infection, indicating their participation in host immune response. Furthermore, bacteriostatic experiment revealed that recombinant MamFerH displayed more significant inhibitory effect on the growth of A. hydrophila.


Asunto(s)
Cyprinidae , Ferritinas/genética , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Aeromonas hydrophila/efectos de los fármacos , Aeromonas hydrophila/fisiología , Animales , Apoferritinas/química , Apoferritinas/genética , Apoferritinas/metabolismo , Apoferritinas/farmacología , Secuencia de Bases , Clonación Molecular , Cyprinidae/embriología , ADN Complementario/genética , ADN Complementario/metabolismo , Ferritinas/química , Ferritinas/metabolismo , Ferritinas/farmacología , Enfermedades de los Peces/genética , Enfermedades de los Peces/metabolismo , Enfermedades de los Peces/microbiología , Proteínas de Peces/química , Proteínas de Peces/farmacología , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/metabolismo , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Distribución Aleatoria , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Alineación de Secuencia/veterinaria
19.
Nano Lett ; 17(2): 862-869, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28027646

RESUMEN

Carcinoma-associated fibroblasts (CAFs) are found in many types of cancer and play an important role in tumor growth and metastasis. Fibroblast-activation protein (FAP), which is overexpressed on the surface of CAFs, has been proposed as a universal tumor targeting antigen. However, recent studies show that FAP is also expressed on multipotent bone marrow stem cells. A systematic anti-FAP therapy may lead to severe side effects and even death. Hence, there is an urgent need of a therapy that can selectively kill CAFs without causing systemic toxicity. Herein we report a nanoparticle-based photoimmunotherapy (nano-PIT) approach that addresses the need. Specifically, we exploit ferritin, a compact nanoparticle protein cage, as a photosensitizer carrier, and we conjugate to the surface of ferritin a FAP-specific single chain variable fragment (scFv). With photoirradiation, the enabled nano-PIT efficiently eliminates CAFs in tumors but causes little damage to healthy tissues due to the localized nature of the treatment. Interestingly, while not directly killing cancer cells, the nano-PIT caused efficient tumor suppression in tumor-bearing immunocompetent mice. Further investigations found that the nano-PIT led to suppressed C-X-C motif chemokine ligand 12 (CXCL12) secretion and extracellular matrix (ECM) deposition, both of which are regulated by CAFs in untreated tumors and mediate T cell exclusion that prevents physical contact between T cells and cancer cells. By selective killing of CAFs, the nano-PIT reversed the effect, leading to significantly enhanced T cell infiltration, followed by efficient tumor suppression. Our study suggests a new and safe CAF-targeted therapy and a novel strategy to modulate tumor microenvironment (TME) for enhanced immunity against cancer.


Asunto(s)
Apoferritinas/química , Complejos de Coordinación/administración & dosificación , Gelatinasas/metabolismo , Proteínas de la Membrana/metabolismo , Nanocáscaras/química , Neoplasias Experimentales/terapia , Fármacos Fotosensibilizantes/administración & dosificación , Serina Endopeptidasas/metabolismo , Linfocitos T Citotóxicos/inmunología , Zinc/química , Animales , Apoferritinas/farmacología , Línea Celular Tumoral , Supervivencia Celular , Terapia Combinada , Complejos de Coordinación/química , Portadores de Fármacos , Endopeptidasas , Gelatinasas/inmunología , Humanos , Inmunoterapia , Indoles/química , Luz , Proteínas de la Membrana/inmunología , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Tamaño de la Partícula , Fármacos Fotosensibilizantes/química , Fototerapia , Serina Endopeptidasas/inmunología , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/metabolismo , Propiedades de Superficie
20.
Oncotarget ; 7(41): 66713-66727, 2016 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-27579532

RESUMEN

A growing body of evidence suggests that cancer stem cells (CSC) have the unique biological properties necessary for tumor maintenance and spreading, and function as a reservoir for the relapse and metastatic evolution of the disease by virtue of their resistance to radio- and chemo-therapies. Thus, the efficacy of a therapeutic approach relies on its ability to effectively target and deplete CSC. In this study, we show that CSC-enriched tumorspheres from breast cancer cell lines display an increased L-Ferritin uptake capability compared to their monolayer counterparts as a consequence of the upregulation of the L-Ferritin receptor SCARA5. L-Ferritin internalization was exploited for the simultaneous delivery of Curcumin, a natural therapeutic molecule endowed with antineoplastic action, and the MRI contrast agent Gd-HPDO3A, both entrapped in the L-Ferritin cavity. This theranostic system was able to impair viability and self-renewal of tumorspheres in vitro and to induce the regression of established tumors in mice. In conclusion, here we show that Curcumin-loaded L-Ferritin has a strong therapeutic potential due to the specific targeting of CSC and the improved Curcumin bioavailability, opening up the possibility of its use in a clinical setting.


Asunto(s)
Apoferritinas/farmacocinética , Curcumina/farmacocinética , Compuestos Heterocíclicos/farmacocinética , Células Madre Neoplásicas/metabolismo , Compuestos Organometálicos/farmacocinética , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Apoferritinas/farmacología , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Medios de Contraste/farmacocinética , Curcumina/farmacología , Femenino , Gadolinio/farmacocinética , Humanos , Imagen por Resonancia Magnética , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Ratones Endogámicos BALB C , Células Madre Neoplásicas/efectos de los fármacos , Receptores Depuradores de Clase A/genética , Receptores Depuradores de Clase A/metabolismo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...